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4Pitaevskii BEC Center, INO-CNR and Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38123 Trento, Italy
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The ability to tailor with a high accuracy the intersite connectivity in a lattice is a crucial tool for
realizing novel topological phases of matter. Here, we report the experimental realization of photonic
dimer chains with long-range hopping terms of arbitrary strength and phase, providing a rich
generalization of the Su-Schrieffer-Heeger model which, in its conventional form, is limited to
nearest-neighbor couplings only. Our experiment is based on a synthetic dimension scheme involving
the frequency modes of an optical fiber loop platform. This setup provides direct access to both the band
dispersion and the geometry of the Bloch wave functions throughout the entire Brillouin zone allowing us
to extract the winding number for any possible configuration. Finally, we highlight a topological phase
transition solely driven by a time-reversal-breaking synthetic gauge field associated with the phase of the
long-range hopping, providing a route for engineering topological bands in photonic lattices belonging to
the AIII symmetry class.
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Introduction.—Engineering materials with specific topo-
logical properties requires an acute control over the hybridi-
zation of electronic orbitals [1]. As was pioneered by
the Haldane model [2], introducing next-nearest-neighbor
coupling terms with arbitrary phases strongly enriches the
variety of phenomena that can be observed in topological
band models [3,4]. Furthermore, such long-range connec-
tivity is expected to facilitate the stabilization of strongly
correlated states of matter [5].
The experimental implementation and control of sizable

hopping terms extending beyond nearest neighbors is
typically not a straightforward task [6]. In usual realiza-
tions of lattice models based on condensed matter or
ultracold atomic systems, hopping typically occurs via
tunneling processes mediated by the spatial overlap of
wave functions at different sites and is therefore dominated
by short-range processes [7,8].
The situation is very different if we consider lattices

extending along synthetic dimensions [9]. Here, one or more
spatial coordinates are replaced by some other internal
degrees of freedom such as energy or momentum in ultra-
cold atomic gases [10–13], or, in photonic systems, fre-
quency [14,15], angular momentum [16,17], spatial [18] or
temporal modes [19,20]. In the specific case of photonic
lattices, a wide variety of hopping terms can be engineered
[21], which has led to the observation of the four-
dimensional quantum Hall effect [22], the non-Hermitian
skin effect [23,24], and topological complex-energy braiding
features [25]. This enhanced control over the intersite

connectivity has also proven to be instrumental to the
development of new generations of optical devices, includ-
ing topological lasers [26], non-Hermitian sensors [27], and
photonic networks [28,29].
In this Letter, we use the frequency of the photon modes

in an optical fiber loop as a synthetic dimension [15] to
experimentally engineer one-dimensional dimerized lattices
with full control over the range, magnitude, and phase of the
hopping terms. When only nearest-neighbor couplings are
present, our lattice realizes the well-known Su-Schrieffer-
Heeger (SSH) model [30], which displays two topologically
distinct phases associated with the integer-valued winding
number W ¼ 0, 1. A wider variety of phases with W
ranging from −1 to þ2 is realized by adding 3rd-nearest-
neighbor hopping terms with specific amplitudes [31–33].
The entire topological phase diagram of this Hamiltonian is
reconstructed using a wave-function tomography technique
for the Bloch modes. Finally, we report the generation of a
time-reversal-breaking synthetic gauge field, which allows
to change the band topology without modifying the relative
strength of the couplings, in sharp contrast with the conven-
tional SSH model where this is necessary.
The topological model.—We consider in this work one-

dimensional dimerized chains that present chiral sym-
metry, i.e., where sites are identical and hopping processes
only connect sites in different sublattices [Fig. 1(a)]. Under
the tight-binding approximation, the generic Hamiltonian
describing such lattices is
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HðkÞ ¼
�

0 gðkÞ
g�ðkÞ 0

�
; ð1Þ

where the off-diagonal term gðkÞ ¼ jgðkÞjeiϕðkÞ describes
the hopping terms in Fourier space. This Hamiltonian
presents band dispersions E�ðkÞ ¼ �jgðkÞj, and a phase
difference ϕðkÞ between the components of the Bloch
modes on the two sublattices:

jk�i ¼
1ffiffiffi
2

p
�

1

�e−iϕðkÞ

�
: ð2Þ

In this framework, the topological phases are charac-
terized by the number of times gðkÞ winds around the
origin of the complex plane as k spans the Brillouin zone.
This quantity, called the winding number W, is linked to
the number of edge states present at the boundaries of a
finite lattice. Although the winding number depends on the
definition of the unit cell and is thus ill defined for infinite
lattices, it can be identified unambiguously for finite
lattices where the definition of the unit cell is imposed
by the chain termination.
When only nearest-neighbor hopping amplitudes are

considered, gðkÞ ¼ aþ b�eþikl with l the lattice constant.
This realizes the SSH model with winding numbersW ¼ 0
and 1 for jaj > jbj and jaj < jbj, respectively [Fig. 1(b)].
Adding 3rd-nearest-neighbor hopping terms leads to

gðkÞ ¼ aþ b�eþikl þ ce−ikl þ d�eþ2ikl; ð3Þ
and the winding number can now take values ranging from
−1 toþ2 upon varying the hopping amplitudes, see Fig. 1(c)

for the cases where a ¼ b�, and ratios c=a and d�=a are real.
This is equivalent to a model with real hopping parameters
after a gauge transformation gðkÞ → e−iϕagðkÞ with ϕa ¼
argðaÞ [31].
The synthetic photonic lattice.—In our experiment, we

use the frequency of photons confined in an optical fiber
loop as a synthetic dimension [34]. The underlying principle
of this approach, inspired by Refs. [14,15,35], is to emulate
the spatial periodicity of a lattice by exploiting the perio-
dicity in frequency of the cavity spectrum, given by the
loop’s free spectral range (FSR) l ¼ Ω, and mapping each
cavity mode of the loop to a single site of the Hamiltonian.
Coupling between specific eigenmodes (representing the
hopping parameter) is realized by locally modulating the
refractive index of the cavity material with electro-optic
phase modulators (EOMs) driven at a frequency equal to the
corresponding mode spacing.
In order to create the alternating hopping terms of a

dimer chain, it is necessary to engineer a cavity with two
different frequency splittings and to drive them independ-
ently. To do this, we use a single fiber loop and couple the
degenerate clockwise (CW) and counterclockwise (CCW)
eigenmodes using a 75∶25 optical fiber coupler [see
Fig. 1(d)]. The resulting hybridized modes are symmetric
and antisymmetric superpositions of the CW and CCW
modes: jm;�i ¼ ð1= ffiffiffi

2
p Þðjm;CCWi � jm;CWiÞ, where

m is the index of the uncoupled modes. In our setup,
the splitting between jm;�i is δ=2π ¼ 3.43 MHz and the
FSR is Ω=2π ¼ 10.03 MHz [Fig. 1(e)].
In order to further optimize the coupling efficiency

between these eigenmodes, we use a pair of circulators

(a) (d) (e)

(b) (c)

FIG. 1. (a) Schematic representation of a topological dimer chain. The unit cell is defined by the dotted rectangle and the arrows
describe the forward- (a, b, c, d) and backward- ða�; b�; c�; d�Þ propagating hopping amplitudes. (b)–(c) Topological phase diagrams
presenting the winding number as a function of the different couplings for the SSH model (b) and the dimer chain with long-range
couplings (c) in a case where a ¼ b� and the ratios c=a and d�=a are real. (d) Experimental setup: clockwise (blue) and
counterclockwise (red) modes of an optical fiber loop are coupled with a 75∶25 fiber coupler. The system is probed with an optical
fiber acting as a transmission line weakly coupled to the cavity with a 99∶1 FC. On top, circulators are used to independently modulate
CWand CCWmodes with a pair of electro-optical phase modulators. (e) The energy spectrum of the cavity has a FSR of Ω and consists
of symmetric and antisymmetric superpositions of CW and CCW modes (jm;�i), separated by a frequency splitting δ.
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that spatially separate the CW and CCW modes allowing
to independently modulate them. In particular, by driving
the EOMs with the same electrical signal amplitude but
with a π-phase shift, VCCWðtÞ ¼ −VCWðtÞ, we maximize
the coupling between states of opposite parity while
suppressing those between states belonging to the same
sublattice, hence enforcing chiral symmetry [36].
SSH lattices.—As a first application of our scheme,

we realize an SSH Hamiltonian by driving the EOMs
with a bichromatic signal VCCW=CWðtÞ ¼ �ði=2ÞðVae−iδt þ
Vbe−iðΩ−δÞtÞ þ c:c: where � accounts for the π phase shift
between the two modulators on the CCW and CW paths.
This modulation gives rise to effective hopping terms a ¼
iηVa and b� ¼ iηV�

b, where η is related to the electro-optical
constant and has units of rad s−1V−1 [34].
To measure the band dispersion, we probe the time-

resolved transmission of the cavity using a high-bandwidth
photodiode while scanning the frequency of a continuous-
wave excitation laser around a given symmetric hybridized
cavity mode jm̄;þi. When the laser is resonant with the �
synthetic SSH band, the transmitted field intensity consists
of a train of pulses with period T ¼ 2π=Ω:

Ið�Þ
pd ðtÞ
jFj2 ≃

�
1 −

κ

2
Re

�
1� e−iδteiϕðkÞ

γ=2 − iðΔωL ∓ jgðkÞjÞÞ
��				

k¼tmodT
;

ð4Þ

where F is the input field amplitude, ΔωL is the detuning
between the laser and the considered hybridized cavity
mode, and κ is the input-output coupling strength. We work
in a regime where κ is smaller than the total decay rate of
the cavity γ ¼ γi þ κ −G with γi the intrinsic loss and G
the amplification. As usual in synthetic dimension schemes
based on frequency [15], the field at each time t probes the
state of effective crystal momentum k ¼ tmodT within an
effective Brillouin zone of size T [37]: the resonant
denominator gives intensity dips whenever the frequency
of the SSH state at k matches the one of the incident laser,
whereas the numerator describes a slow modulation with
frequency δ and phase ϕðkÞ.
This slow modulation arises from the fact that we

measure light transmitted from the CCW mode while
the Bloch eigenmodes consist of linear superpositions of
symmetric and antisymmetric combinations of CW and
CCWmodes that oscillate at different frequencies, giving a
beating at their frequency difference δ in the photodiode
signal. Importantly, the phase of this modulation is exactly
the relative phase of the sublattice amplitudes in the Bloch
modes, allowing experimental access to the phase of the
wave function in Eq. (2) at every k point.
Figures 2(a) and 2(b) show the transmitted intensity as a

function of time (averaged over multiple Brillouin zones to
erase the effect of the modulation) and as a function of the
laser detuning for the cases jaj > jbj and jaj < jbj,

corresponding to the trivial and topological phases of the
SSH model. In both cases, we clearly observe the two
bands of the SSH Hamiltonian with a well-defined gap, on
the order of Eg ∼ 200 kHz for the parameters of the
experiment.
The different topology of these two cases can be high-

lighted by probing the trajectory of gðkÞ in the complex
plane: jgðkÞj is extracted from the measurement of the band
structure, and the phase ϕðkÞ ¼ arg½gðkÞ� is obtained by
Fourier transforming the slow modulation of the output
signal [34]. Figure 2(e) reports this slow modulation, as a
function of time and k vector, for both the trivial and
topological phases. Extracting the phase of this modulation
at every k, we can track the trajectory of gðkÞ throughout the
entire Brillouin zone [Figs. 2(c)–2(d)], which winds around
the origin in the topological case (d) but not in the trivial
case (c).
Generalized SSH lattices.—We now examine the impact

of 3rd-nearest-neighbor hopping amplitudes. In our plat-
form, long-range hopping processes are straightforwardly
implemented by adding appropriate higher-frequency

(a)

(c) (d)

(e)

(b)

FIG. 2. (a)–(b) Band structure measurements for the trivial (a)
and topological phases (b) obtained by probing the transmitted
intensity of the cavity as a function of time for different values of
the laser detuning. Effective hopping terms (in units of V) are
provided above each panel. (c)-(d) Trajectory of gðkÞ in the
complex plane for k moving across the Brillouin zone in the
trivial and topological cases exhibiting a winding numberW ¼ 0
and 1, respectively. (e) Slow temporal modulation of the
amplitude of the transmitted intensity peaks associated with
the lower band in the trivialW ¼ 0 (top) and topologicalW ¼ 1
(bottom) cases. Vertical dashed lines indicate the periodicity of
this modulation.
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components to the signal sent to the EOMs:

VCCW;CWðtÞ ¼ � i
2
ðVae−iδt þ Vbe−iðΩ−δÞt

þ Vce−iðΩþδÞt þ Vde−ið2Ω−δÞtÞ þ c:c:; ð5Þ

where c ¼ −iηVc and d� ¼ −iηV�
d [34]. Here we consider

cases with a ¼ b� and only the ratios c=a and d�=a are
changed. Keeping these ratios real, this allows exploring
the full phase diagram presented in Fig. 1(c).
Figure 3 presents the experimental data for different

ratios of long-range to nearest-neighbor hopping ampli-
tudes. Each panel presents a specific case corresponding
to one of the possible values of the winding number:W ¼
−1 (a), W ¼ 0 (b), W ¼ þ1 (c), and W ¼ þ2 (d). On the
right of each panel, we present the effective hopping
amplitudes used in the experiment. The experimental
measurements of the band structure and trajectory of
gðkÞ (top row) show excellent agreement with tight-
binding calculations (bottom row).
Time-reversal-breaking topological phases.—Finally,

we demonstrate how the phases of the 3rd-nearest-neighbor
couplings can be tuned to break time-reversal symmetry and

induce a topological phase transition without modifying the
hopping strengths. This is in sharp contrast with the
conventional SSH model where it is necessary to adjust
the coupling strengths to change W, because any hopping
phase can always be gauged away. This topological phase
transition with fixed coupling strengths is allowed because
these dimer chains with broken time-reversal symmetry
belong to the AIII symmetry class rather than the BDI class
to which the SSH model and its extensions with time-
reversal symmetry belong.
The relative phase between the different hopping terms

of the Hamiltonian is experimentally realized by adding a
phase to Va;b;c;d in Eq. (5). Such a relative phase between
one of the long-range couplings and the other couplings
effectively induces a synthetic gauge field for photons
[38,39]. This is best seen by reformulating the chain as a
ladderlike lattice with c ¼ 0 [Fig. 4(a)]. In this equivalent
picture, one clearly sees how the phase of d ¼ jdje−iθ
gives rise to flux plaquettes similar to those in ladder
models with a staggered magnetic field. This gauge field
provides an additional degree of freedom, extending the
phase diagram in Fig. 1(c) to three dimensions. A similar
argument can of course be used when the c couplings are
also included.

(a) (b) (c) (d)

FIG. 3. Measurements (top row) and numerical simulations (bottom row) of the band structure (left column) and of the trajectory of
gðkÞ (central column) for dimer chains with long-range hopping amplitudes. Each panel shows results for each possible value of the
winding number: W ¼ −1 (a), W ¼ 0 (b), W ¼ þ1 (c), and W ¼ þ2 (d). On the right side of each panel, we reproduce the phase
diagram of Fig. 1(c), with a star indicating in which region of the phase diagram each measurement is realized, and provide the effective
hopping amplitudes, normalized by η (in units of V).

(a) (c) (d) (e)

(b)

FIG. 4. (a) Schematic representation of a topological dimer chain with a ¼ b�, c ¼ 0, and complex-valued d�=a. The two sublattices
are identified with þ and − as in Fig. 1(e). (b) Schematic representation of the trajectory in the topological phase diagram followed by
the Hamiltonian as the phase of the 3rd-nearest-neighbor hopping amplitudes (θ) is scanned. (c)–(e) Measurements of the band structure
(top left) and gðkÞ trajectory (top right) as the phase of the long-range hopping is tuned from θ ¼ 0 (c), to θ ¼ π=2 (d), and θ ¼ π (e).
The bottom row presents the corresponding theoretical calculation of the band structure (left) and gðkÞ (right). For each panel, the
effective hopping terms normalized by η are provided (in units of V).
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An example of a trajectory in this extended phase space,
that goes through points where the magnitude of all
hopping amplitudes remains constant but the phase of
d�=a evolves from 0 to π, is schematically depicted in
Fig. 4(b). Figures 4(c)–4(e) present the measured (top) and
calculated (bottom) band structures (left) and trajectories of
gðkÞ (right) along this path. Once again, except for the
small deviations observed in Figs. 4(d) and 4(e) near gap
closures due to the finite decay rate γ [34], an overall
excellent agreement is found between theory and experi-
ment. A topological phase transition induced by this gauge
field is clearly observed at θ ¼ π=2 through a closing and
reopening of the energy gap accompanied by a winding
number change from 2 to 1.
Conclusions.—In this work, we have exploited a syn-

thetic dimension scheme based on an optical fiber loop
to realize a generalized dimer chain model including
long-range and/or time-reversal breaking hopping terms.
Experimental signatures of the nontrivial band topology
have been obtained by reconstructing the geometry of the
Bloch wave functions throughout the entire Brillouin zone.
The natural next step will be to relate this microscopic
characterization of the topology to macroscopic observ-
ables such as a driven-dissipative version of the mean chiral
displacement [14,31,40] and edge states in the presence of
frequency-space potentials [14,41]. Setting up these tools
will be instrumental in enabling investigations of more
complex Hamiltonians in synthetic dimensions, involving
non-Hermiticity [25,42], higher dimensions [43], many-
body quantum states of light [44–46], non-Markovian
dynamics [47], and/or optical nonlinearities [48,49].

Note added.—Recently, Ref. [50] demonstrating the extrac-
tion of the Zak phase of SSH lattices in the synthetic
frequency dimension came to our attention.
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