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Despite the paradigmatic nature of the Fermi-polaron model, the theoretical description of its nonlinear
dynamics poses challenges. Here, we apply a quantum kinetic theory of driven polarons to recent
experiments with ultracold atoms, where Rabi oscillations between a Fermi-polaron state and a non-
interacting level were reported. The resulting equations separate decoherence from momentum relaxation,
with the corresponding rates showing a different dependence on microscopic scattering processes and
quasiparticle properties. We describe both the polaron ground state and the excited repulsive-polaron state
and we find a good quantitative agreement between our predictions and the available experimental data
without any fitting parameter. Our approach not only takes into account collisional phenomena, but also it
can be used to study the different roles played by decoherence and the collisional integral in the strongly
interacting highly imbalanced mixture of Fermi gases.
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Introduction.—Polarons, i.e., impurities dressed by their
environment, play a paradigmatic role in the understanding
of many-body properties in a variety of physical systems.
The Fermi polaron—a particle interacting with a reservoir of
free fermions—became the object of intense study after its
experimental realization with ultracold atomic gases [1–6],
and more recently in monolayer semiconductors [7,8].
Studying this problem has offered valuable insights into
the many-body physics of Fermi-Fermi or Bose-Fermi
mixtures [4].
The high level of control allows the investigation of the

dynamics of Fermi polarons [9]. In particular, experiments
have studied the fate of coherent Rabi dynamics between a
noninteracting impurity state and a polaron state [10–12],
where collisional induced relaxation and decoherence are
at play.
In thermal equilibrium, due to the simplicity of

the Fermi-polaron model, fully solvable microscopic
approaches, like simple variational Ansätze [13,14], have

produced quantitatively valid predictions. However, the
theoretical description of the problem becomes more
challenging when considering the dynamics. For instance,
the theoretical description of the Fermi-polaron Rabi
dynamics based on a time-dependent variational approach
revealed some nontrivial features [15], like the absence of
decay from the repulsive to the attractive branch, which
were required to achieve agreement with the experimental
data [12].
Moreover, for such a problem—related to the open

quantum system problem of a spin in a bath—it would
be desirable to have a density matrix description and to
identify the role of the various relaxation mechanisms.
In this Letter, we apply a quantum kinetic approach [16]

to study the Fermi-polaron Rabi dynamics, which allows us
to describe the system in terms of the evolution of the
density matrix of a two-level system, whose properties are
dressed by many-body effects. Importantly, we can distin-
guish between decoherence and momentum relaxation,
whose rates show a different dependence on scattering
processes and quasiparticle properties. Within a simple
approximation for the scattering between the impurity
and the bath, the solution of our quantum kinetic equations
is shown to be in good agreement with the available
experimental data without any fitting parameters. This
indicates that the experiments realize the situation where

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 132, 183001 (2024)

0031-9007=24=132(18)=183001(7) 183001-1 Published by the American Physical Society

https://orcid.org/0000-0002-0958-2276
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.183001&domain=pdf&date_stamp=2024-05-03
https://doi.org/10.1103/PhysRevLett.132.183001
https://doi.org/10.1103/PhysRevLett.132.183001
https://doi.org/10.1103/PhysRevLett.132.183001
https://doi.org/10.1103/PhysRevLett.132.183001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


polarons (and not the bare particles) perform Rabi
oscillations.
Model and kinetic equations.—We consider a homo-

geneous system composed of a bath of atoms in state j1i,
and impurity atoms in state j3i, which are Rabi-coupled to a
noninteracting state j2i [Fig. 1(a)]. All the states are different
internal levels of the same isotope, and, therefore, they have
the same mass m. The Hamiltonian of the system reads

Ĥ ¼
X

i¼1;2;3

Ĥi þ Ĥint þ ĤΩ; ð1Þ

where Ĥi ¼
P

kðk2=2mÞĉ†k;iĉk;i, with ĉð†Þk;i the annihila-
tion (creation) operators of a Fermi atom in the state
jii with momentum k (hereafter ℏ ¼ 1) and Ĥint ¼
ðU0=VÞ

P
k;k0;q ĉ

†
k0−q;1ĉ

†
kþq;3ĉk;3ĉk0;1 is the interaction

potential. In absence of the Rabi coupling, when the
impurity is in the state j3i, the interaction with the bath
leads to the emergence of quasiparticles known as Fermi
polarons. In addition to a negative energy attractive branch,
a, there exists a metastable repulsive, r, polaron branch at
positive energy. The polaron dispersion relations at small
momenta are given by εαðkÞ ≈ Eα þ k2=2m�

α (α ¼ a or r),
where Eα—with Ea < 0 and Er > 0—and m�

α > m are
referred to as the polaron energy and polaron effective mass,
respectively. The branches are also characterized by the
quasiparticle weight 0 < ZαðkÞ ⩽ 1. The last term in Eq. (1)
induces the Rabi oscillations between the states j2i and j3i,
and, in the rotating wave approximation, can be written as

ĤΩ ¼
X
k

�
Ω
2
ðĉ†k;3ĉk;2 þ ĉ†k;2ĉk;3Þ þ Δĉ†k;2ĉk;2

�
; ð2Þ

where Ω is the bare Rabi frequency and Δ is the bare
detuning from the transition j2i ↔ j3i.
In the experiments by Scazza et al. [10] for equal masses

and by Kohstall et al. [9] for large mass imbalance, as well
as by Oppong et al. [11] in quasi-2D geometry, it has been
shown that it is possible to drive long-lived coherent Rabi
oscillations between the noninteracting state and both the
repulsive or the attractive polaron states. The resonant
energies and the renormalized Rabi frequencies of the
oscillations were found to be in reasonable agreement with
an analysis based on the assumption that Ω does not affect
the polaron properties. On the other hand, the decay rate of
the oscillations, especially for the supposedly long-lived
attractive polaron, has not found a proper explanation yet.
Recently, a variational approach has been able to capture the
dynamics for the repulsive branch [12].
Our aim is to provide an equation of motion for the

impurity, which is able to take into account the quasipar-
ticle nature of the polarons, and to explain how the static
polaron properties modify the Rabi oscillations. The main
result of our study is the set of equations for the following
single-particle density matrix:

ṅα − i
ZαΩ
2

ðf2α − f�2αÞ ¼ Iα; ð3aÞ

ṅ2 þ i
Ω
2
ðf2α − f�2αÞ ¼ 0; ð3bÞ

ḟ2α − iZ̃αδαf2α þ i
Z̃αΩ
2

ðn2 − nαÞ ¼ −
Γdec
α

2
f2α; ð3cÞ

where we dropped the time t and k for brevity, and
Z̃α ¼ 2=ð1þ 1=ZαÞ. The effective detuning δαðkÞ ¼
εαðkÞ − ε2ðkÞ − Δ ≃ 0 determines whether the attractive
α ¼ a or the repulsive α ¼ r polaron is involved in the
dynamics. In this notation, nαðk; tÞ is the occupation of the
polaron branch α at momentum k, n2ðk; tÞ is the occupa-
tion of the state j2i, which is coherently coupled to the
branch α, and f2αðk; tÞ is the coherence between atoms in
the state j2i and α polarons.
The quantum kinetic equations (3) can be obtained

following the general approach established by Kadanoff
and Baym [17] for time-dependent Green’s functions,
thereby extending previous works (see, e.g., [18,19]) on
the derivation of the kinetic equations for spin-1=2 Fermi
quantum fluids in magnetic fields [20] to three-level systems
in the highly imbalanced case, i.e., in the impurity limit (see
the Supplemental Material (SM) for more details [21]).
Here, we briefly discuss the main approximations. Within
the usual Kramers-Moyal [19] expansion, necessary to
derive time-local equations, we drop the backflow term
[36] (see also below) and assume that the polaron spectral
properties, in particular the parameters Zα, Eα, and mα, are
time-independent. Moreover, the equations are derived by
projecting on the energy shell of the impurity interacting

FIG. 1. (a) A highly imbalanced mixture of atoms in state j1i
(majority, blue) and j2i (minority, red dot in a circle) is held at
temperature T with zero interspecies interaction. The Rabi
coupling Ω drives the transitions between states j2i and j3i. In
the latter, minority atoms occupy repulsive and attractive Fermi-
polaron branches, formed due to the interaction with the majority
component, while δα is the detuning between the noninteracting
state and the polaron levels (here, only α ¼ a is shown).
(b) Polaron dispersion relations for atoms in state j3i. The
interaction with the majority atoms induces inter- and intraband
transitions, with rates Wαβ, where α; β∈ fa; rg.
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with the equilibrium bath (see, e.g., [14]), i.e., the polaron
branch unmodified by the driving laser.
The left-hand side of the kinetic equations in Eq. (3)

predicts coherent oscillations with a renormalized Rabi

frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZαΩ2 þ Z̃2

αδ
2
α

p
. For δα ¼ 0, we obtain

ffiffiffiffiffiffi
Zα

p
Ω,

which is in agreement with the expression obtained by
using a stationary variational Ansatz, which already
received experimental verification [9,10]. There is instead
no measurement of the role of the detuning in determining
the polaron oscillation, which, according to our result, is
nontrivial. Interestingly a very recent experiment [37] has
investigated such dependence for largeΩ paving the way to
further analysis on the role of the dressing in the polaron
dynamics.
The right-hand side of Eq. (3), due to collisions between

minority and majority atoms, contains (i) the redistribution
of the polaron population nα, described by the collision
integral Iα, and (ii) the loss of coherence between the α
polaron and the noninteracting state, described by the
decoherence rate Γdec

α . The population of the α polaron
branch can be changed as a result of both inter- and
intrabranch collisions. In the impurity limit nαðkÞ ≈ 0, the
decoherence rate reads

Γdec
α ðkÞ ¼ 2

1þ ZαðkÞ
1

V

X
k0;β

Wβα
k0k; ð4Þ

and the collision integral [38] takes the intuitive form
Iα ¼

P
β Iαβ, where

IαβðkÞ ¼
1

V

X
k0

h
Wαβ

kk0nβðk0Þ −Wβα
k0knαðkÞ

i
; ð5Þ

where Wβα
k0k is the transition rates from the α branch with

momentum k to the β branch with momentum k0.
The above expressions show that the redistribution of

population and the decoherence, originating from collisions,
are different in nature. The redistribution results from the
imbalance between in and out scattering processes [see
Eq. (5)], the density independent decoherence rate, Eq. (4),
is due to possible scattering processes between a polaron α
at momentum k and a polaron β at momentum k0. The
population redistribution drives the minority atoms toward
thermal equilibrium with the majority ones, being indeed
Iαβ ¼ 0 considering the Boltzmann equilibrium distribution
neqα ðkÞ ∝ e−εαðkÞ=T , with T the temperature of the majority
component. As expected, notice that for decreasing quasi-
particle weight the prefactor 2=ð1þ ZαÞ in Eq. (4) increases
the role of the decoherence term compared to the redis-
tribution rate.
The transition rates are due to the scattering of a polaron

with an atom of the majority component. They are given by
the Fermi golden rule

Wαβ
k;k0 ¼ 2π

V

X
Q

jTsc½Q; εβðk0Þ þ ε1ðQ − k0Þ�j2ZαðkÞZβðk0Þ

× δ½εαðkÞ þ ε1ðQ − kÞ − ε1ðQ − k0Þ − εβðk0Þ�
× neq1 ðQ − k0Þ½1 − neq1 ðQ − kÞ�; ð6Þ

where TscðQ; εÞ is the scattering matrix with Q and ε the
total momentum and the total energy of the particles
entering the collision, neq1 ðkÞ ¼ 1=½eðε1ðkÞ−μÞ=T þ 1� is the
thermal distribution of the majority atoms with chemical
potential μ, where ε1ðkÞ ¼ k2=2m. Notice how the quasi-
particle weights of the initial and final states renormalize
the transition rates.
For the attractive polaron branch, the decoherence rate

Γdec
a ðkÞ is particularly simple at small momenta, since the

scattering of the majority atoms takes place in the vicinity
of the Fermi surface. We may write it as

Γdec
a ðkÞ≈ Z̃að0ÞZað0Þm2jTsc½kF; εF þ εaðkÞ�j2

4π3

×
Z

∞

0

k02dk0
εaðk0Þ− εaðkÞ þ T ln

�
1þe

εF
T

e
εF
T þe

εaðk0Þ−εaðkÞ
T

�

maxðk0; kÞ½eεaðk0Þ−εaðkÞ
T − 1�

;

ð7Þ

and therefore the timescale of the decoherence rate in the
Rabi oscillations is set by jTsc½kF; εF þ εað0Þ�j2 and a k-
dependent function originating from the phase space, where
εF ¼ k2F=ð2mÞ is the Fermi energy and kF is the Fermi
wave vector.
Setting and parameters.—In the following, we compare

the solution of our kinetic equations to the experimental
results from Ref. [10]. The impurity atoms are initially
prepared in the noninteracting state j2i and in thermal
equilibrium with the bath at temperature T. The initial
condition for solving the kinetic equations are thus
nα ¼ 0, f2α ¼ 0 and neq2 ðkÞ ¼ ½eðε2ðkÞ−μ2Þ=TÞ þ 1�−1, where
the chemical potential μ2 fixes the imbalance x≡ ρ2=ρ1,
where ρi ¼ ð1=VÞPk n

eq
i ðkÞ. We compute the polaron

parameters ZαðkÞ [39], Eα, mα, and Tscðk;ωÞ within the
non-self-consistent T-matrix approach [14]. In particular,
the scattering matrix reads

T−1
sc ðQ;ωÞ ¼ m

4πa
−
1

V

X
k

�
1− neq1 ðkþQ=2Þ
ω− Q2þ4k2

4m þ i0þ
þ m
k2

�
; ð8Þ

where a is the s-wave scattering length between the atoms
in states j1i and j3i, whose relation to the two-body con-
tact potential reads U−1

0 ¼ m=ð4πaÞ − ð1=VÞPk m=k2.
This approach, even close to unitarity, compares reason-
ably well with experimental outcomes and quantum
Monte Carlo calculations for the polaron’s energy, mass
and residue [10,40].
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To be consistent with the experiment [10], we set
T ¼ 0.135εF, Ω ¼ 0.7εF, and the imbalance x ¼ 0.15.
We take kF equal to the effective κF from Ref. [10]. We
numerically determine the observable N2=ðN2 þ N3Þ,
where Ni is the total atom number in the state i ¼ 2, 3,
and N2ðtÞ þ N3ðtÞ ¼ N2ðt ¼ 0Þ.
Rabi oscillations.—To describe Rabi oscillations, we

set δαjk¼0 ¼ 0. In Figs. 2(a) and 2(b), we show the dynam-
ics for 1=ðkFaÞ ¼ 0, 0.25, for which the polaron param-
eters ½Ea=εF;m�=m; Zað0Þ� entering in the simulation
are ð−0.625; 1.16; 0.775Þ and ð−0.858; 1.29; 0.673Þ, res-
pectively. The repulsive polarons are considered to not
be populated, due to small Zr and significant detuning.
The shaded region takes into account the experimental
uncertainty in the determination of the temperature, i.e.,
T � ΔT ¼ 0.135εFð1� 20%Þ. The agreement with the
experimental data is quite remarkable. While the renor-
malized oscillation frequency

ffiffiffiffiffiffi
Za

p
Ω can be explained just

by static calculations, the decay rate within more stan-
dard variational approaches is usually found to be too
small [15] or ad hoc assumptions have to be done [4]. Not
only is our approach built to properly take into account
collisional phenomena, but we disentangle the role played
by decoherence and by the collisional integral. In part-
icular, we find that for the Rabi oscillation dynamics,
neglecting the collisional integral is still a good approxi-
mation. For completeness in Fig. 2(c), we show the
comparison with the repulsive polaron experimental data
[10] at 1=ðkFaÞ ¼ 1.27, where however the collisions are
playing a minor role (see SM for further discussion).

Thermalization.—While we have found that the effect of
the collisional integral Iα is negligible in the Rabi oscil-
lation dynamics, it drives the system to a thermal state by
redistributing the population. We focus again on the
attractive polaron case, and consider the question how
far from equilibrium the distribution naðk; tÞ is. To probe
the violation of detailed balance, we define

B≡ 1 − naðkÞ
naðkÞ

1 − n1ðk1Þ
n1ðk1Þ

naðk0Þ
1 − naðk0Þ

n1ðk0
1Þ

1 − n1ðk0
1Þ
; ð9Þ

where we dropped the dependence on t. The two pairs of
collision momenta ðk0;k0

1Þ⇄ðk;k1Þ satisfy energy and
momentum conservation laws. The values B > 1 (B < 1)
indicate that, in the kinetic equation for naðkÞ, the rate of in
processes is larger (smaller) than the out processes in the
collision integral in the chosen momentum sector. In
equilibrium, the in and out processes are in detailed balance
and B≡ 1 for all momenta. In our case, the bath is held at
equilibrium and B becomes a function of k and k0 only.
As an estimator of the lack of detailed balance we useph½Bðk;k0Þ − 1�2i, where the average is taken over the

distribution ∝ naðk; tÞnaðk0; tÞ, whose dynamics is reported
in Fig. 3. Our estimator shows a decaying oscillatory
behavior in time with pronounced peaks—when the density
of polarons is small—where the detailed balance is signifi-
cantly violated, and the system is far from equilibrium (as
can be seen also by looking at the momentum distribution
itself; see SM).
In order to investigate the dynamics of thermalization,

we introduce the concept of the inferred temperature TK ,
which we define based on the Kullback-Leibler divergence
DðPjQÞ≡ −

P
k Pk lnðQk=PkÞ, where P and Q are two

FIG. 2. Rabi oscillations of the attractive polarons for
1=ðkFaÞ ¼ 0 (a) and 0.25 (b) as a function of time t (in units
of tF ¼ 1=εF) and of the repulsive polaron for 1=ðkFaÞ ¼ 1.27
(c). The red dots are from the experiment [10]. The solid red line
is from Eq. (6) and the non-self-consistent T-matrix approxima-
tion in Eq. (6). The red shaded region shows the confidence
interval for 20% relative uncertainty in the temperature. The
parameters: Ω ¼ 0.7εF, T ¼ 0.135εF.

FIG. 3. Thermalization and violation of the detailed balance
for attractive polarons. The main panel shows the degree of
the violation of the detailed balance as quantified byph½Bðk;k0Þ − 1�2i. Inset shows the inferred temperature TK
(in the units of the bath temperature T) from the Kullback-
Leibler divergence. Here, the parameters are 1=kFa ¼ −0.25
(dashed blue), 0 (solid green), 0.25 (dotted red); Ω ¼ 0.7εF,
T ¼ 0.135εF, δað0Þ ¼ 0.
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probability distributions. This non-negative object, widely
used in the theory of nonequilibrium processes [41,42],
which is nullified only if P ¼ Q, quantifies the loss of
information when the normalized distribution Qk is used
for the approximation of the true distribution Pk; an
optimization of the information loss is called as a moment
projection [43]. To search for the best approximation of
the polarons in terms of equilibrium states, we take
Pk ∝ naðt;kÞ and Qk ∝ neqa ðT�;kÞ, which is a thermal
state at a guessed temperature T�. The optimal estimate of
the temperature is obtained by the minimization of the
Kullback-Leibler divergence over T�, assuming that the
densities of the distribution are the same. This optimal
temperature, which we denote with TK , is the information
projection to a set of thermal states, and reads

TK ≡ argmin
T�

DðñaðtÞjñeqa ðT�ÞÞ; ð10Þ

where the tilde denotes normalization with respect to
momentum k. The chemical potential of equilibrium
polarons neqa ðT�;kÞ is adjusted so that its density coincides
with the one given by naðt;kÞ.
In the inset of Fig. 3, we present the inferred TK relative

to the temperature T of the bath. We find that TK is a
meaningful characteristic of the distribution, as it yields a
continuous function with the correct order of magnitude.
The temperature TK shows oscillations on the experimental
timescale, with the peak value on the order of 1.3–1.6T at
times when the density of polarons is the lowest, i.e., at the
maxima of the Rabi oscillations; cf. Fig. 2. In the long time
limit, the temperature TK approaches the bath temperature.
In the examples, the fastest thermalization is observed for
the case 1=ðkFaÞ ¼ 0.25.
Finally, close to thermal equilibrium, the violation of the

detailed balance is small. We found that it is bounded by the
Kullback-Leibler divergence, since for naðtÞ ≈ neqa , we have

h½Bðk;k0Þ − 1�2i ⩽ ζD½ñaðtÞjñeqa ðTÞ�; ð11Þ

where ζ > 0 is a function of thermodynamic variables at T.
Thus, in the approach to equilibrium, the Kullback-Leibler
divergence D not only implies the inference of the correct
temperature, i.e., TK → T, but also it sets a bound on the
degree of the detailed balance violation. Our results show
that on the timescale of the experiment, the system is far
from the thermal state and a nonequilibrium description is
required. More technical details on the thermalization
process is discussed in SM.
Conclusions and perspectives.—In this Letter, we pro-

vided quantum kinetic equations for the single-particle
density matrix of Fermi polarons coherently driven between
two internal levels. In the impurity limit, and as long as the
polarons are well defined quasiparticles, our kinetic equa-
tions take the intuitive form shown in Eq. (3)—a many-body
version of a dressed two-level system. An important feature

of our approach is that it manifestly separates decoherence
from momentum relaxation mechanisms, the latter entering
the equations as a collision integral that redistributes
particles between different momenta. We compared our
results with available experimental data for the ground state
(attractive) polaron, finding good agreement without any
fitting parameters. The theory is also applicable to the
metastable (repulsive) polaron branch far from unitary limit.
Our approach provides a general tool to study out-of-
equilibrium problems related to the fundamental concept
of quasiparticles in many-body quantum systems, such as
impurity thermalization, generation of quasiparticles in
presence of strong Rabi coupling, and repulsive-attractive
polaron coherence, to mention a few.
Finally, very recently a new experiment on Rabi dynam-

ics was reported [37] on which our theory could be tested.
In the same experiment a sharp transition between weak
and large Rabi drive strength has been observed. Our
approach can be applied to this situation provided we use
the dressed Rabi particles as initial ingredients. Such a
route has been developed in [18] for Fermi liquid theory in
large transverse magnetic fields.

The data presented in this article are available from [44].
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