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Determination of Spin-Parity Quantum Numbers of X(2370) as 0~ * from J /y — yK3K%/
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Based on (10087 £ 44) x 10° J/y events collected with the BESIII detector, a partial wave analysis
of the decay J/y — yK3K%' is performed. The mass and width of the X(2370) are measured to be
2395 & 11(stat) 38 (syst) MeV/c?> and 188715 (stat) "12*(syst) MeV, respectively. The corresponding
product branching fraction is B[J/y — yX(2370)] x B[X(2370) — f((980)1'] x B[f,(980) — KSKY] =
(1.31 + 0.22(stat) 7387 (syst)) x 107>. The statistical significance of the X(2370) is greater than 11.7¢ and
the spin parity is determined to be 0~ for the first time. The measured mass and spin parity of the X(2370)

are consistent with the predictions of the lightest pseudoscalar glueball.
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The non-Abelian property of quantum chromodynamics
(QCD) permits the existence of new types of hadrons, such
as glueballs, hybrids, and multiquark states, which are
beyond conventional mesons and baryons in the constituent
quark model [1-3]. In particular, the glueball is a unique
particle formed via the interaction among gauge boson
particles. Lattice quantum chromodynamics (LQCD) pre-
dicts that the ground state of a pseudoscalar glueball has a
mass around 2.3-2.6 GeV/c? [4-8]. The radiative decay of
the J/w meson is a gluon-rich process and is therefore
regarded as an ideal place for searching and studying
glueballs [9,10].

A #tz7n resonance, the X(2370), was observed in
J/w — yxtrny with a statistical significance greater than
6.40 in the BESIII experiment [11]. It was further observed
from the combined measurement of J/y — yK* K™%’ and
J/w — yK$K%' with a statistical significance of 8.3¢ by
BESIII [12]. This experimental observation stimulated a
number of theoretical speculations [13—17] for its nature.
Among them, one of the intriguing explanations is a
pseudoscalar glueball [8,18-20]. A high-statistics J/y data
sample collected with BESIII provides an opportunity to
further investigate the properties of the X(2370) and helps
to understand the dynamics of QCD.

To understand the nature of the X(2370), it is crucial
to measure its quantum numbers J* and the decay modes.
In contrast to J/y — yKTK™#/, there is no background
contamination for J /yr — yKSK %' from J /y — z°KOK S/
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and J/y — K9K%', which are forbidden by exchange
symmetry and CP conservation. Therefore, the J/y —
yK3K%' decay provides a clean environment for its JFC
measurement with minimal background modeling uncer-
tainties. In this Letter, we report the first spin-parity
determination of the X(2370) in the decay J/y —
yK3Ky', where the K decays to 'z~ and the #/ decays
to the two most dominant channels 4 — yz*z~ and ' —
natz~(n — yy). The analysis is based on (10087 + 44) x
100 J /y events [21] collected in the BESIII detector [22].

A detailed description of the design and performance of
the BESIII detector can be found in Ref. [22]. Simulated
samples produced with a GEANT4-based [23] Monte Carlo
(MC) package, which includes the geometric description
of the BESIII detector [24] and the detector response, are
used for the optimization of event selection criteria and
detection efficiency determination. Signal MC samples for
the process J/y — yK3K%' with the subsequent decays
K% — ntn~, ' — ntxn, and n — yy are generated uni-
formly in phase space. A special generator takes p — @
interference and box anomaly into account [25] in the
process of ' — yxtn.

Charged tracks reconstructed from the multilayer drift
chamber (MDC) are required to be within the polar angle
range |cosf| < 0.93, where 6 is defined with respect to
the z axis, which is the symmetry axis of the MDC. The
distance of closest approach to the interaction point for
charged tracks (excluding those from Kg decays) must be
less than 10 cm along the z axis and less than 1 cm in the
transverse plane. All charged tracks are assumed to be
pions. To reconstruct Kg candidates, the tracks of each
#tn~ pair are fitted to a secondary vertex. To suppress
background events, all K candidates are required to satisfy
Mg —mgo| <9 MeV/c?, where myo is the known
mass of Kg [26]. To further suppress background, the
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decay length of K} candidate, i.e., the distance between the
average position of the e e~ collisions and the decay vertex
of Kg, is required to be greater than twice the vertex
resolution. With these selections, the miscombination of K g
reconstruction is significantly suppressed to be less than
0.1%. The reconstructed K% candidates are used as an input
for the subsequent kinematic fit.

Photon candidates are identified using showers in the
electromagnetic calorimeter (EMC). The deposited energy
of each shower are required to have at least 100 MeV in the
barrel region (|cos@| < 0.80) and the end cap region
(0.86 < | cos 8| < 0.92). To exclude showers from charged
tracks, the angle between the shower position and the
charged tracks extrapolated to the EMC must be greater
than 10°. The difference between the EMC time and the
event start time is required to be within [0, 700] ns in order
to suppress electronic noise and energy deposits unrelated
to the event.

For the J/w — yKOK%y', ' — ya*zn~ channel, each
candidate event is required to have at least three positively
charged tracks, at least three negatively charged tracks and
two photons. A four-constraint (4C) kinematic fit under the
J/w — yyKeK3n "~ hypothesis is performed by enforc-
ing energy-momentum conservation. If there is more than
one yyK%KSz "z~ combination, the one with the smallest
Zic is chosen. The resulting y3 is required to be less than
40. The 5’ candidates are required to have the invariant
mass satisfying |M, - —m,| < 15 MeV/c?, where m,
is the known mass of 5 [26]. If there is more than
one yxtz~ combination, the one with the minimum
|M,,+ - —my| is selected. The 7"z~ (from #’) invariant
mass is required to be in the p mass region, 0.55 <
M, - <0.90 GeV/c?. To suppress background events
containing a #° or n, events with |M, —my| <
20 MeV/c* or [M,, —m,| <30 MeV/c? are rejected,
where m,o and m, are the known masses of z° and #,
respectively [26].

For the J/w — yKYK%', ' — n*n~n, n — yy channel,
each candidate event is required to have at least three
positively charged tracks, at least three negatively charged
tracks and three photons. A 4C kinematic fit is performed
under the J/y — yyyK$K$zt 2~ hypothesis and the com-
bination with the smallest y3- is chosen if more than one
combination is found. In order to reduce background and to
improve the mass resolution, a five-constraint (5C) kin-
ematic fit is performed to further constrain the invariant
mass of the two photons to m,. Among three yy combina-
tions, the one with the smallest 2 is chosen, and y2- < 50
is required. The 7' candidates must satisfy [M ;+,-, — m,/| <
10 MeV/c?. To suppress background events containing a
n°, events with [M,, —m| <20 MeV/c? are rejected,
where the photon pairs are all possible combinations of
the radiative photon and photons from #.

All the above selection criteria aim to improve the signal
extraction efficiency and signal-to-noise ratio. The mass
windows for peaking signals of K% and #' correspond to
approximately 3 standard deviations to their respective
known masses [26]. Others are determined by optimizing
the figure of merit (FOM) eg/+/Nyaa» Where €g is signal
efficiency with simulation MC sample, and Ny, is the final
selected event number in data. With above criteria, the
event numbers of final selected candidates are 4046 and
1395 for the ' — ya™n~ channel and the ' — #7777
channel, respectively.

No significant peaking background contribution has
been found in the measured invariant mass spectra. The
remaining background component is from non-#’ proc-
esses, which are estimated from the # mass sideband
regions of 20 < [M,,+,- —my| <30 MeV/c? and 30 <
|M -y — my| < 40 MeV/c?. The corresponding back-
ground fractions are 6.8% and 1.8% for the two channels,
respectively.

Figure 1 shows the mass distributions with the above
selection criteria for the ' - yz™z~ and % — 2777y
channels. Similar structures are observed in the two
channels. The two-dimensional distributions of M KIKO

versus M gogo, indicate a strong enhancement near the
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FIG. 1. Invariant mass distributions of the selected events: (a)

and (b) The two-dimensional distributions of M KOK) Versus
M gogo, for the  — ya*z~ and ¥/ - x"z~n channels, respec-
tively. (c) and (d) The KYK$y' invariant mass distributions
with the requirement M koo < L1 GeV/c? for f = yntn~
and ' - n" 7~ n channels, respectively. The dots with error bars
are data. The shaded histograms are the non-i’ backgrounds
estimated by the 7' sideband. The solid lines are phase space
(PHSP) MC events with arbitrary normalization.
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K9KY mass threshold from the f,(980) and a clear
connection between the f(980) and the structure around
2.4 GeV/c?, X(2370), in the invariant mass spectra of
K9K%7'. By requiring M gy < 1.1 GeV/ 2, the structure
around 2.4 GeV/c?> becomes much more prominent in
the K3K%7' mass spectrum. In addition, there is a clear
signature from the 7.

A partial wave analysis (PWA) is performed to inves-
tigate the properties of the X(2370). To reduce complex-
ities from additional intermediate processes, events
satisfying Myogo < 1.1 GeV/c? are used. The K9 and #/
momenta are constrained to their known masses, respec-
tively. The signal amplitudes are constructed with the
covariant tensor formalism [27] and parametrized as
quasi-sequential two-body decays: J/y — yX, X - Y/
or X — ZKY, where Y and Z represent K9K9 and K2/
isobars, respectively. Because of the parity conservation,
the possible JF€ of KOK%7 system (X) are 0=F, 17+, 2+,
2~ etc. In this Letter, given the suppression of phase space
factor, only spin J < 3 states of the X and possible S-wave
or P-wave and D-wave decays of intermediate states are
considered. An unbinned maximum likelihood fit is
performed on the combined data of the two # decay
modes. The non-;' background contribution is taken into
account in the fit via the subtraction of the negative log-
likelihood values with the events estimated from the #/
mass sideband region.

The optimal PWA fit shows that data can be well
described with a process combination of the decay of
f0(980)%’ from the resonances of the X (1835), X(2370), 5.
and a broad 0~ structure denoted as X(2800), and the
nonresonance components of (K9K$)¢n' and (KSK9) 1
for the S wave and D wave in the KK system,
respectively. The X(1835), X(2370), and X(2800) are
described by nonrelativistic Breit-Wigner (BW) functions,
where the intrinsic widths are not energy dependent. The
masses and widths of the X(1835) and 7. are fixed to
previous measurements [26,28]. The masses and widths
of the X(2370) and X(2800) are floated in the PWA fit. The
mass line shape of f((980) is parametrized by the Flatté
formula [29] with the BESII measurement [30]. The JFC of
the X(2370) and X(2800) are assigned to be 0~*. The
statistical significance of the X(2370) is greater than 11.70,
which is determined from the changes of log-likelihood
value and degrees of freedom in the PWA fits with and
without the signal hypotheses for every systematic varia-
tion. The mass, width, and product branching fraction
of X(2370) are measured to be 2395 + 11(stat) MeV/c?,
188" 3(stat) MeV/c>  and  B[J/y — yX(2370)] x
B[X(2370) — f0(980)7'] x B[f((980) - K9K] = (1.31+
0.22(stat)) x 107>, respectively. Figure 2 provides the
comparisons of the mass and angular distributions between
data and PWA fit projections, as well as the individual
contributions from each component. The y?/ny;, value is
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FIG. 2. Comparisons between data (with two ' decay modes
combined) and PWA fit projections: (a),(b), and (c) The invariant
mass distributions of K9K%', K9K%, and K97 (two entries for
one event), respectively. (d),(e) and (f) are the angular distribu-
tions of cos @, where 0 is the polar angle of (d) y in the J/y rest
system; (e) KgKg in the KgKgn’ rest system; and (f) Kg in the
K(S)K(S) rest system (two entries for one event). The dots with error
bars are data. The solid red histograms are the PWA total
projections. The shaded histograms are the non-' backgrounds
described by the 7 sideband. The dash-dotted blue, short dashed
green, long dashed cyan, dotted magenta, and dash-dot-dotted
violet show the contributions of the nonresonant contribution,
X(2370), X(1835), X(2800) and 7., respectively.

displayed on each figure to demonstrate the goodness of fit.
A broad 0~ structure is needed in the optimal PWA fit to
describe the effective contributions from possible high-
mass resonances such as X(2600) [31] and the tail of 77.. line
shape, which is denoted as X(2800) (with a mass of 2799
and a width of 660 MeV/c?). The X(2800) have been
checked with various alternative PWA fits. For example,
if the 5, line shape is parametrized without a damping
factor [32], the significance of X(2800) is reduced to 3.16.
If the X(2800) is not included in the PWA, the spin parity
of X(2370) remains to be 0~ with a significance greater
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than 10.16. The significance of 0~ over other alternative
JPC is determined from the changes of log-likelihood value
and degrees of freedom in PWA fits. The impacts of
the X(2800) on the mass, width, and product branching
fraction of the X(2370) are included in the systematic
uncertainties.

Variations of the PWA fit including the J*C and decay
mode for each component are tested. Possible decay modes
[fo(1500)7', f2(1270)7, K*(1410)K%, K;(1430)KY,
K3(1430)Ks, K*(1680)KS, (KSKS)sn',  (K$K$)pn',
(K% pKY, (K9') pK%] are evaluated via different process
combinations. All additional decay modes have signifi-
cances lower than 30. The contributions from additional
resonances are also evaluated, including the #(1760),
1n(2225), n,(1870), X(2120) [11], and X(2600) [31]. All
the significances of each contribution are measured to be
less than 36, except the X(2600). The significance of the
process of X(2600) — f(980)y’ is 4.26. This process is
not included in the optimal solution, but the possible
contribution of this process is taken into account as a
source of systematic uncertainties. The scan results yield no
evidence for extra intermediate states. For the spin-parity
determination of the X(2370), the 0~ assignment fit is
better than that for 17" or 2" assignments with signifi-
cances that are greater than 10.8¢ or 9.80, respectively. The
significances are evaluated with the consideration of all
systematic uncertainty variations as described below.

Systematic uncertainty associated with the PWA
affects both the branching fraction measurement and the
resonance parameters, including the background contribu-
tion, f((980) mass line shape, the X(1835) mass line
shape, 7. mass line shape, BW formula, additional reso-
nances and description of the broad 0~ structure. The
uncertainty due to the background contribution is estimated
using different background normalization factors and
different " sideband regions. The f,(980) mass line shape
is varied by changing the mass and coupling constants
in the Flatté formula to other experimental measurements
[33]. Uncertainty from the X(1835) mass line shape
includes the variation with 1 standard deviation of the
mass and width measurement [28] and the alternative
parametrization of the anomalous line shape near the pp
mass threshold [34]. Uncertainty from the 7. mass line
shape is estimated by turning off the damping factor [32].
Uncertainty arising from the BW parametrization is
estimated by replacing the constant width with a mass-
dependence width [35]. The impact from possible addi-
tional resonances is estimated by including the contribu-
tions of X(2120) and X(2600) to the PWA fit. The broad
0~ structure is described with the X(2800) in the optimal
PWA fit and has been checked with various PWA fits
including replacing the X(2800) with a nonresonance
component of f,(980)#x’, removing the X(2800) and add-
ing a non-resonance component of f(980)7" for the
exclusion of the damping factor for the #,.. The envelope

TABLE 1. Systematic uncertainties on the measurements of
mass, width, and product branching fraction of the X(2370).
AM ATl

Sources MeV/c?)  (MeV) AB/B(%)
Event selection +4.8
Background estimation +2 b 3
f0(980) parametrization -6 +7 +53
X(1835) parametrization 3 2 202
1. parametrization -13 -8 —-14.5
Breit-Wigner formula -1 +6 -8.3

- 111 211.8
Broad 0" structure —88 N Tk
Additional resonances 2 o el
Total 5 = i

of those variations is assigned as the final uncertainty from
the description of the broad 0~" structure. This is the
dominant systematic uncertainty source for the measure-
ments of mass, width, and product branching fraction of
the X(2370).

Additional systematic uncertainty associated with
the event selection, including tracking efficiency [36],
photon selection efficiency [37], kinematic fit [38], KQS
reconstruction [39], the branching fractions of K g -,
W —xtnn W - yrTx and n — yy [26], and the total
number of J/y events [21], has been estimated to be
+4.8% for the measurement of product branching fraction.
All studied systematic uncertainty sources and their con-
tributions are summarized in Table I and are treated
independently. Total systematic uncertainties on the mass
and width of the X(2370) are 72 MeV/c? and 33* MeV,
respectively, and total relative systematic uncertainty on the
corresponding product branching fraction is i;;.o%_

In summary, a PWA of J/y — yK%K%y' has been
performed in the full K3K%;' invariant mass range
with the requirement of M KOK) < 1.1 GeV/c?. The PWA

fit indicates a contribution from X(2370) - K%K/
with a statistical significance greater than 140.
The mass and width of the X(2370) are measured
to be 2395 4 11(stat) 729 (syst) MeV/c? and
188713 (stat) 334 (syst) MeV, respectively. These results
agree with the previous measurements from J/y —
yrtz~y [11] and J/w — yKK#y' [12]. The corresponding
product branching fraction is B[J/y — yX(2370)]x
B[X(2370) — £0(980)7'] x B[f¢(980) — KOKY] = (1.31+
0.22(stat) 382 (syst)) x 107, The spin parity of the
X(2370) is determined to be 0~ for the first time. The
measured mass of X(2370) is in a good agreement with
the mass prediction of the lightest pseudoscalar glueball,
which is expected to be (2.395+0.014) GeV/c? from
latest LQCD calculations [8].
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