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Quantum entanglement is a crucial resource for learning properties from nature, but a precise
characterization of its advantage can be challenging. In this Letter, we consider learning algorithms
without entanglement to be those that only utilize states, measurements, and operations that are separable
between the main system of interest and an ancillary system. Interestingly, we show that these algorithms
are equivalent to those that apply quantum circuits on the main system interleaved with mid-circuit
measurements and classical feedforward. Within this setting, we prove a tight lower bound for Pauli
channel learning without entanglement that closes the gap between the best-known upper and lower bound.
In particular, we show thatΘð2nε−2Þ rounds of measurements are required to estimate each eigenvalue of an
n-qubit Pauli channel to ε error with high probability when learning without entanglement. In contrast, a
learning algorithm with entanglement only needsΘðε−2Þ copies of the Pauli channel. The tight lower bound
strengthens the foundation for an experimental demonstration of entanglement-enhanced advantages for
Pauli noise characterization.
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Entanglement lies at the heart of quantum information
science and technology, providing significant advantages
over classical information processing in computation [1],
communication [2,3], metrology [4–6], and many other
aspects. A recent line of research uses information-theoretic
tools to obtain rigorous and exponential quantum advan-
tages in learning [7–15]. It is shown, both theoretically and
experimentally, that quantum resources can bring signifi-
cant speedup for learning certain properties from the nature,
e.g., learning expectation values of many observables for a
quantum state [7]. However, the connection between these
quantum advantages with specific quantum resources, e.g.,
quantum entanglement, is far from clear. This problem is
prominent for learning properties from quantum channels,
where there are many different ways of defining a “quan-
tum-enhanced” experiments [8,10,12,14], depending on
whether one allows ancillary systems, concatenation of
channels, mid-circuit controls, etc. A scenario that precisely
captures the role of quantum entanglement in learning is
under exploration.
Apart from studying learning schemes from a quantum

resource-theoretic perspective [16], one can also take an
operational approach. Specifically, a class of quantum
operations known as mid-circuit measurement and classical
feedforward have drawn increasing attention recently.
While they are important building blocks of fault-tolerant
quantum computation [17,18] and have found applications
in recent experiments [19,20], a framework that allows

systematic study of the effectiveness of mid-circuit mea-
surements and classical feedforward in learning has yet to
be established.
Turning to concrete learning tasks, a class of quantum

channels that has drawn particular interest is the Pauli
channel, which is defined to be a stochastic mixture of
(multiqubit) Pauli operations [1]. The Pauli channel is not
only a basic model in quantum information theory, but also
plays a crucial role in characterizing noisy quantum systems,
with applications in quantum benchmarking [21–23],
quantum noise mitigation [24–26], quantum error correc-
tion [27], etc. Techniques such as randomized compiling can
engineer general quantum noise into Pauli channel under
realistic assumptions [28,29]. A prerequisite for many of
these applications is to learn an unknown Pauli channel.
Therefore, it is natural to study the protocols and limitations
of Pauli channel learning. There have been several recent
works exploring this direction [14,30–32]. Specifically,
Ref. [14] studies the sample complexity of Pauli channel
estimation using information-theoretic methods, and shows
an exponential separation between using and not using
ancilla for learning every eigenvalue of an n-qubit Pauli
channel to �ε precision. However, as shown by the current
work, the ancilla-free lower bound given there,Ωð2n=3Þ, was
not tight.While an ideal ancilla-assisted protocol has sample
complexity Θð1=ε2Þ [33], real-world imperfections such
as state preparation and measurement (SPAM) noise
can introduce a weak exponential sampling overhead
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(see Fig. 2). Therefore, to establish an advantage with
moderate system sizes and realistic levels of imperfection,
it is highly desirable to tighten the ancilla-free lower bound.
In this Letter, we introduce a class of learning schemes

that do not exploit entanglement between the main system
and the ancillary system, from a resource-theoretic per-
spective. We also introduce a class of schemes that describe
quantum circuits assisted with mid-circuit measurement
and classical feedforward from an operational perspective
(see Fig. 1). Perhaps surprisingly, we show the two schemes
are equivalent in terms of sample complexity for any
learning tasks. This provides a new operational interpre-
tation for quantum entanglement as a resource [34–36]. We
then show that information-theoretic methods can be used
to prove sample complexity lower bound in the above
scenario. For the task of Pauli channel learning mentioned
above, we obtain a tight lower bound of Ωð2n=ε2Þ, closing
the cubic gap with the known upper bound, and providing a
tight exponential separation with the entanglement-assisted
bound of Θð1=ε2Þ [14]. We show that this separation
persists even if the entanglement-assisted scheme suffers
from a reasonable amount of realistic noise. Finally, we
show how our results impose a limit on the efficiency of
characterizing gate-dependent Pauli noise channels.
Setup.—Consider the task of learning properties of an

n-qubit quantum channel Λ from certain family by query-
ing multiple copies of the channel. We start by defining
entanglement-free learning schemes. We introduce the
class of “separable schemes,” where a main system HS
and an ancillary system HA are given. The main system is
where Λ acts on and has a fixed dimension of 2n, while the
ancillary system can be arbitrarily large. Now, a separable
scheme allows interleaving copies of Λ on HS with any
processing operations (including state preparation, meas-
urement, and quantum channels) on HS ⊗ HA, with the

only restriction being that all the processing operations
are separable [37] across HA and HS. A schematic for
separable schemes is shown in Fig. 1(a). The separable
operations are known to be the largest set of operations
that do not generate entanglement from unentangled
states (even when acting only on a subspace) [37], and
is thus a suitable model for entanglement-free strategies
from a quantum resource-theoretic [16] point of view.
Furthermore, separable operations contain as a subset other
physically motivated classes of operations like local oper-
ation and classical communications [38,39], which is also a
standard choice of free operation in the resource theory of
entanglement [34–36]. A lower bound on sample complex-
ity for the former implies a lower bound for the latter.
Besides separable schemes, we introduce another opera-

tionally motivated class of schemes called “classical-
memory-assisted schemes.” Here, one can only access
the main system HS (with a fixed dimension of 2n) and
arbitrarily many classical registers. The allowed operations
are to interleave copies of Λ with adaptively chosen
“quantum instruments,” which are defined as quantum
channels associated with outputs to classical registers.
By “adaptively” we mean the quantum instruments can
be chosen according to the classical registers. A schematic
is given in Fig. 1(b). One can think of such schemes as
quantum circuits assisted by mid-circuit measurement and
classical feedforward control. We remark that the classical-
memory-assisted schemes include the ancilla-free concat-
enating scheme introduced in [14] as a special case, which
can describe most randomized benchmarking [40,41] type
protocols. The lower bounds obtained in this work thus also
hold for those protocols.
While the above two schemes are introduced with differ-

ent motivations, perhaps surprisingly, they are equivalent in
terms of sample complexity. We have the following result.
Proposition 1.—For any separable scheme A, there

exists a classical-memory-assisted scheme B that generates
the same outcome distribution as A for any underlying Λ
using the same number of copies and vice versa.
The formal definitions of both schemes, rigorous state-

ment of Proposition 1, and the proof are given in the
Supplemental Material (SM), Sec. II [42]. Thanks to
Proposition 1, we see that both schemes capture the power
of learning without entanglement and can be treated inter-
changeably when studying the sample complexity. In the
remaining part of this Letter, we will focus on the classical-
memory-assisted scheme, which has a clearer operational
meaning. Specifically, there can be two different notions of
complexity: (1) the sample complexity Nsamp, which is the
number of copies ofΛ, and (2) the number of measurements
Nmeas, which is the number of quantum instruments with
nontrivial measurement. Clearly, Nsamp ≥ Nmeas, as one can
concatenate multiple copies of Λ and only make one
measurement, just like in randomized benchmarking. The
lower bound we derive later will hold for Nmeas.

FIG. 1. (a) Separable schemes. The two different colors indicate
the operations are separable. (b) Classical-memory-assisted
schemes. The double line represents classical registers. The
square box represents adaptively chosen (arrows coming from
the classical registers) quantum instruments (outcomes sent to the
classical registers). We will show the two schemes are equivalent
in terms of sample complexity, so we call both entanglement-free
schemes.

PHYSICAL REVIEW LETTERS 132, 180805 (2024)

180805-2



Bounds on Pauli channel learning.—Having set up the
formalism, we now study the specific problem of Pauli
channel learning. An n-qubit Pauli channel Λ has the
following two equivalent forms:

ΛðρÞ ≔
X
b∈Pn

pbPbρPb ¼
1

2n

X
a∈Pn

λaPaTr½Paρ�; ð1Þ

where Pn ¼ fI; X; Y; Zg⊗n is the n-qubit Pauli group
(modulo phase), fpbgb is the Pauli error rates, and
fλaga is the Pauli eigenvalues [30]. Note that Pauli
eigenvalues are also known as Pauli fidelities, which have
been useful in quantum benchmarking [21,22,29,45],
quantum error mitigation [24,25,46], etc. The task we
consider is to learn each of the Pauli eigenvalues λa to
additive precision ε with high success probability. More
precisely, we have the following result.
Theorem 1.—If there exists an entanglement-free

scheme that, for any n-qubit Pauli channel Λ, outputs an
estimator λ̂a such that jλ̂a − λaj ≤ ε ≤ 1=6 with probability
at least 2=3 for any a∈Pn, after making N rounds of
measurement, then N ¼ Ωð2n=ε2Þ.
This matches the known upper bound of Oð2n=ε2Þ based

on minimal stabilizer covering [14,30], solving an open
problem raised therein. Note that the task we consider is to
estimate each λa with 2=3 success probability individually
rather than simultaneously. For the latter task, therewill be an
additional factor ofn in the upper bound, but our lower bound
still holds and is tight up to this logarithmic factor. Combined
with the bound of Θð1=ε2Þ using entanglement-assisted
scheme [14], this gives a tight exponential separation for
learning with and without entanglement in the task of Pauli
channel learning. Another noteworthy feature is that our
lower bound has a moderate constant factor. For example,
with ε ≤ 0.1 and n ≥ 5 we have N ≥ 0.01 × 2n=ε2.
To highlight the experimental relevance of our result, in

Fig. 2 we plot our lower bound of Theorem 1, the best
previously known ancilla-free lower bound from [14], and
the upper bound from an entanglement-assisted scheme
studied in [14] with noisy Bell states preparation (see SM.
Sec. V [33] for details). Figure 2 clearly indicates that our
improved lower bound is crucial for demonstrating the
entanglement-enabled advantages with a moderate number
of qubits and fidelity. For example, with Bell pair fidelity
95%, the previous lower bound needs at least 85 qubits to
start seeing any separation, while our improved lower
bound needs as few as 25 qubits to obtain a factor of
105 advantages in sample complexity; With Bell pair
fidelity below 90%, only our improved lower bound is
able to obtain any separation.
Proof sketch of Theorem 1.—We extend the framework

for proving exponential separation between learning with
and without quantum memory [7,8]. The key idea is known
as the Le Cam’s two-point method [47] that reduces
learning to hypothesis testing. Specifically, we first

construct two hypotheses of Pauli channels (or, mixture
of Pauli channels) that are close to each other. By
assumption, a learning scheme can distinguish the two
hypotheses with good probability. Consequently, the total
variation distance (TVD) between the outcome probability
distribution generated by the scheme under the two
hypotheses needs to be at least constantly large. Therefore,
if we can upper bound the contributions to the TVD from
each measurement to be exponentially small, we will
obtain an exponential lower bound on the number of
measurements. However, the existing techniques for upper
bounding TVD [7,8] do not carry over when channel
concatenation is allowed, let alone mid-circuit measure-
ments. Our technique to address this issue is to establish a
recurrence relation on the mid-circuit states between each
measurement step, and to upper bound the growth of TVD
via mathematical induction. The full proof is presented in
SM, Sec. III [33]. ▪
Bounds on learning identifiable parameters.—In prac-

tice, Pauli channels are often used to model noise affecting
Clifford gates [24,28,29]. One issue for learning gate-
dependent noise channel is that, because of the existence of
SPAM error, certain parameters of the noise channel might
become nonidentifiable (or “unlearnable”), meaning that
they cannot be identified independently from the noisy
SPAM [48–52]. Specifically, for Clifford gate-dependent
Pauli noise channel, a complete characterization of the
learnable parameters is given in [52], which shows that
some Pauli eigenvalues λa cannot be identified SPAM
independently, but the geometric mean of certain set of

FIG. 2. Sample complexity for Pauli channel learning. The task
is to estimate any Pauli fidelity to ε ¼ 0.1 additive precision with
at least 2=3 success probability. The dashed lines represent our
entanglement-free (EF) lower bound of Theorem 1 and the
ancilla-free lower bound from [14]. The solid lines represent
the sample complexity upper bound calculated from an entan-
glement-assisted (EA) scheme with noisy Bell state and mea-
surements. For simplicity, we assume the state preparation suffers
from depolarizing noises, so that each noisy 2-qubit Bell pair ρ̃Bell
has fidelity FBell ¼ hΨþjρ̃BelljΨþi. The colored region indicates
entanglement(ancilla)-enabled advantages.
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eigenvalues, ðQa∈ S λaÞ1=jSj, can be. This is consistent with
the existing noise learning protocols that can characterize
gate-dependent Pauli noise SPAM robustly up to some
degeneracy [21,22,29]. Our goal here is to find a lower
bound for these scenarios. More precisely, we hope to
address the following question: what is the sample com-
plexity to learn the identifiable parameters rather than the
whole Pauli channel?.
We will focus on a further simplified task: given a

partition of n-qubit Pauli operators into some disjoint sets,
fSigi. The task is to learn the geometric mean of the Pauli
eigenvalues within each Si to additive precision ε with high
probability. We denote the maximal cardinality among all
Si by C. As a motivating example, for the Pauli noise
associated with a CNOT gate, it is shown [52] that the Pauli
fidelity λXI; λXX cannot be identified individually, but the
geometric mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λXIλXX

p
can. All the other learnable

parameters are also geometric mean of up to two Pauli
fidelities (related to the fact that CNOT2 ¼ 1). Note that,
there can be more learnable parameters than those decided
by a partition (e.g.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λXIλXX

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λYIλYX

p
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λXIλYX

p
are three

independent learnable parameters), but this simplified task
is sufficient to give a sample complexity lower bound. We
have the following result.
Theorem 2.—Given a partition of the n-qubit Pauli

group, fSigi, with maximum cardinality C ≔ maxijSij,
define the geometrically averaged Pauli fidelity

λ̄Si ≔ sgn

 Y
a∈ Si

λi

!Y
a∈ Si

jλij1=jSij:

If there exists an entanglement-free scheme that, for any
n-qubit Pauli channel Λ, outputs an estimator λ̂Si such that

jλ̂Si − λ̄Si j ≤ ε ≤ 1=6C with probability at least 2=3 for
any Si, after making N rounds of measurements, then
N ¼ Ωð2nε−2C−2Þ.
Many multiqubit Clifford gates of practical interest have

a polynomial (e.g., permutation gate) or constant (e.g.,
parallel CNOTs) order. That is, applying the gate a
polynomial or constant number of times yields identity.
This means their learnable parameters are groups of at most
polynomial or constant many Pauli eigenvalues. Our result
shows that there is still an exponential sample complexity
lower bound for entanglement-free learning schemes in
such cases.
The techniques for proving Theorem 2 is very similar to

those for Theorem 1. Here, we just need to construct a
different family of Pauli channels that can be distinguished
by only looking at the geometrically averaged Pauli eigen-
values within each Si. The other steps will carry over. One
may notice that Theorem 1 can be viewed as a corollary of
Theorem 2.We decide to present them separately for clarity.
The proof is given in SM, Sec. IV [33].

Discussion.—In this Letter, we introduce two classes of
learning schemes to capture the notion of learning without
entanglement. One is quantum resource-theoretic, using
only entanglement nongenerating operations between sys-
tem and ancilla. The other is operational, describing
quantum circuits assisted by mid-circuit measurement
and classical feedforward. Both schemes are shown to
be equivalent in terms of sample complexity. We then prove
a tight lower bound for Pauli channel learning within this
model. Our results extend existing proof techniques [7,8]
and improve upon the best-known lower bounds in the
literature [14]. We also generalize our bounds for practical
quantum noise characterization settings.
Our scenario differs from existing frameworks of learning

with or without quantum memory, which we briefly review
below. For learning properties of quantum states, learning
with quantum memory (or quantum-enhanced learning)
usually means one can perform collective measurement
on multiple copies of the state, while learning without
quantum memory (or conventional learning) means only
measurements on individual copies are allowed, though
adaptivity is often allowed. Examples include [7–11].
For learning properties of quantum channels, there have
been multiple definitions of learning without memory:
Refs. [10,12] require the scheme to have no ancilla nor
concatenation (i.e., sequentially applying the channel of
interest); Refs. [7,8,13], etc., allow ancilla but not concat-
enation. In contrast, Ref. [14] studies schemes with concat-
enation but without ancilla. The scenario in the current work
is strictlymore general thanRef. [14] aswe allowmid-circuit
processing with quantum instruments instead of only
quantum channels, and we justify our definition by con-
necting to the resource theory of entanglement. It is
interesting to explore other learning tasks that admit a
separation in our definition.
The problem of Pauli channel learning has been studied

with different figures of merit. For Pauli error rates,
Ref. [30] provides an ancilla-free protocol that learns the
Pauli error rates to precision ε in l2 distance with Õð2n=ε2Þ
samples, which implies an upper bound of Õð23n=ε2Þ
for learning in l1 distance. Reference [31] shows that
Õðlog n=ε2Þ samples are sufficient to learn the Pauli error
rates to precision ε in l∞ distance without using ancilla. In
the case in which ancilla is allowed, one can use Bell states
and Bell measurements to directly sample from the Pauli
error rates, which implies an Oð22n=ε2Þ upper bound for
learning in l1 distance [14,31]. For Pauli eigenvalues,
Ref. [14] gives a family of k-qubit ancilla-assisted proto-
cols usingOðn2n−k=ε2Þ samples for learning in l∞ distance,
for 0 ≤ k ≤ n. In terms of the lower bounds, Ref. [14]
focuses on learning Pauli eigenvalues to constant error in
l∞ distance, and in particular obtains a lower bound
Ωð2n=3Þ for the number of measurements for any ancilla-
free schemes with concatenation. The current work
improves this lower bound to be tight (for more general
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schemes). Another recent work studies learning Pauli error
rate to error ε in l1 distance [32]. For ancilla-free schemes
with adaptivity, they obtain Ωð22n=ε2Þ for general case and
Ωð22.5n=ε2Þ when ε is exponentially small in n. They allow
concatenation with unital processing channels and the
lower bound holds for the number of measurements. The
results of the current work and Ref. [32] do not imply each
other [53]. Whether a tighter lower bound can be estab-
lished with other figures of merit remains an open problem.
Our results have implications in practical quantum noise

characterization tasks. On the one hand, they set up an
exponential barrier for any entanglement-free Pauli channel
learning protocols [21,30] without additional assumptions
on the Pauli noise model. The barrier persists even if one
only aims at learning the SPAM independently identifiable
part of the noise channel. On the other hand, this motivates
the development of an entanglement-assisted noise char-
acterization protocol, which was pioneered in Ref. [14]. It
is shown there that an entanglement-assisted protocol can
learn the Pauli eigenvalues efficiently and SPAM robustly,
given access to good quantum memory. We believe the
tight bounds obtained in the current work will strengthen
the foundation for experimentally demonstrating the ad-
vantage of entanglement in this noise characterization task.
Finally, it is interesting to explore a deeper connection

between the resource theory of entanglement [34–36] and
quantum learning theory. Specifically, since the tight
bounds for Pauli channel learning with no entanglement
and arbitrary entanglement have been settled, it is natural to
ask about learning with a certain amount of entanglement.
There could be different ways of defining the entanglement
cost of a learning scheme, one of which is to allow a
bounded amount of ancillary qubits [8,14]. An upper bound
of Õð2n−k=ε2Þ for k-ancillary-qubit-assisted scheme is
known and has proven optimal for some restricted classes
of schemes [14], but a general answer to this question is yet
to be found.

Note added.—During the completion of this manuscript, we
became aware of an independent and contemporaneous
work [54] that obtains, among other results, a tight lower
bound of Ωð2n=ε2Þ on the number of measurements for
learning every Pauli eigenvalue to ε precision with ancilla-
free concatenating schemes. Their proof is based on a
different technique, which leads to different features in their
results compared to ours. On the one hand, the ε in their
bound can be any value within (0, 1], while ours is
restricted to ε∈ ð0; 1=6�. On the other hand, our bound
has a better constant factor and applies for the more general
setting of classical-memory-assisted schemes.
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