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Qubits with predominantly erasure errors present distinctive advantages for quantum error correction
(QEC) and fault-tolerant quantum computing. Logical qubits based on dual-rail encoding that exploit
erasure detection have been recently proposed in superconducting circuit architectures, with either coupled
transmons or cavities. Here, we implement a dual-rail qubit encoded in a compact, double-post
superconducting cavity. Using an auxiliary transmon, we perform erasure detection on the dual-rail
subspace. We characterize the behavior of the code space by a novel method to perform joint-Wigner
tomography. This is based on modifying the cross-Kerr interaction between the cavity modes and the
transmon. We measure an erasure rate of 3.981� 0.003 ðmsÞ−1 and a residual, postselected dephasing
error rate up to 0.17 ðmsÞ−1 within the code space. This strong hierarchy of error rates, together with the
compact and hardware-efficient nature of this novel architecture, holds promise in realizing QEC schemes
with enhanced thresholds and improved scaling.
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Introduction.—Quantum error correction (QEC), the
process of protecting quantum information from deco-
herence, is an essential ingredient toward fault-tolerant
quantum computation (FTQC). QEC involves redundantly
encoding logical qubits into an enlarged Hilbert space,
targeting coherence that significantly exceeds that of its
constituent components. QEC codes can be roughly cat-
egorized into discrete variable codes [1], such as the surface
code [2–4], or continuous variable codes, such as the
Gottesman-Kitaev-Preskill [5], binomial [6], or cat codes
[7,8]. Experimentally, bosonic QEC codes have proven to
be efficient in reducing error rates on the single logical-
qubit level [9–11], while discrete variable codes have
demonstrated suppression of logical error rates by increas-
ing code distance [12]. Hence, combining the two appro-
aches where error-corrected bosonic qubits form the base
layer of surface code architectures may be a promising
pathway toward FTQC.
Alternatively, recent studies have shown that systems

with an erasure noise channel at the base layer can reduce
the logical error rate by substantially increasing both the
threshold and distance of the outer surface code [13,14].
Erasures are leakage errors to outside the computational
subspace that are detected in real time and for which the
physical qubits that were impacted are also located in
space. Qubits predominantly subject to erasures, so-called
“erasure qubits,” have been proposed with metastable states
of neutral atoms [14–16] and dual-rail qubits based on
superconducting circuit quantum electrodynamics (cQED)
architecture [17,18]. While the dual-rail encoding has been

a subject of extensive study in the quantum optics platform
[19] and has been investigated in superconducting circuits
[20–22], it has only recently been implemented in cQED
systems in the context of erasure errors [23,24].
A successful incorporation of erasure qubits into a QEC

architecture requires a system that exhibits strong hierarchy
of errors [14]. This means that the dominant errors are
converted to erasures and the remaining Pauli and leakage
errors exhibit orders of magnitude lower rates. To this end,
superconducting cavity modes are ideal candidates to
encode a dual-rail erasure qubit, since they present natural
noise bias, with photon loss being the dominant error
mechanism [18,24]. In addition, superconducting cavities,
especially those implemented in 3D geometries, exhibit
longer lifetimes with lower intrinsic dephasing rates com-
pared to transmons. Nonetheless, the nonlinearity of
auxiliary transmons is still a necessary ingredient for the
control of cavity modes. As a result, dual-rail qubits with
cavity modes suffer from additional loss channels intro-
duced by these nonlinear elements.
In this Letter, we present a dual-rail qubit implemented in

a hardware-efficient, 3D cavity architecture—the symmet-
ric and antisymmetric eigenmodes of a double-post coaxial
superconducting aluminum cavity. The highly delocalized
field distributions of the modes allow for a compact
architecture in which a single, dispersively coupled aux-
iliary transmon provides the necessary nonlinearity for state
preparation, erasure detection, and tomography. Hence,
compared to other approaches [24], our architecture
requires fewer resources. By modifying the dispersive
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interaction between the cavity modes and the transmon
[25], we perform joint-Wigner tomography on the two
modes to characterize the erasure detection circuit. We
show that our quantum nondemolition (QND) erasure
detection scheme converts cavity photon losses to erasures
with a false-negative probability of only 0.28% per gate.
We demonstrate a strong hierarchy of error rates with
erasures occurring at a rate of 3.981� 0.003 ðmsÞ−1 and
postselected Pauli Ẑ errors at a rate of up to 0.170 ðmsÞ−1.
Moreover, postselected bit-flip or Pauli X̂ type errors occur
at a negligible rate of ∼10−4 ðmsÞ−1. These results dem-
onstrate the viability of incorporating such an erasure
detection scheme in a circuit (so-called midcircuit erasure
detection) and, consequently, use the dual-rail as an erasure
qubit in concatenation codes to enhance QEC thresholds.
Experimental system.—Figure 1(a) depicts our experi-

ment, which comprises a coaxial superconducting cavity
made of high-purity (5N) aluminum [26] with two posts of
equal length. The package hosts two modes, Alice ðâÞ and
Bob ðb̂Þ, which are the harmonic oscillators used to encode
the dual-rail qubit. An auxiliary transmon fabricated on a
sapphire chip is inserted into the package [27–30] (see
Supplemental Material [31] for full system parameters).
The delocalized electromagnetic field distribution of
Alice and Bob [Fig. 1(b)] creates coupling to the transmon
with similar strengths. This leads to a static dispersive
interaction:

Ĥ=ℏ ¼ χaqâ†âjeihej þ χbqb̂
†b̂jeihej ð1Þ

with measured cross-Kerr rates χaq=2π ¼ −0.514 MHz
and χbq=2π ¼ −0.251 MHz. This coupling enables our
erasure detection scheme. However, the residual mismatch
in cross-Kerr rates renders tomography in the combined
Hilbert space a rather challenging task [32,33].
Cross-Kerr matching.—The motivation behind matching

the cross-Kerr rates in Eq. (1) is to perform joint-Wigner
tomography on the combined Hilbert space of Alice and
Bob. The joint-Wigner function [34] given by

Wðα; βÞ ¼ 4

π2
Tr½D̂ð−α;−βÞρD̂ðα; βÞΠ̂� ð2Þ

requires the measuring the expectation value of the joint-
parity operator:

Π̂ ¼ ð−1Þâ†âþb̂†b̂ ð3Þ

of the displaced state. If χaq ¼ χbq ¼ χ, this measurement
is greatly simplified via a Ramsey-like sequence [Fig. 2(b)],
similar to the single-mode Wigner tomography. By choos-
ing the wait time such that tW ¼ π=χ, the joint parity is
mapped on to the transmon states (see Supplemental
Material [31]). To match the cross-Kerr rates, we leverage
the four-wave mixing property of the transmon [25] and
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FIG. 1. (a) Schematic of the double-post cavity, made of 5N aluminum with a transmon qubit, readout, and Purcell filter
fabricated on a sapphire chip. (b) Field distributions of the symmetric (Alice) and antisymmetric (Bob) eigenmodes of the system,
encoding the dual-rail qubit. (c) Energy-level diagram of the combined Bob-transmon system showing dispersive shifts. The purple
arrows connect the pairs of levels jn − 1; hi and jn; ei being coupled via the cross-Kerr tuning drive. (d) Avoided crossing observed
when preparing jn; ei states in Bob-transmon, sweeping pump detuning Δ with fixed amplitude Ω=2π ¼ 0.5 MHz. No drive is
applied to affect Alice-transmon coupling. Solid horizontal lines are a visual aid to the bare Fock state energies, and simulation
results are overlaid in black lines. (e) Number-split peaks of the transmon when either Alice (blue) or Bob (red) is populated with a
coherent state of amplitude α ¼ 1.5, without any pump. (f) Bob’s peaks align with that of Alice in the presence of the cross-Kerr
tuning pump with parameters ðΩ=2π;Δ=2πÞ ¼ ð0.5;−5.4Þ MHz.
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apply a microwave drive at frequency ωχ ¼ ωhe − ωb þ Δ,
with amplitude Ω. This process exchanges two photons
from the transmon with one photon each from the drive and
one of the cavities, coupling pairs of levels jn; ei ↔
jn − 1; hi. Here, jni denotes the nth Fock state of the
relevant cavity mode, and jei and jhi represent the first and
third excited states, respectively, of the transmon. By
detuning the pump by Δ, we shift the energy levels of
the Fock states from their bare values. In the χ ≪ Ω ≪ Δ
regime, this can be approximated as a change in the cross-
Kerr rate between the modes [Fig. 1(c)].
For the purposes of this Letter, we choose to tune only

χbq and keep χaq constant. We opted to match to the higher
cross-Kerr rate of Alice in order to achieve faster gate times.
This independent control of the cross-Kerr rates is possible
due to the large detuning (≈200 MHz) between the cavity
modes. The avoided crossings in Fig. 1(d) reveal the tuning
of the energy levels of the Bob-transmon system due to the
pump. We then set pump parameters ðΩ;ΔÞ such that the
cross-Kerr rates are matched. To confirm cross-Kerr match-
ing, we perform spectroscopic measurements on the trans-
mon after preparing a coherent state in either cavity mode.
Figures 1(e) and 1(f) show the effect of the pump on the
number split peaks [35] of the cavities, where Bob’s peaks
align with those of Alice. Hence, we can approximate the
interaction Hamiltonian as

ĤΣ=ℏ ≈ χðâ†âþ b̂†b̂Þjeihej ð4Þ

up to six Fock states. The extracted pumped cross-Kerr rates
were χaq=2π ¼ −0.521 MHz and χbq=2π ¼ −0.527 MHz.
We note that by increasing the pump amplitude Ω we can
potentially tune higher Fock states as well.
Erasure detection.—The dual-rail qubit is defined in the

joint Hilbert space of Alice and Bob with j þ ZLi ¼ j01i
and j − ZLi ¼ j10i as the logical code words [Fig. 2(a)].
The dominant error channel in superconducting 3D
cavity modes is single-photon loss. Photon losses in either
Alice or Bob destroy the logical dual-rail encoding
and leave the system in the error state j00i. In our sys-
tem, these errors occur at rates κa ¼ 4.454� 0.044 ðmsÞ−1
(Ta

1 ¼ 224.5� 2.2 μs) and κb ¼ 3.339� 0.018 ðmsÞ−1
(Tb

1 ¼ 299.4� 1.6 μs) for Alice and Bob, respectively.
To detect photon losses, we leverage the dispersive inter-
action between the cavity modes and the transmon
[Eq. (1)]. After initializing the system in the code space,
we query the transmon state using a frequency selective
pulse centered at its bare frequency ðωgeÞ. The transmon
state flips only when the cavity modes are in j00i (error
space). Our circuit to realize this is shown in Fig. 2(b). We
prepare the states in the code space via optimal control
pulses (OCP) [36–38], and the transmon is initialized in its
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FIG. 2. (a) Dual-rail Bloch sphere where the code words are two-mode Fock states j þ ZiL ¼ j01i and j − ZiL ¼ j10i (the first mode
is Alice, and the second mode is Bob). (b) Erasure detection using a selective π pulse centered at the transmon frequency ðX̂0

πÞ. After n
detection rounds, we perform joint-Wigner tomography on the system with the cross-Kerr matched Hamiltonian ĤΣ represented as the Σ
gate. (c) Experimental results of erasure detection for n ¼ 75 rounds after preparing the j þ XiL state. Each row is an separate run of the
circuit. Ideally, state transition from jgi → jei heralds an erasure for the dual-rail qubit. But readout infidelities and transmon errors
cause deviation from this behavior in the form of isolated “e” or “f” outcomes. (d) Experimental result of the full circuit shown in (b).
Erasure detection is performed on the j þ XiL state for n rounds before measuring the ReðαÞ-ReðβÞ joint-Wigner cut of the state. The
experiment is repeated for n ¼ 0, 10, 20, 30, 40 rounds. The initial state clearly decays to the ground state due to cavity photon loss.
Postselecting on a qubit being in “g” in the trajectory data, we can reconstruct the encoded information, visually proving faithful
conversion of photon loss to erasures.
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ground state ðjgiÞ. The selective pulse to flip the transmon
state is a long ð4σ ¼ 8 μsÞ Gaussian pulse ðX̂πÞ. This is
followed by a readout and a fast reset of the transmon state
to jgi. The entire circuit takes exactly 12 μs to execute and
should output readout result e if the cavity modes are in the
error space and g otherwise.
Figure 2(c) displays the results of performing era-

sure detection for n ¼ 75 rounds on the j þ XLi ¼
ð1= ffiffiffi

2
p Þðj01i þ j10iÞ state. Each row in the plot represents

a different experimental shot. The first row depicts a near-
ideal trajectory where the transmon state remains in jgi
until measurement round 32. Because of a photon loss
event in either cavity, the transmon frequency shifts to its
bare value, causing the X̂π gate to flip its state to jei. The
transmon remains in this state for the remainder of the time
due to the reset operation. Nonidealities arising from
readout inefficiencies and transmon errors, however, cause
many trajectories to deviate from the ideal behavior. To
characterize the erasure detection circuit under these errors,
we feed the raw trajectories to a hidden Markov model. The
model learns a state transition matrix, describing the
probability of transitions between code space and error
space at each time step, and an emission matrix, which
predicts the probability of an outcome (g=e) given a hidden
state. From this model, we extract a false-negative prob-
ability, defined as the probability of misassigning an
erasure as being within the code space, of 0.28% per
measurement. Additionally, we extract a > 99.9% measure
of QND on the cavity photon number, for our detection
scheme. This means that the erasure detection itself induces
minimal backaction compared to having no detection. This
is a crucial feature for incorporating such erasure checks in
a surface code. Finally, we note that each erasure check
accrues a deterministic phase on superpositions of states in
the dual-rail subspace. In the experiment, we calibrate this
and apply software corrections to the tomography pulses to
cancel it.
Joint tomography.—To determine the behavior of the

code space during detection, we perform direct tomography
on the cavities. Since the dual-rail code is defined in the
joint Hilbert space of Alice and Bob, we measure the joint-
Wigner function [32], using the circuit shown in Fig. 2(b).
During the waiting time ðtWÞ, we establish the cross-Kerr
matched interaction Hamiltonian by applying the pump
with the matching parameters, thereby measuring the
expectation value of the joint-parity operator. Note that
the joint-Wigner function is defined in a 4D space, since α
and β are complex numbers, representing position and
conjugate momentum variables of each mode. As a result, it
is challenging to visualize and would require an exponen-
tial number of samples to characterize accurately.
Instead, to efficiently characterize the system, we per-

form partial tomography by sparsely sampling the values of
ðα; βÞ. First, to visually verify the evolution of the states
during erasure detection, we measure a 2D cut of the full

joint-Wigner space, specifically the ReðαÞ-ReðβÞ cut with
ImðαÞ ¼ ImðβÞ ¼ 0. In the top row in Fig. 2(d), we observe
the evolution of the j þ XLi state after n ¼ 0, 10, 20, 30, 40
rounds of erasure detection. As expected, the state even-
tually decays to the error space j00i. After discarding
trajectories where erasures were detected, we are clearly
able to recover the original information [Fig. 2(d), bottom
panel]. This improvement comes at the expense of dis-
carding more data as we track the system for longer times.
Since we are measuring only a cut of the joint Wigner, we
have only partial information about the system, and it is not
enough to reconstruct the full density matrix.
Having visually confirmed that our erasure detection

scheme enables faithful recovery of the encoded informa-
tion, we proceed to quantify how good our detection
scheme is. To achieve this, we measure the logical Pauli
state vector components for the dual-rail subspace after
preparing in the six cardinal states of the Bloch sphere. This
measurement is performed using the same circuit as before
[Fig. 2(b)]. By projecting the joint-Wigner function in
Eq. (2) onto the dual-rail subspace, we extract the expect-
ation values of the Pauli operators by sampling only 16
points ðαi; βiÞ in phase space (see Supplemental Material
[31]) [32,33].
Figure 3(a) illustrates the decay of the expectation values

of the four Pauli operators, ðÎ; X̂; Ŷ; ẐÞ, for different states
on the Bloch sphere, as a function of the number of
detection rounds. The expectation values decay exponen-
tially due to the single-photon loss channels. Crucially, we
observe the decay of the identity operator ðÎÞ, indicating
that the system decays outside the code space. Averaged
over the six cardinal states on the Bloch sphere, we obtain
an erasure rate of 3.981� 0.003 ðmsÞ−1 or 4.8% per
measurement.
Discarding the trajectories where an erasure was

detected, we extract residual Pauli error rates, within the
code space. The Î and the Ẑ operator expectation values are
nearly constant, and we are able to provide an upper bound
on their decay rates of only ∼10−4 ðmsÞ−1. The postse-
lected X̂ and Ŷ operators exhibit no-jump evolution, i.e., the
conditional update of the density matrix of the system upon
measuring no photon jumps [24]. For the dual-rail qubit,
this effect causes any superposition of states to determin-
istically decay toward the cavity with lower decay rate (in
our case, Bob). In principle, it is possible to exactly cancel
this effect by designing modes with equal decay rates or by
interleaving SWAP operations between the cavities such that
the photon spends equal amounts of time in each mode
[18]. Fitting this deterministic no-jump evolution, we
extract residual dephasing rates up to 0.170 ðmsÞ−1
(≈ 0.2% per measurement). Note that we are discarding
exponentially many trajectories as we perform erasure
detection for more rounds, as seen in the survival proba-
bility plot in Fig. 3(b), which shows the number of
trajectories that survive as a function of detection rounds.
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Conclusions.—In this Letter, we demonstrated erasure
detection for a dual-rail qubit implemented in a super-
conducting double-post coaxial cavity. As a result of the
compact nature of this architecture, a single auxiliary
transmon is sufficient for erasure detection and control
of both cavity modes. We measure an average erasure rate
of 3.981� 0.003 ðmsÞ−1, which corresponds to 4.8% per
measurement, with a false-negative rate of 0.28%. In
addition, we developed a protocol to perform joint-
Wigner tomography which relies on matching the disper-
sive interaction rates between cavity modes and transmon.
From 2D cuts of the joint-Wigner function space, we
reconstruct the encoded information given the outcomes
of the erasure detection and extract the residual Pauli errors
within the dual-rail code space. We observe that dephasing
type errors dominate at a rate up to 0.170 ðmsÞ−1, 0.2% per
measurement, a result expected from the finite bit-flip rate
of the transmon and the mismatch in the cross-Kerr rates
during the erasure detection circuit. Finally, residual bit-flip
and leakage errors are negligible with an upper bound of
∼10−4 ðmsÞ−1, highlighting a clear hierarchy of rates where
erasure dominate over Pauli errors. These results, combined

with the high-fidelity beam splitters recently demonstrated
[33,39], suggest a promising pathway toward concatenating
superconducting cavity-based dual-rail qubits within a
surface code and leverage the higher threshold and favor-
able scaling with code distance. Finally, it should be
possible to further take advantage of the high noise bias
[3,40–42], of the Pauli errors in the dual-rail subspace when
designing the surface code architecture to further improve
upon the advantage of erasure detection.
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