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Quantum coherence is one of the fundamental aspects distinguishing classical and quantum theories.
Coherence between different energy eigenstates is particularly important, as it serves as a valuable resource
under the law of energy conservation. A fundamental question in this setting is how well one can prepare
good coherent states from low coherent states and whether a given coherent state is convertible to another
one. Here, we show that any low coherent state is convertible to any high coherent state arbitrarily well in
two operational settings: asymptotic and catalytic transformations. For a variant of asymptotic coherence
manipulation where one aims to prepare desired states in local subsystems, the rate of transformation
becomes unbounded regardless of how weak the initial coherence is. In a non-asymptotic transformation
with a catalyst, a helper state that locally remains in the original form after the transformation, we show that
an arbitrary state can be obtained from any low coherent state. Applying this to the standard asymptotic
setting, we find that a catalyst can increase the coherence distillation rate significantly—from zero to
infinite rate. We also prove that such anomalous transformation requires small but nonzero coherence in
relevant modes, establishing the condition under which a sharp transition of the operational capability
occurs. Our results provide a general characterization of the coherence transformability in these operational
settings and showcase their peculiar properties compared to other common resource theories such as
entanglement and quantum thermodynamics.
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Quantum coherence between different energy eigenstates
is a valuable resource inevitable for quantum clocks [1],
metrology [2], and work extraction [3]. Under the law of
energy conservation, coherence in the above sense is easily
lost due to decoherence, while it is impossible to create and
inflate coherencewithout any help. In this regard, coherence
is a precious quantum resource that should be utilized as
efficiently as possible.
A central problem concerning quantum coherence as an

operational resource is to characterize its manipulability
with energy-conserving unitary [4,5]. This physical set-
ting comes with a fundamental constraint that the total
amount of quantum coherence cannot be increased by
energy-conserving operations. To understand its manipu-
lation power, two formalisms of state transformations—
asymptotic and catalytic transformations—have been
actively investigated.
One standard setting for resource manipulation is the

asymptotic transformation, where one aims to convert
many copies of the initial quantum state to many copies
of another target state [6]. The key performance quantifier
of the asymptotic manipulation is its transformation rate,
the ratio of the number of copies of the final state to those of
the initial one. On the asymptotic coherence manipulation,
it has been shown that there is a strong limitation that the
transformation rate from generic mixed states to pure
coherent states is zero [7].

Another standard setting for resource manipulation is
catalytic transformation, where one is allowed to borrow
the help of another auxiliary system called catalyst—an
ancillary system that should return to its own state at
the end of the process. In particular, correlated catalyst,
which could have a correlation with the main system after
the transformation, has been shown to be effective in
enhancing the resource manipulability for several physical
settings [8–20]. However, similarly to the asymptotic trans-
formation, fundamental limitations on catalytic enhance-
ment have been observed. A notable result is the coherence
no-broadcasting theorem [21,22], showing that no coher-
ence could be created with a correlated catalyst if the input
state is exactly incoherent. These previous studies, both on
asymptotic and catalytic transformations, indicate the
potential difficulty of manipulating quantum coherence.
Contrarily to these suggestions, we here show that an

arbitrary coherence manipulation is enabled in asymptotic
and catalytic coherence transformation. We consider a
variant of the asymptotic transformation where one aims
to prepare a target state on each subsystem [23] and show
that the transformation rate becomes unbounded if the
initial state has nonzero coherence. In the correlated-
catalytic transformation, we prove that arbitrary state
transformation becomes possible as long as the initial state
has nonzero coherence. This shows that the observation
from the coherence no-broadcasting theorem is unstable
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about the perturbation of the initial state in the following
sense: As long as the initial state contains even a tiny
amount of coherence, every coherent state suddenly
becomes reachable. In addition, for target states besides
measure-zero exceptions, exact transformation is possible,
which is a much stronger claim than the conventional
resource-theoretic results allowing a small error in the
final state.
As a direct consequence of our result, we show that the

standard asymptotic transformation rate becomes infinite
with the help of correlated catalysts. This resolves the open
problem proposed in Ref. [11], asking whether correlated
catalysts could improve the asymptotic rate at all, in the
most drastic manner—catalysts can make undistillable
coherent states infinitely distillable.
Our protocols require a nonzero amount of coherence—

even if extremely small—in the initial state to implement
arbitrary state conversions. To fully characterize this
requirement, we formalize no-go theorems on state con-
versions by introducing the notion of resonant coherent
modes. These no-go theorems reveal that initial coherence,
even if it is negligibly small, is inevitable for arbitrary state
conversions, and exactly zero coherence must result in zero
coherence. Together with the feasible transformations
described above, these characterize state transformability
both in asymptotic and catalytic settings, revealing that the
distinction between zero and nonzero coherence is an
extremely sharp threshold.
We remark that these “amplification” effects do not

contradict the physical requirements that the total amount
of coherence should not increase. Our results rest on the
fact that coherence can locally increase, as observed in
several settings previously [24,25]. Our results extend these
observations in the context of asymptotic and catalytic
coherence manipulation and provide general characteriza-
tions of the anomalous coherence amplification phenomena
observed in each operational setting.
Coherence transformation.—Superposition between

energy eigenstates is manifested in time evolution. For a
system with Hamiltonian H, a state ρ is called coherent if
U tðρÞ ≠ ρ for some time t, where U tðρÞ ≔ e−iHtρeiHt is the
unitary time evolution. A state is called incoherent if it is
not coherent. We remark that the coherence we consider in
this work is what is so-called unspeakable coherence [26].
(Not to be confused with another type known as speakable
coherence [27].)
Available operations in manipulating quantum coherence

should not create coherence from incoherent states, as
respecting the law of energy conservation. In reflecting this
restriction, a natural set of available operations for the
coherence manipulation is the covariant operations with
time translation [28], i.e., the action of a channel
Λ∶ S → S0, where S and S0 are input and output systems,
commutes with the unitary time evolution as Λ ∘US

t ¼
US0
t ∘Λ for all t [4,5,29]. From the operational perspective,

any covariant operation Λ can be equivalently written by an
energy-conserving unitary U and an incoherent state η as
ΛðρÞ ¼ TrA½Uðρ ⊗ ηÞU†�, where A is some auxiliary
system [5,30]. In other words, covariant operations are
operations which can be implemented by an energy-
conserving unitary with incoherent states.
Coherent modes.—Our findings clarify that whether

relevant modes have (maybe tiny but) nonzero coherence
leads to a drastic change. To formalize this, we introduce
the notion of resonant coherent modes. A mode for Δ is a
pair of two energy levels with energy difference Δ, and a
state ρ has a coherent mode Δ if ρij ≠ 0with Ei − Ej ¼ Δ is
satisfied for some i, j, where ρij ≔ hijρjji and jii is an
energy eigenstate with energy Ei for the given Hamiltonian
H. We then define the set CðρÞ of resonant coherent modes
of state ρ as all linear combinations of nonzero coherent
modes with integer coefficients, i.e.,

CðρÞ ≔
�
xjx ¼

X
i;jðρij≠0Þ

nijΔij; nij ∈Z

�
ð1Þ

for an energy interval Δij ¼ Ei − Ej and a nonzero off-
diagonal entry ρij of a density matrix ρ for energies Ei and
Ej. Notably, in the asymptotic and catalytic coherence
manipulation, one can create a coherence on mode Δ ¼
Δ1 þ Δ2 if the initial state has coherence on modes Δ1

and Δ2 [31].
Asymptotic manipulation.—We first consider the asymp-

totic manipulation. Suppose ρ is an initial state and ρ0 is a
target state. In the standard framework of asymptotic
transformation, one considers a series fΛngn of available
operations that transforms ρ⊗n to ρ0⊗brnc with vanishing
error at the limit of n → ∞. The asymptotic transformation
rate Rðρ → ρ0Þ is the supremum over all achievable rates r.
When ρ0 is a pure state ϕ, it is particularly called asymptotic
distillation. For coherence distillation with covariant oper-
ations, the distillation rate Rðρ → ϕÞ is known to be zero
for an arbitrary full-rank state ρ and an arbitrary coherent
pure state ϕ [7], which puts a fundamental restriction on the
tangibility of coherence as an operational resource.
However, the necessity of obtaining the state close to

ϕ⊗brnc can be reasonably relaxed for many operational
settings. For instance, consider the scenario where multiple
parties are separated from each other and would like to
consume a good coherent state locally. In such a setting, the
quality of the resource state is determined by how close the
local marginal state is to the maximally coherent state.
The framework that fits this operational setting was
considered previously and called asymptotic marginal
transformation [9,23]. Suppose ρ and ρ0 are the states
on the systems S and S0 respectively. The state ρ can be
converted to ρ0 with an asymptotic marginal transformation
with rate r if there exists a series of available operations
fΛngn from S⊗n to S0⊗brnc such that the reduced state of
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Λnðρ⊗nÞ on every subsystem approaches ρ0 with a vanish-
ing error at the n → ∞ limit. If the reduced state of any
single subsystem exactly coincides with the target state ρ0
for some finite n, we say that this asymptotic marginal
transformation is exact. Although the asymptotic marginal
transformation rate R̃ðρ → ρ0Þ, which is defined as the
highest achievable rate in the marginal asymptotic con-
version, serves as an upper bound of the standard asymp-
totic transformation R̃ðρ → ρ0Þ ≥ Rðρ → ρ0Þ, these two
rates coincide in many settings such as entanglement,
quantum thermodynamics, and nonclassicality [23], sug-
gesting that this relaxation may not realize a significant
improvement in the ability of transformation (see also
Sec. II A in the Supplemental Material [32]).
Despite these previous observations, we prove that any

low coherent state can be transformed to any high coherent
state with an arbitrarily high transformation rate. Namely,
there is no restriction on coherence transformation, and all
states without measure-zero exceptions admit infinite
asymptotic marginal distillation rates [Fig. 1(a)].
Theorem 1.—For arbitrary states ρ and ρ0, R̃ðρ → ρ0Þ

diverges if ρ has nonzero coherence in the sense of
Cðρ0Þ ⊆ CðρÞ. Moreover, the asymptotic marginal trans-
formation can be made exact if ρ0 is full rank. In both cases,
the correlation between one subsystem and the others can
be made arbitrarily small. On the other hand, if Cðρ0Þ=⊆CðρÞ,
even a single copy of ρ0 cannot be prepared from any
number of copies of ρ with arbitrarily small error.
We remark that Cðρ0Þ ⊆ CðρÞ is quite a mild condition

since any state ρ with extremely small but nonzero
coherence on all modes automatically passes this require-
ment regardless of ρ0.
Theorem 1 provides the complete characterization of the

general asymptotic marginal coherence transformation,

including the case of distillation when ρ0 is pure.
Intuitively speaking, if the initial state contains nonzero
coherence on modes that are coherent in the target state,
then an arbitrary rate can be realized. The condition
Cðρ0Þ ⊆ CðρÞ, whether the state has (maybe extremely
small but) nonzero coherence or has exactly zero coher-
ence, serves as an extremely sharp and the only threshold
separating infinite and zero asymptotic transformation
rates.
The diverging rate for the exact transformation shown in

Theorem 1 is also remarkable. In fact, asymptotic resource
transformation typically comes with a severe restriction
when no errors are allowed, and therefore much less is
known for exact transformation compared to transforma-
tion with a vanishing error. Our result presents a rare
scenario in which exact transformation realizes an out-
standing performance that coincides with the performance
of nonzero error transformation.
Correlated-catalytic transformation.—We now consider

the correlated-catalytic transformation, where we employ
an auxiliary system C called catalyst which does not
change its own state between the initial and the final state
but helps state conversion in system S. We say that ρ is
convertible to ρ0 through correlated-catalytic transforma-
tion if there exists a finite-dimensional catalytic system C
with a catalyst state c, and a covariant operation Λ on SC
such that τ ¼ Λðρ ⊗ cÞ with TrS½τ� ¼ c and TrC½τ� ¼ ρ0.
Our final state may have a correlation between the system
and the catalyst, which reflects the name “correlated
catalyst.”
We investigate covariant operations with a correlated

catalyst. Recent studies have revealed a severe limitation
for correlated-catalytic covariant operations, called the
coherence no-broadcasting theorem [21,22]. This theorem
states that a fully incoherent initial state is convertible only
to an incoherent state through a covariant operation even
with the help of a correlated catalyst. This may suggest that
a correlated catalyst offers little advantage in state con-
vertibility with quantum coherence. However, we show
exactly the opposite—correlated catalysts allow enormous
operational power to most covariant state conversions, and
the only exception is the case with no coherence in the
initial state.
Theorem 2.—For arbitrary states ρ and ρ0, ρ is convert-

ible to ρ0 with a correlated catalyst with an arbitrarily small
error if Cðρ0Þ ⊆ CðρÞ, and the transformation can be made
exact if ρ0 is full rank. In addition, the correlation between
the system and catalyst can be made arbitrarily small.
This shows that a correlated catalyst enables an arbitrary

coherence amplification—an almost incoherent state can be
transformed to an almost maximally coherent state with a
correlated catalyst [Fig. 1(b)], solving the conjecture in
Ref. [31] in the affirmative. Similarly to the case of
asymptotic transformation, the only meaningful distinction
lies in whether the state has nonzero coherent modes or not.

C C

(a) (b)

FIG. 1. (a): An asymptotic marginal transformation maps n
copies of ρ into m copies of ρ0 with correlation among copies.
Theorem 1 states that for almost all ρ and ρ0, the rate of
asymptotic marginal transformation of ρ → ρ0 defined as
limn→∞maxmðm=nÞ is unbounded. (b): A correlated-catalytic
transformation maps a product state of system S and catalyst
C written as ρ ⊗ c to τ such that TrS½τ� ¼ c and TrC½τ� ¼ ρ0.
Theorem 2 states that for almost all ρ and ρ0, ρ is convertible to ρ0
with a correlated catalyst. In addition, the strength of the
correlation between the main and catalytic systems can be made
arbitrarily small.
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Notably, the correlation between the system and the
catalyst can be made arbitrarily small, implying that the
final state τ is extremely close to a product state of ρ0 ⊗ c.
By choosing the initial state as ρ⊗n and the target state as

ϕ⊗rn for a coherent state ρ and a pure coherent state ϕ, there
exists a correlated catalyst that enables the transformation
from ρ⊗n to ϕ⊗rn with an arbitrarily small error for every n
and r. This setup corresponds to the standard (not marginal)
asymptotic distillation, i.e., the error in the final state is
measured for the entire state ϕ⊗rn, assisted by correlated
catalysts. Noting that the standard asymptotic distillation
rate Rðρ → ϕÞ without a catalyst is zero for every full-rank
state ρ [7], our result gives the first example for which the
catalyst improves the asymptotic transformation rate,
resolving the open problem raised in Ref. [11].
As for the converse, we expect that Cðρ0Þ ⊆ CðρÞ also

gives the necessary condition for the transformation to
exist. Here, we give a partial result toward the full solution
to this problem. As naturally guessed, coherence in the
initial state would not be helpful in creating coherence on
the mode that is only irrationally related to the resonant
coherent modes. To formalize this, we introduce C0,
which is an extension of C to rational coefficients:
C0ðρÞ ≔ fxjx ¼ P

i;jðρij≠0Þ nijΔij; nij ∈Qg. We then obtain

the necessary condition for the approximate correlated-
catalytic covariant transformation (Fig. 2).
Theorem 3.—For two states ρ and ρ0 such that

C0ðρ0Þ⊈C0ðρÞ, there does not exist a correlated-catalytic
covariant transformation from ρ to ρ0.
This result can be understood asmode no-broadcasting—

new coherent modes cannot be created by a covariant
operation with a correlated catalyst. This contains the
coherence no-broadcasting theorem as a special case with
C0ðρÞ ¼ f0g and extends it to the case of coherent initial
states. We conjecture that the above condition is strength-
ened to Cðρ0Þ=⊆CðρÞ, which would provide the exact char-
acterization of the feasible coherence transformation with a
correlated catalyst together with Theorem 2.

Proof sketch.—Here, we provide a proof sketch of our
main results. The complete proofs are presented in the
Supplemental Material [32].
We first outline the proof of the achievable part ofTheorem

1. Our protocol employs another operational framework
known as marginal-catalytic transformations [31] (see also
Ref. [24]). In particular, it was shown that for any full-rank
state ρ0 there exists a setC1;…; CN of catalytic systems with
states c1;…; cN and a covariant operation Λ: S ⊗ C1 ⊗
� � � ⊗ CN → S0 ⊗ C1 ⊗ � � � ⊗ CN such that Λðc1 ⊗ � � � ⊗
cNÞ ¼ τ with TrC1;…;CN

½τ� ¼ ρ0 and TrnCi
½τ� ¼ ci for all

i ¼ 1;…; N. Furthermore, these catalysts are partially reus-
able: If we have Nk sets of catalysts c1 ⊗ � � � ⊗ cN , an
appropriate recombination of them allows one to prepare
ðkþ 1ÞNk copies of ρ0 with these marginal catalysts.
We now construct our protocol, which is inspired by

Ref. [9]. We first show that a set c1 ⊗ � � � ⊗ cN of catalysts
can be prepared exactly from ρ⊗μ by a covariant operation
for some integer μ. This allows us to transform μNk copies
of ρ into Nk sets of catalysts. Using these catalysts, we
obtain ðkþ 1ÞNk copies of ρ0 by a marginal catalytic
covariant transformation, after which we discard the
catalytic systems. The transformation rate is ðkþ 1Þ=μ,
which can be made arbitrarily large by setting sufficiently
large k. This transformation can be made exact for a full-
rank target state ρ0 by employing the result in Ref. [18].
The converse part of Theorem 1 can be shown by

utilizing the properties of the modes of asymmetry [83].
Theorem 2 can be obtained by applying the well-known

technique to derive correlated-catalytic convertibility from
asymptotic convertibility with vanishing error. This type of
result was first shown in Ref. [16] in the context of quantum
thermodynamics (cf. Refs. [84,85] for exact asymptotic
transformation), and a general formof statement is explicitly
shown and proven in Ref. [31]. In particular, this construc-
tion was recently used to convert asymptotic marginal
transformation to correlated-catalytic transformation [18].
We finally outline the proof of Theorem 3. We suppose

contrarily that the final state ρ0 has coherence on a mode
ΔE ∉ C0ðρÞ and derive contradiction with the coherence
no-broadcasting theorem [21,22]. Let LðΔÞ be an infinite-
dimensional system whose energy levels form a ladder with
energy interval Δ. We embed the main system S and
catalytic system C into a product of ladder systems
LðΔ0Þ ⊗ LðΔ1Þ ⊗ LðΔ2Þ ⊗ � � � such that Δ0 is an integer
multiple ofΔE (ΔE ¼ mΔ0 for some integerm), and the set
fΔ0;Δ1;Δ2;…g are rational-linearly independent. By
assumption, ρ0 has coherence in LðΔ0Þ, for which ρ is
incoherent. For brevity, we abbreviate the set Δ1;Δ2;…
as Δ̃.
Our key observation is that since a covariant operation

acts on each rational-linearly independent mode separately,
if ρ ⊗ c on LðΔ0Þ ⊗ LðΔ̃Þ can be transformed to τ by a
covariant operation, the same transformation is also possible

C C

FIG. 2. Suppose that a mode has no coherence in the initial
state. Then even if the initial state has coherence on other modes
irrationally related to the mode in interest, a covariant operation
with a correlated catalyst cannot provide coherence on this mode.
This restriction is stronger than the coherence no-broadcasting
theorem [21,22].
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on systems with another arbitrary set Δ̃0 ¼ ðΔ0
1;Δ

0
2;…Þ.

Namely, ρ ⊗ c → τ on LðΔ0Þ ⊗ LðΔ̃Þ (the same density
matrix on ladders with different energy spacings) is possible
by a covariant operation. Setting Δ̃0 ¼ 0 in the above
modification, where all states outside LðΔ0Þ are degenerate,
we find that ρ on LðΔ0Þ ⊗ Lð0Þ is completely incoherent.
On the other hand, the final state ρ0 has coherence in LðΔ0Þ,
which contradicts the coherence no-broadcasting theorem.
Discussion.—We showed the anomalous potential of the

manipulation of quantum coherence in the asymptotic and
catalytic coherence distillation. These results are highly
special to quantum coherence that cannot be seen in other
resource theories such as entanglement [86,87], quantum
thermodynamics [19], and speakable coherence [26,27,88]
(see Sec. V in the Supplemental Material [32]). Related to
this, we stress that our result is different from the well-
known embezzlement phenomena observed in several
resource theories [89,90], admitting arbitrary state con-
versions by allowing a small error in a catalyst. Our
framework allows no errors in the catalyst, and thus the
operational capability comes from an entirely different
mechanism.
Our results shed light on the power of correlation in

resource manipulation. In fact, without correlation, ampli-
fication of coherence is impossible in both asymptotic and
catalytic settings. The importance of correlation has already
been discussed intensively in the context of quantum
thermodynamics [91–94]. Quantum thermodynamics with
an uncorrelated catalyst has many restrictions with Rényi
entropies in state convertibility [84,89,95,96], while most
of the restrictions are lifted by proper use of correlations,
and only the second law of thermodynamics with the
relative entropy remains [14,16]. For the coherence trans-
formation, previous studies [24,31] showed an astonishing
operational power enabled by correlations between multi-
ple catalysts. Our results confirm that the unbounded power
of coherence transformation is also present in the setting
with much more operational motivation—asymptotic and
correlated-catalytic coherence transformation—lifting
quantum coherence as an even more tangible operational
resource.

Note added.—During the completion of our manuscript, we
became aware of an independent related work by Kondra
et al. [97], which was concurrently posted to arXiv with
ours. Also, an anonymous referee of the QIP conference
notified us that when ρ0 is pure and the period (the
minimum time after which the state returns to the original
one) for ρ and ρ0 coincide, one can also obtain the diverging
asymptotic marginal transformation rate (with an arbitrary
small error) by generalizing the construction for sublinear
coherence distillation in Ref. [7] [Supplementary Note 7] to
the case of marginal asymptotic conversion. This approach,
which is different from ours, in fact admits a larger target
state, up to the size sublinear in the number of copies of ρ.

Our Theorem 1, on the other hand, applies to the fully
general setting and contains further insights into the
possibility of exact transformation and fundamental limi-
tations imposed by the resonant coherence modes. We
thank the referee for their insightful comments.
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