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We formulate a Landau theory for altermagnets, a class of collinear compensated magnets with spin-split
bands. Starting from the nonrelativistic limit, this Landau theory goes beyond a conventional analysis by
including spin-space symmetries, providing a simple framework for understanding the key features of this
family of materials. We find a set of multipolar secondary order parameters connecting existing ideas about
the spin symmetries of these systems, their order parameters, and the effect of nonzero spin-orbit coupling.
We account for several features of canonical altermagnets such as RuO2, MnTe, and CuF2 that go beyond
symmetry alone, relating the order parameter to key observables such as magnetization, anomalous Hall
conductivity, and magnetoelastic and magneto-optical probes. Finally, we comment on generalizations of
our framework to a wider family of exotic magnetic systems derived from the zero spin-orbit coupled limit.
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Introduction.—Magnetism has long been a source of
novel phases and phenomena of both fundamental and
technological interest. Many thousands of magnetic mate-
rials are known with a wide variety of structures including
simple collinear ferromagnets, ferrimagnets, and antiferro-
magnets, as well as more complex arrangements charac-
terized by multiple incommensurate wave vectors [1].
The importance of spin-orbit coupling in magnetism is

widely appreciated, through exotic transport phenomena such
as the anomalous and spin Hall effects [2,3], as well as new
physics arising from the interplay of topology andmagnetism
such as skyrmion physics [4,5], nontrivial magnon band
topology [6], or Berry phases induced by spin chirality in the
electronic band structures of itinerant magnets [2]. However,
the zero spin-orbit coupled limit still holds surprises.
One phenomenon in this setting that has captured the

attention of a broad cross section of the community [7–45]
is “altermagnetism.” Following the unexpected discovery
of a d-wave spin splitting of the Fermi surface in RuO2

based on ab initio calculations [8], it was realized that
this is one instance of a large new class of magnets defined
by spin symmetries [25]. This spin-split band structure
combines aspects of simple metallic ferromagnets and
antiferromagnets with its core features borne out by experi-
ment [27–30]. Although spin-orbit coupling (SOC) is not
negligible in this material, the altermagnetic spin splitting
arising in the zero SOC limit greatly exceeds any SOC
induced band gaps. Despite having zero net moment, these
bands can support spin currents with polarization depend-
ing on the orientation of the applied voltage. Further, an
anomalous Hall response has been measured in altermag-
netic materials such as RuO2 [27] and MnTe [46]. While
research into these magnets is at an early stage, there is

hope that they may complete the program of antiferro-
magnetic spintronics [47–49]: realizing terahertz switching
devices with no stray fields and with low damping spin
currents.
Despite their significant potential value in applications,

there remain fundamental questions in situating these new
phases of matter within the broader context of magnetism.
From a practical standpoint, one can characterizemost of the
altermagnetic properties as originating from band structures
with an anisotropic pattern of spin splitting in momentum
space due to time-reversal symmetry breaking [25,26]. This
is in contrast to simple Stoner ferromagnets with double
sheeted Fermi surfaces for the different populations of up
and down spins and those of simple antiferromagnets where
the Fermi surfaces are perfectly spin compensated [1,50], as
well as from frustrated isotropic antiferromagnets that can
have complicated Fermi surfaces with electron and hole
pockets, albeit with equal spin populations [2,51]. While
appealing, this phenomenology does not delineate which
properties of altermagnets are robust to small symmetry-
allowed perturbations and which may depend on material
specific details.
In this Letter, we argue that Landau theory adapted to the

zero SOC limit captures the unique features of altermagnets.
Starting from the definition of Šmejkal et al. [25], this
Landau theory links spin symmetries to altermagnetic
phenomenology, including their band structures, thermo-
dynamics, and response functions, and reveals a deep
connection to multipolar secondary order parameters [31].
The symmetries of these multipoles relate directly to the
symmetries of the spin-split bands, with the anisotropy
of the electronic kinetic terms manifesting the same quad-
rupolar or hexadecapolar spatial structure found in the
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secondary order parameters, reminiscent of electronic
nematic or spin-nematic phases [52]. In addition, this
Landau theory allows one to systematically address the
effects of switching on SOC, identifying the leading
coupling to the primary order parameter and how they relate
to any multipolar secondary order parameters. As many of
the features of altermagnets, such as the anomalous Hall
conductivity, only appear when SOC is nonzero, by
approaching from this limit, we can analyze in detail how
the phenomenology of altermagnets is distinguished from
generic spin-orbit coupledmagnets. The zero SOC limit thus
acts as the “parent” phase fromwhichmanyof their principal
features—features that are obscured within the standard
symmetry analysis—can be understood in real materials.
Landau theory.—We adopt the essential definition put

forth in Šmejkal et al. [25]: an “ideal” altermagnet is a spin-
orbit free magnet with collinear antiferromagnetic order
where the two sublattices are symmetry related by some-
thing other than translation or inversion symmetry. Since
without SOC spatial and spin operations can act separately,
we can frame this as a statement about the spatial trans-
formation properties of the Néel order parameter N. To
rephrase in this new language: in an altermagnet, N
transforms as an inversion even nontrivial one-dimensional
irreducible representation (IR) under the action of the
crystal point group [25,26].
To be concrete, we assume that we have a system inwhich

we can define a uniform magnetization M and staggered
magnetization N (both inversion even). In the absence of
SOC, the uniform magnetization transforms as Γ1 ⊗ ΓS

A
where Γ1 is the trivial IR of the point group and ΓS

A is the
(axial) vector IR of the spin-rotation group. We assume that
N instead transforms as ΓN ⊗ ΓS

A where ΓN is a nontrivial
one-dimensional IR of the point group. The condition that
ΓN ≠ Γ1 encodes the assumption of altermagnetism [25,26].
An immediate consequence is that a net magnetization is

not necessarily induced in the Néel phase. To see this, we
consider direct linear couplings between N and M that
transform as the product ðΓ1 ⊗ ΓS

AÞ ⊗ ðΓN ⊗ ΓS
AÞ ¼ ΓN ⊗

ðΓS
1 ⊕ ΓS

A ⊕ ΓS
QÞ where ΓS

1 and ΓS
Q are the scalar (l ¼ 0)

and quadrupolar (l ¼ 2) IRs of the spin-rotation group.
Since ΓN is a nontrivial IR, these couplings are forbidden in
the absence of SOC.
We now connect this to higher multipoles [53]. Going

beyond N or M, we can define a time odd, inversion even
octupole, transforming like an axial vector in spin space,
but a quadrupole spatially. Tracking spin and spatial indices
separately, we can define [31]

Oμν ¼
Z

d3rrμrνmðrÞ; ð1Þ

where mðrÞ is the microscopic magnetization density. Note
that Oμν transforms under spin-space symmetries as Oα

μν →P
ρτβ SαβRμρRντO

β
ρτ where S is a rotation in spin space and

R is a rotation in real space. Other multipoles can be
constructed analogously. This octupole transforms as
Oμν ∼ ΓQ ⊗ ΓS

A, where ΓQ is the (generally reducible)
representation of a spatial quadrupole. A linear coupling
between N and Oμν then transforms as

ðΓN ⊗ΓS
AÞ⊗ ðΓQ ⊗ΓS

AÞ¼ ðΓN ⊗ΓQÞ⊗ ðΓS
1 ⊕ΓS

A ⊕ΓS
QÞ:

Thus if ΓQ contains ΓN then N and Oμν can couple linearly
in the absence of SOC, and the octupole will appear as a
secondary order parameter in the Néel phase. In the
language of Šmejkal et al. [25], this would define a
d-wave altermagnet.
We expect these multipolar secondary order parameters

to be generic; for a given symmetry there should exist a
high enough rank multipole such that its spatial part
contains ΓN . How do these secondary order parameters
relate to the altermagnetic phenomenology? We first con-
sider implications for bulk thermodynamic and transport
probes, but as we will see in our discussion of the rutiles,
these multipoles also connect to the symmetry of the spin-
split bands.
Consider whether N can couple linearly to M once SOC

is included. As the Landau theory now admits magneto-
crystalline anisotropy, spin and spatial transformations are
coupled and the spin-rotation group IRs reduce to ΓS

1 → Γ1,
ΓS
A → ΓA, and ΓS

Q → ΓQ. A linear coupling between N and
M thus transforms as

ðΓ1 ⊗ ΓAÞ ⊗ ðΓN ⊗ ΓAÞ ¼ ΓN ⊗ ðΓA ⊗ ΓAÞ:

Using that ΓA ⊗ ΓA ¼ Γ1 ⊕ ΓA ⊕ ΓQ, whether this cou-
pling is allowed is determined by whether ΓN appears in the
decomposition of ΓA or ΓQ. An identical condition applies
for the generation of an anomalous Hall conductivity [2],
corresponding to a current transverse to an applied voltage in
the absence of an applied magnetic field, Jμ ¼

P
μν σ

μν
H Eν,

as it transforms in the same way asM. We also note that the
Hall conductivity and magnetic circular dichroism trans-
form identically under symmetry, so these conclusions also
carry over to this magneto-optical probe.
We can now connect the appearance of a multipolar

secondary order parameter to d-wave altermagnetic phe-
nomenology: if N couples linearly to an octupole in the
absence of SOC (and thus ΓN ⊂ ΓQ), then it will neces-
sarily have a linear coupling toM and σμνH in the presence of
SOC. The definition of Šmejkal et al. [25] does not require
inducing an octupole, but instead can involve only higher
rank multipoles, corresponding to g- or i-wave altermag-
netism. In those cases, the generation of weak ferromag-
netism or an anomalous Hall effect can still generically
persist. It may still be generated linearly if ΓN ⊂ ΓA, but
will necessarily appear nonlinearly otherwise.
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With these core ideas outlined, we apply this framework
to understand a few common examples of altermagnetic
systems, including rutiles such as RuO2 and hexagonal
MnTe. We will see that by adopting this phenomenological
Landau theory, we can clarify the role played by multipolar
secondary order parameters and delineate different mech-
anisms for the generation of characteristic responses when
SOC is included.
Rutile altermagnetism—We begin with the canonical

example of altermagnetism in rutiles with chemical formula
MX2 whereM is the magnetic ion and X ¼ O, F. The most
prominent example is currently RuO2 which is a metallic
antiferromagnet with a simple Néel order below the mag-
netic ordering temperature TN > 300 K [27–30,36,54–57].
The crystal structure belongs to tetragonal space group
P42=mnm (No. 136)with the Ru atWyckoff position 2a and
the oxygen at Wyckoff position 4f. The magnetic sublattice
is therefore body-centered tetragonal, as shown in Fig. 1(a).
The space group has a generator C4z combined with trans-
lation through ð1

2
; 1
2
; 1
2
Þ that maps one magnetic sublattice to

the other. The inversion center, while present, preserves the
magnetic sublattices. Below the magnetic ordering temper-
ature, collinear antiparallel moments appear on the two
magnetic sublattices.
Before delving into a phenomenological Landau descrip-

tion, to set the stage we consider a simple model that
captures the principal features of rutile altermagnetism.
This model, introduced in Ref. [58], consists of non-
interacting fermions coupled to classical localized moments
on the 2a sites through a Hund-like interaction. In real
space the Hamiltonian is

H¼
X
n¼1;3

X
a

tan
X
hi;jin;a

c†iσcjσ − J
X
i

c†iαðSi · σαβÞciβ; ð2Þ

where Si are the local moment directions. One important
observation is that truncating the model at nearest-neighbor
t1 or second-neighbor t2 hoppings accidentally realizes the
larger symmetry group of the underlying body-centered
tetragonal lattice. The (lower) symmetry of the true space
group No. 136 manifests first through the presence of two

inequivalent third-neighbor hoppings, which generically
have different amplitudes absent fine-tuning. The resulting
band structure is such that the lowest two bands are split
over most of momentum space with degeneracies along
ðk; 0; 0Þ that arise from the spin-space symmetry of the
system [25,58] and with maximal splitting along ðk; k; 0Þ.
As spin is a good quantum number, and the two bands
correspond to electrons with polarization along Si in spin
space, the resulting splitting is the d-wave pattern shown in
Fig. 1(b), characteristic of a d-wave altermagnet [25].
Let us formulate an explicit Landau theory for this

class of materials. In this system, N transforms as the
nontrivial B2g IR of the point group 4=mmm (D4h),
satisfying the definition of an altermagnet [25,26].
Direct coupling between M and N is thus forbidden.
More precisely, the order parameter transforms under the
spin point group b∞ ⊗1̄ 4=1m1m1̄m [58,59] where the
superscripts refer to spin-space operations coinciding with
real-space generators [60].
The Landau theory for the Néel order parameter takes the

usual form

Φ ¼ a2N · N þ a4ðN · NÞ2; ð3Þ

enforced by spin-rotation and time-reversal symmetry. This
conventional Landau theory becomes less standard when
couplings to other observables are included. For the D4h
point group ΓQ ¼ A1g ⊕ B1g ⊕ B2g ⊕ Eg and so the only
component that transforms like N ∼ B2g is the xy spatial
quadrupole coupled with the magnetization vector. We thus
have a linear coupling ∝ N · Oxy, as defined in Eq. (1). It
follows that Oxy is a secondary order parameter generated
when the primary order parameter N becomes finite.
Explicitly, the free energy for Oxy would be Φ½Oxy� ¼
Φ0½Oxy� − gN · Oxy þ � � �, where Φ0½Oxy� is the part of the
free energy involvingOxy alone and g is the linear coupling.
The presence of this magnetic octupole can be directly

tied to the structure of the corresponding altermagnetic
band spin splitting. When N ≠ 0, hoppings and on-site
terms are allowed that couple linearly to N and thus
transform spatially as the same nontrivial one-dimensional
IR as N. As the physics is independent of spin orientation,
without loss of generality, we may consider one orientation
of N whereupon the spin components decouple, and the
spatial dependence of the new spin-dependent terms
follows the spatial part of the multipolar secondary order
parameter. The spin-splitting of the bands thus has a form
factor that mirrors the multipole induced locally. In the case
of the rutiles, this gives a spin splitting ∼kxky implying that
the spin of the Fermi surface, in itinerant altermagnets,
reverses in π=4 rotations about the c axis, as has been
established on the basis of ab initio calculations [8].
The nontrivial transformation properties of the Néel

order parameter have implications for coupling to other

(a) (b)

FIG. 1. Illustration of the (a) crystal structure of RuO2 with
magnetic Ru (orange) and oxygens (blue). (b) Fermi surface with
d-wave spin splitting (up and down spins in blue and red,
respectively) in the model of Eq. (2).
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observables even in the zero SOC limit. For example,
magnetoelastic couplings and piezomagnetism can be
readily understood from this Landau perspective. In the
absence of SOC, jNj2 and jMj2 couple trivially to the
strains ϵxx þ ϵyy and ϵzz, as dictated by the underlying
tetragonal cell. Remaining in this nonrelativistic setting, the
rutile crystal exhibits nontrivial piezomagnetic couplings,
even in absence of SOC. To see this, note that N ·M
transforms like B2g ⊗ ΓS

1 , identical to the strain ϵxy. In an
applied fieldH, the Landau theory thus admits a term of the
form ∝ ϵxyN ·H (see also Steward et al. [43]). A finite
staggered magnetization in the altermagnetic phase then
results in a shear distortion under an applied magnetic field.
As noted by Dzyaloshinskii [61], the introduction of SOC
leads to an additional coupling ∝ ðϵxzHy þ ϵyzHxÞNz.
We can relate the appearance of piezomagnetism to the

underlying altermagnetism more generally. Considering the
field transforms as H ∼ Γ1 ⊗ ΓS

A and strain as ϵμν ∼ ΓQ ⊗
ΓS
1 (ignoring the uniform strain component) trilinear cou-

plings with N transform as

ðΓN ⊗ ΓS
AÞ ⊗ ðΓ1 ⊗ ΓS

AÞ ⊗ ðΓQ ⊗ ΓS
1Þ:

For the spin part we must take the ΓS
1 component of

ΓS
A ⊗ ΓS

A, corresponding to N ·H, and then we are left with
a spatial part ΓN ⊗ ΓQ. Thus we can conclude: ifN couples
linearly to an octupole in the absence of SOC, then it will
necessarily exhibit piezomagnetism in the absence of SOC,
with a trilinear coupling between ϵμν, H, and N, as is the
case for a d-wave altermagnet. Note that if an octupole is
not generated, for example, for g- or i-wave altermagnet-
ism, the piezomagnetism may still be generated linearly
(if ΓN ⊂ ΓA) or nonlinearly (if Γ⊄ΓA) as for the
magnetization.
SinceΓN ⊂ ΓQ here, requiring a octupolar secondaryorder

parameter, we immediately see both weak ferromagnetism
and a finite anomalous Hall response linear in N should be
expected. More explicitly, when spin and space rotations are
coupledMxx̂þMyŷ and Nxx̂þ Nyŷ both transform like Eg

allowing a linear coupling MxNy þMyNx, arising micro-
scopically from Dzyaloshinskii-Moriya exchange. We note
that a staggered magnetization along the ẑ direction alone
does not have a linear coupling to the ferromagneticmoment.
For the rutile, σxyH transforms as A2g and the other two
components σyzH and σzxH like Eg. Thus, with SOC we see σxyH
only couples to Mz and σyzH , σ

zx
H only to the transverse

components of both the Néel vector and the magnetization.
While the anomalous Hall effect detected in RuO2 is a
conventional symmetry-allowed (not fundamentally alter-
magnetic) response, we see that it is intimately connected to
the presence of a octupolar secondaryorder parameter and the
underlying spin group symmetries.
We have seen that the multipolar secondary order

parameter in the rutile case required by ΓN ⊂ ΓQ fixed

many of the phenomenological altermagnetic responses
expected both with and without SOC.Wewill next consider
MnTe where the quadrupole ΓQ does not contain ΓN and
the generation of higher multipoles must be considered. We
also show that the magnetization, anomalous Hall conduc-
tivity, and piezomagnetism all arise nonlinearly in N.
Hexagonal MnTe.—This material [35,37,62] has mag-

netic manganese ions on an AA stacked triangular lattice.
The Mn ions live on the 2a Wyckoff positions of space
group P63=mmc (No. 194) and the Te ions on the 2c
Wyckoff positions. The magnetic structure is one with in-
plane moments that are antialigned between neighboring
triangular layers [see Fig. 2(a)] [63]. The primary order
parameter is the Néel vector N as in the case of the rutile
altermagnet and the Landau theory is therefore identical to
Eq. (3). The point group is 6=mmm (D6h) andN transforms
as B1g and M as A1g. [64] For MnTe, one has that ΓN⊄ΓQ

and thus a magnetic octupole is not induced. In the
language of Šmejkal et al. [25], this is g-wave altermag-
netism. However, it is straightforward to see there is a
higher order rank-5 magnetic multipole

O4
3 ≡

Z
d3r½Y4

3ðr̂Þ − Y4
−3ðr̂Þ�mðrÞ; ð4Þ

where Yl
m is a spherical harmonic that transforms as

B1g—identically to N. The Landau free energy for this
multipolar order parameter would then include a linear
coupling. Explicitly, one would write Φ½O4

3� ¼ Φ0½O4
3�−

gN · O4
3 þ � � �, where Φ0½O4

3� is the part of the free energy
involving O4

3 alone and g is the coupling. This magnetic
multipole is therefore a secondary order parameter with a
g-wave symmetry. The higher rank of this multipole is
reflected in the nature of the band spin splitting [see
Fig. 2(c)] which contains lines where the spin splitting
vanishes. For this case, a toy model can be formulated

(a) (b)

(c)

FIG. 2. Illustration of the key features of altermagnetic MnTe
including (a) the crystal structure with magnetic Mn ions on an
AA stacked triangular lattice, (b) the inequivalent bonds con-
necting neighboring magnetic layers along the c direction that
enter into the model of Eq. (2), and (c) the g-wave spin-split
Fermi surface expected in weakly doped MnTe.
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along the same lines as the rutile example, but with the
essential inequivalent bonds lying at relatively long range
[see illustration in Fig. 2(b)]. This case highlights the
potential for sufficiently long-range symmetry inequivalent
hoppings to be important for altermagnetism in materials.
In contrast to the rutile case, symmetry does not permit

a direct coupling between the magnetization and the
staggered magnetization even in the presence of SOC
as ΓN⊄ΓQ or ΓA. Therefore, altermagnetism does not
coincide, in general, with weak ferromagnetism or with
an anomalous Hall conductivity appearing linearly in N.
Explicit symmetry analysis reveals that coupling between
N andM or σμνH appears first at third order in N. Restricting
to an in-plane N ¼ Nxx̂þ Nyŷ, as is relevant experimen-
tally for MnTe [63], one finds a single allowed coupling,

σxyH ¼ a3Nyð3N2
x − N2

yÞ þ � � � ; ð5Þ

betweenN and σμνH with an identical relation holding for the
weak ferromagnetic moment Mz. From the perspective of
this Landau theory the generation of higher multipolar
secondary order parameters thus leads to cubic (or higher)
couplings between the Néel vector and the magnetization
or Hall conductivity. We note that, experimentally, the
observed temperature dependence of the Hall signal σxyH in
MnTe appears convex near TN, perhaps consistent with a
nonlinear dependence [Eq. (5)] on the order parameter [46].
Similarly, unlike for the rutile case, MnTe piezomagnetism,
reported in Aoyama and Ohgushi [62], appears only in the
presence of SOC or involves nonlinear couplings toN orH.
Discussion.—The ideas of the previous sections can be

used straightforwardly to formulate Landau theories for
other candidate altermagnetic materials, d, g, and i wave,
with or without SOC, as well as predict how they will
couple to new physical observables.
For example, CuF2 has the Néel vector transforming as

the Bg IR of C2h (2=m). Since ΓQ contains two copies of
Bg [65], its Néel vector N can couple separately to the O21

and Os
21 time odd multipoles (l ¼ 2, m ¼ 1 Stevens

operators for the spatial quadrupole), with two sets of
inequivalent bonds in the xz and yz planes. We can thus
infer that CuF2 should exhibit weak ferromagnetism and an
anomalous Hall effect linear in the Néel order parameter, as
well as piezomagnetism in the absence of SOC.
Other observables can also be treated within this frame-

work. For example, one can consider the generation of spin
currents [47], characterized by a spin conductivity tensor
defined through JSμ ¼

P
μν σ

μν
S Eν where E is the electric

field and the vector index encodes the spin direction. This
transforms as σμνS ∼ ðΓV ⊗ΓVÞ⊗ΓS

A ¼ðΓ1⊕ΓA ⊕ΓQÞ⊗
ΓS
A. Thus, if ΓN ⊂ ΓQ or ΓA then N can appear linearly

in σμνS in the absence of SOC. For the rutile case, we would
thus expect a spin conductivity σxyS ∝ N. For cases where

ΓN⊄ΓQ or ΓA, like in MnTe, this would necessarily involve
a higher polynomial in the Néel vector N.
While we have considered multipolar secondary order

parameters that are even in their spatial components, when
the magnetic structure lacks inversion we may find odd
spatial multipoles as well. For example, point group C6v
ð6mmÞ, admits collinear antiferromagnetic spin groups and
has IRs B1 and B2 that allow linear couplings between
certain time odd, space odd multipolar order parameters
and the appropriate Néel order parameter. We leave the
exploration of these multipoles for future work.
These ideas can also be generalized to noncollinear

magnets. There is recent literature cataloging the possible
multipolar orders in noncollinear magnets and connecting
their symmetries to their response (see, for example,
Refs. [66–70]). These noncollinear magnets can also be
described using the framework discussed here. For exam-
ple, the kagome lattice with Q ¼ 0, 120° order [67,71,72]
has a two component order parameter that can be encoded
in a complex vector

Ψ ¼ eþ2πi=3S1 þ e−2πi=3S2 þ S3;

leading to quadratic invariant ∝ Ψ� ·Ψ. In the Landau
theory this can couple linearly to a d-wave multipole in IR
E2g of D6h ð6=mmmÞ with components k2x − k2y and kxky
that itself is reflected in the spin expectation value within
each band.
Conclusion.—In this Letter, we have explored the appli-

cation of Landau theory to altermagnets. This framework
ties together several key ideas that have arisen in this
burgeoning field including spin-split bands, spin sym-
metries, multipolar order parameters, and the phenomeno-
logy of these materials both with andwithout SOC.We have
given examples of spin symmetric time oddmultipolar order
parameters that characterize these magnets, as well as
outlining their generalization to noncollinear altermagnetic
behavior. These techniques are straightforwardly general-
izable to themany candidate altermagneticmaterials [25,26]
andwe hope theywill prove useful in sharpening predictions
of altermagnetic phenomenology.
More broadly, the considerations underpinning our

Landau theory, and altermagnets viewed widely, flow from
the need to generalize magnetic symmetries from the
magnetic space groups to spin symmetry groups when
SOC is weak [58,59,72–83]. The induction of multipolar
secondary order parameters would likely also need to be
revisited in this broader context, especially as SOC is
reintroduced [11,12,72,84,85] as has been recently dis-
cussed in Ref. [86]. Altermagnets provide a striking
demonstration that there is much to be gained by thinking
about novel phases, band structures, and response functions
in the context of these higher symmetries. Landau theories
built from order parameters with given spin symmetries are
the natural language to explore the resulting new physics
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and reveal how these symmetries control the altermagnetic
phenomenology when SOC is introduced.
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