
Experimental Observation of the Yang-Lee Quantum Criticality
in Open Quantum Systems

Huixia Gao,1,2 Kunkun Wang,3 Lei Xiao,2 Masaya Nakagawa,4 Norifumi Matsumoto ,4

Dengke Qu,1 Haiqing Lin,5 Masahito Ueda ,4,6,7,* and Peng Xue 2,1,†
1Beijing Computational Science Research Center, Beijing 100084, China

2School of Physics, Southeast University, Nanjing 211189, China
3School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China

4Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
5School of Physics, Zhejiang University, Hangzhou 310030, China

6Institute for Physics of Intelligence, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
7RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

(Received 6 September 2023; revised 25 February 2024; accepted 26 March 2024; published 24 April 2024)

The Yang-Lee edge singularity was originally studied from the standpoint of mathematical foundations
of phase transitions. However, direct observation of anomalous scaling with the negative scaling dimension
has remained elusive due to an imaginary magnetic field required for the nonunitary criticality. We
experimentally implement an imaginary magnetic field with an open quantum system of heralded single
photons, directly measure the partition function, and demonstrate the Yang-Lee edge singularity via the
quantum-classical correspondence. We also demonstrate unconventional scaling laws for finite-temper-
ature quantum dynamics.
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Introduction.—Yang-Lee zeros [1,2] are the zero points
of the partition function that appear when some physical
parameters are made complex and determine fundamental
properties of phase transitions, such as critical exponents
[3]. Yang and Lee [1,2] showed that zeros of the partition
function of the classical ferromagnetic Ising model are
distributed on the imaginary axis of the complex magnetic
field [4–6] and related to singularities [7–16] in thermo-
dynamic quantities. When the distribution of Yang-Lee
zeros pinches (crosses) the real axis, the system exhibits a
second-order (first-order) phase transition. Furthermore,
the distribution itself exhibits singularity at its edges known
as the Yang-Lee edge singularity [3,7–12], which is a
prototypical example of nonunitary critical phenomena
involving anomalous scaling laws unseen in unitary critical
systems [17–20].
Yang-Lee zeros and Yang-Lee edge singularity have

been extensively studied theoretically [21–26] and exper-
imentally [27–35]. However, the imaginary magnetic field
makes direct observation of the Yang-Lee edge singularity
difficult and the physical meaning of the anomalous scaling
accompanied by the negative scaling dimension elusive.
Here the negative scaling dimension indicates that corre-
lation functions diverge algebraically under space-time
dilations and it is characteristic of nonunitary critical
phenomena. A recent theoretical study [36] demonstrates
that the Yang-Lee edge singularity can be implemented in
quantum systems on the basis of the quantum-classical
correspondence [37,38].

In this Letter, we experimentally implement an imaginary
magnetic field and demonstrate the Yang-Lee edge singu-
larity through a nonunitary evolution governed by a
non-Hermitian Hamiltonian in an open quantum system.
Aquantumsystemexhibits theYang-Lee zeros and theYang-
Lee edge singularity of the classical ferromagnetic Ising
model due to the quantum-classical correspondence, where
the nonunitary quantum criticality is identified with
the singularity at an exceptional point. We also show
unconventional scaling laws for finite-temperature dynam-
ics. Furthermore, we present the phase diagram of the Yang-
Lee quantum critical system, where Yang-Lee zeros appear
in the parity-time (PT )-broken phase. Ourwork is the first to
measure all the critical exponents of the magnetization, the
magnetic susceptibility, a two-time correlation function, and
the density of zeros about theYang-Lee edge singularity (see
S7 of the Supplemental Material [39]). In particular, we
directly observe the partition function, which gives a crucial
advantage in the study of Yang-Lee zeros and related topics.
Yang-Lee edge singularity in open quantum systems.—

We consider the Yang-Lee edge singularity in the classical
one-dimensional Ising model with a pure-imaginary mag-
netic fieldH ¼ −J

P
j σjσjþ1 − ih

P
j σj [9], where J > 0,

h∈R, and σj ¼ �1. This model can be mapped to a
quantum system governed by a PT -symmetric non-
Hermitian Hamiltonian [45,46]

HPT ¼ R cosϕσx þ iR sinϕσz ð1Þ
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via the quantum-classical correspondence [36], where
R > 0, ϕ∈ ð−π=2; π=2Þ, and σx and σz are the Pauli
matrices. The partition function of H is obtained via the
path-integral representation of its quantum counterpart.
Matsumoto et al. [36] pointed out that the latter quantum
system exhibits a criticality equivalent to the Yang-Lee
edge singularity in the former classical system. The
Hamiltonian HPT satisfies the PT symmetry with
½H;PT � ¼ 0, where P ¼ σx, T ¼ K, and K is complex
conjugation. The Hamiltonian HPT has eigenenergies
E� ¼ �R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2ϕ

p
and the quantum critical points ϕ ¼

�π=4 corresponding to exceptional points [47,48], which
separate the PT -unbroken and broken regimes.
The Yang-Lee edge singularity occurs at the edges of the

distribution of zeros of the partition function

Z ¼ Tr½e−βHPT � ¼
X
p¼�

e−βEp; ð2Þ

where β is the inverse temperature. The Yang-Lee quantum
critical phenomena appear in the expectation value of a
certain observable O given by [36,49–52]

hOi ¼ Tr½Oe−βHPT �
Z

¼ 1

Z

X
p¼�

hEL
pjOjER

pi
hEL

pjER
pi

e−βEp; ð3Þ

where jER
pi (hEL

pj) is the right (left) eigenvector of HPT .
We simulate the PT -symmetric nonunitary quantum
dynamics using a single-photon interferometric network,
and experimentally investigate the Yang-Lee quantum
criticality.
Experimental demonstration.—To simulate the dynam-

ics of the two-level PT -symmetric system governed by
HPT , we employ as the basis states the horizontal and
vertical polarization states of a heralded single photon, i.e.,
fj0i ¼ jHi; j1i ¼ jVig. Instead of implementing the non-
Hermitian Hamiltonian HPT , we simulate the nonunitary
quantum dynamics by directly implementing a nonunitary
time-evolution operator U such that U ¼ e−iHeff t at any
given time t (see Eq. (5)). Here the effective non-Hermitian
Hamiltonian is given by

Heff ¼ HPT þ d
t
1; ð4Þ

where d ¼ i lnð1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max jλjp Þ, λ is the eigenvalue of

e−iHPT teiH
†
PT t [53,54], and 1 is the 2 × 2 identity matrix.

The probability amplitudes with respect to Heff and
HPT are related to each other by hjje−iHeff tjji ¼
hjje−iHPT tjji= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max jλjp
, where j ¼ H, V.

The nonunitary operator U is implemented via the
following decomposition (see also Fig. 1):

U ¼ Rðϕ2; θ2;ϕ0
2ÞLðθH; θVÞRðϕ1; θ1;ϕ0

1Þ; ð5Þ

where the rotation Rðϕj; θj;ϕ0
jÞ (j ¼ 1, 2) can be realized

by a set of sandwiched wave plates with a configuration
quarter-wave plate (QWP) at ϕj, a half-wave plate (HWP)
at θj, and a QWP at ϕ0

j, and the polarization-dependent loss
operator L is realized by a combination of two beam
displacers (BDs) and two HWPs with setting angles θH and
θV . For each given evolution time t, the nonunitary
evolution U can be realized by tuning the setting angles
of wave plates [55] and mapped to e−iHPT t with a correction
factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max jλjp

.
We characterize scaling laws of physical quantities for a

finite-temperature quantum system via the magnetization

m ¼ hσzi ¼
hHje−βHPT jHi − hVje−βHPT jVi
hHje−βHPT jHi þ hVje−βHPT jVi ; ð6Þ

the magnetic susceptibility

χ ¼ dm
da

¼ m −m0

tanϕ − tanϕ0 ð7Þ

with a ¼ tanϕ being a normalized magnetic field and
m (m0) representing the magnetization for HPT ðϕÞ
[HPT ðϕ0Þ], and the two-time correlation function

Gðt2; t1Þ ¼ hσzðt2Þσzðt1Þi− hσzðt2Þihσzðt1Þi

¼ 1

Z

�
ΣHHΣ0

HH − ΣHVΣ0
VH − ΣVHΣ0

HV þ ΣVVΣ0
VV

�
−m2; ð8Þ

where Σij¼hije−iΔtHPT jji, Σ0
ij¼hijeðiΔt−βÞHPT jji (i; j ¼ H,

V), Δt ¼ t2 − t1, and Z ¼ hHje−βHPT jHi þ hVje−βHPT jVi

FIG. 1. Experimental setup. Heralded single photons are
created via type-II spontaneous parametric down-conversion in
a PPKTP crystal. The polarizing beam splitter PBS1 and the half-
wave plate (HWP) H0 are used to generate initial polarization
states jHi and jVi. After photons pass through a 50∶50 beam
splitter (BS), the transmitted photons enter the evolution path, and
the reflected photons act as reference photons and interfere with
the transmitted photons at PBS3. The evolution process involves
nonunitary evolutionsU1 andU2 realized by two beam displacers
(BDs) and sets of wave plates and the projector P is realized by
two HWPs and PBS2. The measurement part involves PBS3, two
quarter-wave plates (QWPs), and two HWPs, followed by
another two PBSs. Finally, photons are detected by avalanche
photodiodes (APDs), and recorded by the coincidence counts of
D0, D1, and D0, D2, respectively.
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is the partition function. We note that the finite-temperature
scaling ofGðt2; t1Þ is unique to quantum critical phenomena.
As illustrated in Fig. 1, after single photons pass through

a beam splitter (BS), transmitted photons as signal photons
go through a nonunitary evolution, while the reflected
photons as reference photons freely evolve and then
interfere with the transmitted ones at the polarizing
beam splitter PBS3. Projective measurements with the
bases of fjþi; j−i; jRig [j�i ¼ ðjHi � jViÞ= ffiffiffi

2
p

, jRi¼
ðjHi−ijViÞ= ffiffiffi

2
p

] are then performed on photons trans-
mitted and reflected by the PBS. The outputs are recorded
in coincidence with trigger photons. Typical measurements
yield a maximum of 240 000 photon counts per second. For
example, to measurem, we need to find both hHje−βHPT jHi
and hVje−βHPT jVi. Photons are initially prepared in the
initial state jHi (or jVi). After signal photons undergo a
nonunitary evolution via U ¼ e−iHeff t ¼ e−βHPT =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max jλjp

(here we take t ¼ −iβ), they interfere with the reference
photons in jHi (or jVi) at PBS3. The inverse temperature β
is taken as a parameter of the nonunitary evolution
and tuned by the setting angles of wave plates (see S3
of the Supplemental Material [39]). The overlap
hHðVÞje−βHPT jHðVÞi can be calculated from coincidence
counts (see S3 of the Supplemental Material [39]).
Similarly, we can obtain the overlaps ΣijΣ0

ji in Gðt2; t1Þ
by applying nonunitary operations U1 ¼ e−iΔtHeff ¼
e−iΔtHPT =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max jλjp

and U2 ¼ eðiΔt−βÞHeff ¼ eðiΔt−βÞHPT =ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max jλjp

and the projector P ¼ jjihjj on signal photons.
Yang-Lee critical phenomena.—We discuss the scaling

laws of the system in the PT -unbroken phase (jϕj < π=4)
by examining the dependence of physical quantities on
Δϕ ≔ π=4 − ϕ. We consider two cases: (i) the limit ϕ →
π=4 − 0 is taken after 1=β → 0; (ii) the limit 1=β → 0 is
taken after ϕ → π=4 − 0. Here β−1 ¼ 0 corresponds to
the thermodynamic limit of the classical one-dimensional
Ising model.
For case (i), the scaling laws are equivalent to those in the

classical counterpart [9,36], i.e.,

m →
−i sinϕffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2ϕ

p ∝ Δϕ−1
2; χ →

−icos3ϕ
cos

3
22ϕ

∝ Δϕ−3
2;

Gðt2; t1Þ →
cos2ϕ
cos 2ϕ

exp

�
−2πi

Δt
π=ðR ffiffiffiffiffiffiffiffiffiffiffiffiffi

cos 2ϕ
p Þ

�
: ð9Þ

We experimentally test these scaling laws for R ¼ 0.05,
β ¼ 105, and several values of Δϕ. Since the real parts of
m and χ vanish, their scaling laws with respect to Δϕ
are characterized by their imaginary parts shown in
Figs. 2(a) and 2(b). Fitting the power exponents to m ∼
Δϕ1=δ and χ ∼ δϕ−γ , we obtain 1=δ ∼ −0.458� 0.033 and
γ ∼ 1.477� 0.350, which agree with theoretical predic-
tions 1=δ ¼ −1=2 and γ ¼ 3=2 in Eq. (9). Slight deviations
from theoretical predictions are mainly due to the sensitivity

of the fitting result to the difference between the leftmost
experimental data point in Fig. 2(a) and its theoretical
prediction, where the slope of the curve becomes large. In
Figs. 2(c) and 2(d), we also show the measured values of
Gðt2; t1Þwith respect toΔϕ forΔt ¼ 3000, which agreewith
the theoretical predictions (see S4 of the Supplemental
Material [39]).
For case (ii), we study the scaling laws

m → −
iffiffiffi
2

p βR; χ → −
i

3
ffiffiffi
2

p
�
β3R3 þ 3

2
βR

�
;

Gðt2; t1Þ → R2

�
1

2
β2 − iβΔt − ðΔtÞ2

�
þ 1; ð10Þ

which have not been discussed in classical systems [9,36].
The critical exponents for the power-law dependence on
β−1 are −1, −3, and −2. The two-time correlation function
scales as Gðt2; t1Þ ∝ ðΔtÞ2 in the limit of Δt → ∞. If Δt is
replaced by an imaginary-time interval −iΔβ, Gðt2; t1Þ
becomes equivalent to the spatial correlation function
GclðxÞ of the classical system with the distance x ¼ Δβ.
The power-law scaling GclðxÞ ∝ x−2Δ ∝ x−ðdcl−2þηÞ with a
negative scaling dimension Δ ¼ −1 is consistent with

FIG. 2. Yang-Lee scaling laws of physical quantities for a
finite-temperature quantum system in the PT -unbroken phase in
the limit ϕ → π=4 − 0 after β−1 → 0. (a) Imaginary part of m as a
function of Δϕ. (b) Imaginary part of χ as a function of
δϕ ¼ ðΔϕþ Δϕ0Þ=2, where Δϕ ¼ ð10; 30; 50; 100;…; 350Þ ×
10−6 and Δϕ0 ¼ ð30; 50; 100; 150;…; 400Þ × 10−6. Dependen-
cies of real (c) and imaginary (d) parts of Gðt2; t1Þ on Δϕ.
Experimental data are shown as open squares and theoretical
predictions are represented by solid curves. We choose R ¼ 0.05,
β ¼ 105, andΔt ¼ 3000. Dashed curves in (a) and (b) correspond
to the results fitted by different power laws. Error bars indicate the
statistical deviation, obtained by Monte Carlo simulations under
the assumption of Poissonian photon-counting statistics. Some
error bars are smaller than the size of the symbols.

PHYSICAL REVIEW LETTERS 132, 176601 (2024)

176601-3



the critical scaling in the corresponding one-dimensional
(dcl ¼ 1) classical system with anomalous dimension
η ¼ −1 [9]. To test this unconventional scaling laws, we
choose R ¼ 0.05, ϕ ¼ π=4–10−6 (ϕ0 ¼ π=4–10−2), and
Δt ¼ 0.1. By fitting the power exponents with m ∼ ðβ−1Þr,
χ ∼ aðβ−1Þr0 þ bðβ−1Þr, we obtain r ∼ −0.890 � 0.011
and r0 ∼ −3.171� 0.062, which agree with theoretical pre-
dictions −1 and −3 in Eq. (10). As illustrated in Fig. 3(c),
by fitting the data with Gðt2; t1Þ ∼ ðβ−1Þr00 , we obtain the
experimental result r00 ∼ −2.160� 0.021,which is consistent
with the theoretical prediction −2 in Eq. (10).
We also show the Δt dependence of hσzðt2Þσzðt1ÞiZ

with β ¼ 104 in Fig. 3(d), which is equivalent to the depen-
dence of Gðt2; t1Þ because Z and m are independent
of Δt [see Eq. (8)]. The power exponent is fitted by
hσzðt2Þσzðt1ÞiZ ∼ ðΔtÞs, and the obtained result is
s¼ 1 − η ∼ 2.187� 0.089, which is consistent with the
theoretical prediction Gðt2; t1Þ ∼ ðΔtÞ2.
Phase diagram and partition function.—In the PT -

broken phase (jϕj > π=4), m, χ and Gðt2; t1Þ diverge
periodically in the limit ϕ → π=4þ 0 after β−1 → 0
[36]. The corresponding experimental data are shown in
Sec. S4 of Supplemental Material [39]. The condition for
divergence is

βR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos 2ϕj

p
¼

�
nþ 1

2

�
π; ð11Þ

where n is an integer, which corresponds to the condition
for zeros of the partition function

Z ¼ 2 cos
�
βR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos 2ϕj

p �
; ð12Þ

i.e., the Yang-Lee zeros. These zeros appear only in the
region defined by

β−1 ≤
2

π
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j cos 2ϕj

p
; ð13Þ

in the PT -broken phase.
We measure the partition function Z on the β−1 − ϕ plane

with R ¼ 0.01π, n ¼ 0, n ¼ 1, and n ¼ 10 in Eq. (11) for
14 different values of ϕ. As illustrated in Fig. 4(a), the
Yang-Lee zeros appear only in the region of Eq. (13) in the
PT -broken phase. Figure 4(b) shows that Z takes large
positive values in the PT -unbroken phase and drops
precipitously in the PT -broken phase. Figure 4(c) shows
that Z oscillates with −Δϕ in the PT -broken phase. Since
the nodes of the oscillations correspond to Yang-Lee zeros,
the oscillation period gives the distance between Yang-Lee
zeros. Here, the observed value of the oscillation period

FIG. 3. Temperature dependences of anomalous scaling laws
and Δt dependence of Reðhσzðt2Þσzðt1ÞiZÞ in the limit of β−1 →
0 after ϕ → π=4 − 0. Imaginary part of m (a) and that of χ (b) as
functions of β−1. (c) Real part of Gðt2; t1Þ as a function of β−1.
(d) Real part of hσzðt2Þσzðt1ÞiZ as a function of Δt. We choose
R ¼ 0.05, ϕ ¼ π=4–10−6 (ϕ0 ¼ π=4–10−2), Δt ¼ 0.1 in (a), (b),
and (c), and R ¼ 0.05, ϕ ¼ π=4–10−6, β ¼ 104 in (d).

FIG. 4. (a) Phase diagram of the Yang-Lee quantum critical
system. Experimental values of Z on the β−1 − ϕ plane. The
critical point is located at ϕ ¼ π=4 and β−1 ¼ 0. The Yang-Lee
zeros appear in the PT -broken (ϕ > π=4) phase (gray region)
given by Eq. (13). In the PT -unbroken phase, a crossover
between Yang-Lee scaling laws and unconventional scaling laws
occurs around the region indicated by the blue-dashed curve. The
experimental data are obtained with n ¼ 0, n ¼ 1, n ¼ 10 from
top to bottom, where n is given in Eq. (11), and the color indicates
the value of Z. (b) Z as a function of ϕ for n ¼ 10, n ¼ 1, and
n ¼ 0. We choose R ¼ 0.01π for (a)–(b). For (c)–(d) we choose
R ¼ 0.05 and β ¼ 103. (c) Z versus −Δϕ. The region colored in
light blue shows the PT -broken regime, and the inset is an
enlarged view of the regime. (d) Density of zeros 1=ðϕnþ1 − ϕnÞ
for n ¼ 0; 1; 2;…; 9 from left to right. The horizontal axis is
taken as ðϕn þ ϕnþ1Þ=2, which is measured from the critical
point ϕ ¼ π=4.
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0.03 is consistent with the naive expectation value π=100,
which is derived from Eq. (11) with the values of β ¼ 103

and R ¼ 0.05. Thus, we observe the Yang-Lee zeros
experimentally and demonstrate that the Yang-Lee edge
singularity manifests itself as the distribution of zeros of Z.
Density of zeros.—For the (0þ 1)-dimensional quantum

Yang-Lee model in Eq. (1), the zero points fϕngn of Z are
determined from Eq. (11). The distribution of zeros
becomes dense if the limit βR → ∞ is taken. Calculating
the density of zeros gðϕÞ ≔ P

n δðϕ − ϕnÞ, we find a
power-law behavior

gðϕÞ ∝ ð−ΔϕÞσ ð14Þ

with σ ¼ −1=2 near the critical point ϕ ¼ π=4, consistent
with the critical exponent σ ¼ 1=δ ¼ −1=2 in the classical
Yang-Lee edge singularity [3,9]. Figure 4(d) shows the
experimental results of the density of zeros 1=ðϕnþ1 − ϕnÞ
for n ¼ 0; 1; 2: � � � ; 9 for R ¼ 0.05 and β ¼ 103, where the
horizontal axis is measured from the critical point ϕ ¼ π=4.
Our experimental results agree well with the analytic
expression of gðϕÞ ¼ ðβR=πÞðsin 2ϕ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij cos 2ϕjp Þ (see S1
of the Supplemental Material [39]). Via the density dis-
tribution of zeros experimentally observed for 10 different
n’s, we have achieved the direct observation of the Yang-
Lee edge singularity.
Conclusion.—We have experimentally demonstrated the

Yang-Lee singularity in a non-Hermitian quantum system
with PT symmetry. Specifically, we have observed both
anomalous scaling laws consistent with the classical Yang-
Lee singularity and unconventional scaling laws that have
not been discussed in classical systems. In particular, we
directly observed the partition function in our experiment,
which gives a decisive advantage in the study of Yang-Lee
zeros and related topics. Our work presents the first
experimental demonstration of the Yang-Lee quantum
criticality in open quantum systems. We expect that the
nonunitary critical phenomena in open quantum systems
for higher-dimensional systems can also be probed (see S8
of the Supplemental Material [39]).
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