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The ν ¼ 1
2
þ 1

2
quantum Hall bilayer has been previsously modeled using Chern-Simons-RPA-Eliashberg

(CSRPAE) theory to describe pairing between the two layers. However, these approaches are troubled by a
number of divergences and ambiguities. By using a “modified” RPA approximation to account for mass
renormalization, we can work in a limit where the cyclotron frequency is taken to infinity, effectively
projecting to a single Landau level. This, surprisingly, controls the important divergences and removes
ambiguities found in prior attempts at CSRPAE. Examining BCS pairing of composite fermions we find
that the angular momentum channel l ¼ þ1 dominates for all distances d between layers and at all
frequency scales. Examining BCS pairing of composite fermion electrons in one layer with composite
fermion holes in the opposite layer, we find the l ¼ 0 pairing channel dominates for all d and all
frequencies. The strength of the pairing in these two different descriptions of the same phase of matter is
found to be almost identical. This agrees well with our understanding that these are two different but dual
descriptions of the same phase of matter.
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Quantum Hall bilayers have been a subject of intense
investigation since the first experiments on these systems
almost thirty years ago (see Refs. [1–3] for reviews).
Conceptually, these are simple systems: a pair of parallel
two-dimensional electron gases separated by a distance d
placed in a magnetic field at low temperature. Nonetheless,
they show a vast variety of fascinating phenomena. Perhaps
the problem that has attracted the most interest in this field
has been the case of the balanced bilayer with Landau level
filling fraction ν ¼ 1

2
þ 1

2
. In the limit of small distance d

between the layers (compared to the magnetic length lB)
the system forms an exciton condensate [1] (alternately
called a quantum Hall ferromagnet [4] or the Halperin
“111” state [5]). In this state one can think of each electron
in one layer being bound to a correlation hole in the
opposite layer, hence forming an exciton. In contrast, in the
limit of large d=lB the system can be considered as two
independent ν ¼ 1

2
quantum Hall systems, which are known

to be composite Fermi liquids [6–8].
The composite Fermi liquid may be described either with

a Jain wave function approach [8], by attaching two Jastrow
factors to the position of each electron, or in a Chern-
Simons field theory [6,7,9] approach, where a singular
gauge transformation is made to attach two infinitely thin
flux tubes to each fermion. One can also consider the state

as being described by a Fermi liquid of composite fermion
holes. That is, one thinks of the holes in a filled Landau
level as being the fundamental degrees of freedom, and
attaches flux quanta (or Jastrow factors) to these holes. For
clarity if we mean composite fermion holes we will
abbreviate them as CH, whereas when we mean conven-
tional composite fermions, where flux quanta, or Jastrow
factors, are attached to the original electron coordinate, we
will abbreviate this as CE. The distinction between the CE
and CH Fermi liquids, two states that are related to each
other by particle-hole conjugation within a single Landau
level, is discussed in some detail by Refs. [10,11]. While
the CE and CH trial wave functions do not precisely
preserve particle-hole symmetry of the half-filled Landau
level, which is expected of the ground state in the absence
of Landau level mixing in the clean limit, they are
numerically exceedingly close to particle-hole symmetric:
for 10,11,12 electrons on a torus, the overlap of the CE
wave function state [11,12] with its particle-hole conjugate
(the CH wave function) is above 97%.
The CE and CH approaches to the half-filled Landau

level are supplemented by the Dirac composite fermion
approach [13], which explicitly preserves particle-hole
symmetry of the half-filled Landau level. Neglecting this
minor distinction that the Dirac approach precisely respects
particle-hole symmetry whereas the CE and CH approaches
only approximately respect this symmetry, all three
approaches (CE, CH, and Dirac) are believed to correctly
represent the universal long wavelength physics of the
composite Fermi liquid [14–16].
Returning now to the ν ¼ 1

2
þ 1

2
bilayer, although the two

limits of large and small distance d between the layers have
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been quite well understood for some time, the question that
has occupied the community for years [1,3,4,17–51] is
what happens for intermediate d=lB. Only recently a clear
picture has finally emerged as to the physics of this regime.
Based partially on the Dirac composite fermion picture
[13], Sodemann et al. [40] proposed that the two CE Fermi
liquids, when weakly interacting with each other, should
BCS pair in the l ¼ þ1 angular momentum channel (chiral
pwave), and they further proposed that this phase of matter
is continuously connected to the exciton condensate at
d ¼ 0. The idea of BCS pairing of CEs in such bilayers was
not new [19,36,37,50,52], but it was not previously clear
that the BCS paired state of CEs could be the same phase of
matter as the exciton condensate.
Inspired by new experiments in bilayers built from

graphene [17,18], an alternative picture was recently
constructed. In this picture one imagines condensing
BCS pairs made from a CE in one layer bound to a CH
of the other layer in the l ¼ 0 angular momentum channel
(s wave). This then gives an apparently different picture of
a paired state. What is emphasized in Ref. [17] (See the
supplementary material of that Ref.) is that in this picture,
in the limit of tightly bound pairs, projection to the lowest
Landau level gives precisely the exciton condensate, or
Halperin 111 state.
To test these two pictures of interlayer pairing, Wagner

et al. [62] (see also Ref. [63]) constructed Jain style [8] trial
wave functions for BCS paired states both for l ¼ þ1 CE-
CE pairing and for l ¼ 0 CE-CH pairing. (These construc-
tions were both based on earlier work of Möller, Simon, and
Rezayi [36].) Both approaches were found to be extremely
accurate for all values of d when compared with exact
diagonalizations on small systems (square overlaps ≳0.97
for system sizes of 6þ 6 electrons on a sphere where the
symmetry-reduced Hilbert space is 252 dimensional), and
the two approaches were essentially indistinguishable in
howwell they performed.We conclude that both approaches
are describing the same physics—although the mapping
between the two approaches is nontrivial.
To try to access the thermodynamic limit, and in order to

gain more physical intuition, one can attempt to address the
pairing between the two layers analytically. Very early in
the history of the field, Bonesteel, Macdonald, and Nayak
[19] described the CEs in each layer using the Halperin-
Lee-Read (HLR) Chern-Simons field theory [6]. The
bosonic “glue” that pairs the fermions together between
the two layers is the Chern-Simons RPA screened Coulomb
interaction. Reference [19] then used Eliashberg theory to
evaluate the pairing instability, the result of which we
call Chern-Simons RPA Eliashberg theory (CSRPAE).
Although such calculations are plagued with divergences,
these authors were nonetheless able to argue that the system
would be unstable to pairing at any finite d, although at the
level of this calculation all angular momentum channels of
pairing are degenerate.

A more detailed version of this CSRPAE calculation was
attempted much later by Isobe and Fu [64] (other versions
were attempted by Refs. [50,65]). To control infra-red
diveregences, Isobe and Fu introduced a wave vector cutoff
qc which is taken to be a very small fraction of the Fermi
momentum. There are two coupling constants that are
calculated in this Eliashberg theory: λZðωmÞ, the prefactor
of the nonanomalous electron self-energy, which in this
calculation diverges as 1=qc at any (fermion) Matsubara
frequency ωm and is independent of the pairing channel,

and λðlÞϕ ðωmÞ, the prefactor of the anomalous self-energy,
which in this calculation diverges as logðqcÞ at any nonzero
Matsubara frequency and depends on the pairing channel l.
(There are additional, but integrable, divergences as ωm
goes to zero, which do not need to be regularized). Despite
these divergences, it was found that the difference between

the coupling constants λðlÞϕ ðωmÞ in different pairing chan-
nels l is nondivergent, so that the arbitrary cutoff need not
be implemented when comparing different channels to each
other, thus suggesting that the arbitrary cutoff may not be
problematic. In particular, the claim of Isobe and Fu was
that the pairing angular momemtum channel l ¼ þ1 is

always favored, i.e., λðlÞϕ ðωmÞ is always most negative for
l ¼ þ1. This pairing channel agreed with earlier trial wave
function work of Möller, Simon, Rezayi [36] as well as
with the more recent predictions of Sodemann et al. [40].
However, upon repeating this calculation we found that

while l ¼ þ1 often minimizes λðlÞϕ , it can sometimes
(depending on ωm and d) be minimized instead with
l ≠ þ1 (see examples of this in the Supplemental
Material [53], Sec. I), making it hard to draw conclusions
confidently as to which pairing channel is actually favored.
Recently the Isobe-Fu calculation [64] was generalized

by Rüegg, Chaudhary, and Slager [66] to consider the
alternative picture of CEs in one layer and CHs in the other
layer. Again, within CSRPAE theory, the leading divergent
terms are independent of the pairing channel and one
relies on a cutoff to regularize the calculation, although
differences in pairing strength are nondivergent and allows
comparison between different pairings. The calculation
found that the l ¼ 0 pairing channel for CE-CH pairing
is favored, in agreement with the trial wave functions of
Ref. [62]. In addition, the authors claimed that the CE-CH
pairing is stronger than the CE-CE pairing. This latter point
is a somewhat curious result when compared to the trial
wave function results of Wagner et al. [62], where both trial
wave functions seem equivalently good. In fact, the
comparison made by Rüegg, Chaudhary, and Slager [66]
between CE-CE pairing and CE-CH pairing leaves much
unclear because the two approaches have different diver-
gent terms, so comparison of the coupling strengths
depends on how these divergences are regularized (see
Supplemental Material [53], Secs. II and IV). While it is
always the case that CE-CH pairing is favored compared to
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CE-CE pairing, i.e., λðl¼0Þ;CE-CH
ϕ ðωmÞ ≤ λðl¼þ1Þ;CE-CE

ϕ ðωmÞ,
depending on the cutoff and ωm this inequality may either
be greatly unequal or may be very close to an equality.
The above-mentioned Chern-Simons Eliashberg calcu-

lations [19,64,66] are excellent starting points for further
analytic work which we shall pursue here. These prior
calculations, however, have a number of clear shortcom-
ings: (i) As mentioned above, the CSRPAE calculations
with CE-CE pairing are somewhat ambiguous in which the
pairing channel is actually favored (Supplemental Material
[53], Sec. I). (ii) The introduction of an arbitrary infrared
cutoff is somewhat unsatisfying and gives room to doubt
that the results are reliable. (iii) The fact that CE-CE and
CE-CH pairing have different divergences makes it im-
possible to compare these two calculations in a cutoff-
independent way (Supplemental Material [53] Secs. II and
IV. (iv) The CSRPAE calculations are based on RPA
evaluation of a propagator and RPA is known to have a
number of problems—in particular, RPA does not correctly
put the low energy physics on the interaction scale and the
high energy physics on the cyclotron scale [6,67]. (v) In
making comparison of the CSRPAE approach with the
successful trial wave functions of Wagner et al. [62] one
may also worry that the wave functions are strictly in the
lowest Landau level, whereas Chern-Simons RPA theory is
not. As detailed in Supplemental Material [53] Sec. VI, this
is particularly concerning in the case of CH calculations
where one cannot even use “hole” coordinates as the
fundamental degrees of freedom unless the system has a
finite Hilbert space dimension, such as when the system is
projected to a single Landau level.
The purpose of this Letter is to repair the many problems

of these previous works and for the first time obtain
unambiguous results. This Letter will report our main
findings with the calculational details relegated to the
Supplemental Material [53]. Surprisingly, a single new
physical ingredient added to the prior calculations can, to a
large extent, address all of the above listed shortcomings. In
this Letter we extend the CSRPAE calculations to use a so-
called modified RPA (MRPA) approach developed by
Simon and Halperin [67], rather than the pure RPA. This
scheme, based on Landau Fermi liquid theory, puts the low
energy physics on the interaction scale while pushing the
cyclotron mode up to the correct frequency so that Kohn’s
theorem and the f-sum rule are properly satisfied. Setting
the cyclotron energy ωc ¼ eB=mb to infinity (i.e., taking
the limit of the electron bare band mass mb going to zero)
then should remove any physics of this high energy scale
from the problem. While this is not strictly equivalent to
lowest Landau level projection, presumably much of the
same physics is included.
We now briefly describe the calculation. More details

are given in the Supplemental Material [53]. The
MRPA scheme [9,67] accounts for mass renormalization
via Landau Fermi theory. The polarization bubble for

noninteracting fermions in zero effective field is calculated
with an effective mass m� which is set by the interaction
scale. To preserve sum rules (stemming from Galilean
invariance) we must include a Landau Fermi liquid inter-
action which amounts to an additional current-current
interaction term Aj · j with A ¼ ðmb −m�Þ=ðne2Þ with n
the electron density and e the electron charge and j the
current density. This current-current interaction term is then
treated in RPA along with the Chern-Simons gauge
interaction and the Coulomb interaction. The remainder
of the Chern-Simons Eliashberg calculation follows that
of Refs. [64,66] and is detailed in Supplemental Material
[53] Sec. III. Using MRPA rather than RPA in CSRPAE
theory we thus abbreviate as CSMRPAE. If we setm� ¼ mb
in CSMRPAE we recover the CSRPAE results of
Refs. [64,66].
We now consider CSMRPAE in the limit of mb going to

zero. This limit is meant to represent projection to a single
Landau level, although as mentioned in Supplemental
Material, Sec. VI, once one makes any sort of mean field
approximation, some of the detailed structure of the lowest
Landau level is lost, such as its particle-hole symmetry.
Remarkably, in this limit we find that the divergences in

coupling constants λZðωmÞ and λðlÞϕ ðωmÞ vanish propor-
tional to mn

b with n ≥ 1 for any value of ωm such that 0 <
ωm < OðωcÞ (see Supplemental Material [53] Secs. IVand
V) for both CE-CE pairing and for CE-CH pairing. By
taking the mb → 0 limit, we push ωc to infinity, removing
all divergences at any finite frequency, and thus remove the
need for an ad hoc qc cutoff.
In this limit, we find that for CE-CE pairing l ¼ þ1 is

now unambiguously the strongest pairing channel for all
values of d and ωm (see Fig. 1 and Supplemental Material
[53] Sec. VII), and for CE-CH pairing l ¼ 0 remains
unambiguously the strongest pairing channel (see Fig. 1
and Supplemental Material [53] Sec. VIII). Further, without
the divergences and cutoff dependencies we can now
meaningfully compare CE-CE l ¼ þ1 pairing with CE-
CH l ¼ 0 pairing. To very high precision (roughly 1%
level) we find that the CE-CE pairing and the CE-CH
pairing are equivalently strong (see Fig. 1, inset). We also
analyze this comparison analytically in Supplemental
Material [53] Secs. VIII A–VIII C. The equivalence
between the CE-CE and CE-CH pairing is rather surprising
given that two very different integrals need to give almost
precisely the same result. We show further (Supplemental
Material [53] Sec. VIII D) what small modification of our
MRPA approximation would make them exactly equal.
We note in passing that, as pointed out in Ref. [62] (see

the supplementary material of that Ref.) both CE-CE and
CE-CH pairing are equally able to remain paired in the
presence of density imbalance between the layers, so
long as the total filling remains νT ¼ 1, in agreement with
experiment [68,69]. We reiterate this argument in
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Supplemental Material [53] Sec. IX. Imbalance will be
studied in more depth in a forthcoming work.
To further demonstrate the usefulness of our approach,

we now examine a number of extensions. First, we can
consider other filling fractions, see Supplemental Material
[53] Sec. VII B. The ν ¼ 1=4þ 3=4 case and the ν ¼
1=6þ 5=6 cases described in the CE-CH picture are
unambiguously found to be in the l ¼ 0 pairing channel.
At ν ¼ 1=4þ 1=4 in the CE-CE picture we find that the
l ¼ 1 channel is unambiguously favored. However, at
ν ¼ 1=6þ 1=6, in the CE-CE picture l ¼ 0 pairing is
favored at low frequency (compared to the Fermi energy),
but l ¼ 1 is (only very slightly) favored at higher frequency.
While this leaves a slight ambiguity in the result, it strongly
suggests that l ¼ 0 pairing is realized (this ambiguity was
also seen by Ref. [64], although l ¼ 1 is more strongly
favored at high frequency in that case making the results
more ambiguous). This suggests that 1=6þ 1=6 would be
interesting to examine further either in numerics or experi-
ment. Such CE-CE l ¼ 0 pairing would have zero quan-
tized Hall drag at zero temperature [70–72] as compared to
all of the other states considered here which have h=e2

quantized Hall drag resistance.
We can further examine whether changing the

inter-electron interaction might change our results, see

Supplemental Material [53] Sec. VII A. Assuming that
we start with two composite Fermi liquids before we turn
on the interlayer interaction, we find that the favored
pairing channel is remarkably insensitive to the details
of the interelectron interaction within our CSMRPAE
approximation. We have examined (i) VðqÞ ∼ 1=ðqþ q0Þ
which models interaction in the presence of nearby metal
screening layers, (ii) VðqÞ ∼ e−q

2w2

=q which models the
effects of finite well width, (iii) longer-ranged potentials
VðqÞ ∼ q−2þη with η∈ ð0; 1Þ, (iv) Gaussian potentials
VðqÞ ∼ expð−q2w2Þ, and (v) inclusion of Landau level
form factors VðqÞ ∼ ½Lnðq2l2

B=2Þ�2=q with L the Laguerre
polynomials. We use the same form for inter- and intralayer
interaction, although we reduce the strength of the inter-
layer compared to intralayer (see Supplemental Material
[53] Sec. VII A for the full range of parameters that have
been examined). For ν ¼ 1=2þ 1=2 in all cases, we find
l ¼ 1 favored for CE-CE pairing and l ¼ 0 favored for CE-
CH pairing with the two descriptions being very close to
degenerate. This strongly suggests that very similar physics
should occur in a wide range of two dimensional electron
systems independent of details.
Finally, we turn to examine the robustness of our results

to deformations of the spatial metric. Such deformations are
of particular interest [73–79] because some physical two-
dimensional electron systems have anisotropic effective
mass. Even with isotropic effective mass, tilted magentic
field can make the single-particle orbitals anisotropic. The
simplest case to study is that of a Gaussian inter-electron
interaction [case (iv) above]. As pointed out by Ref. [74],
for a system projected to the lowest Landau level, the
Gaussian interaction allows one to make a unitary trans-
formation that implements an area preserving diffeomor-
phism without changing the spectrum—thus implying
complete robustness against geometric deformation. We
discuss geometric deformation further in Supplemental
Material [53] Sec. IX C, where we argue that the pairing
symmetry remains the same if one examines the system in
rescaled coordinates, and we conjecture that the gap will
always be robust to such deformation.
To conclude, we believe our approach of looking at the

mb → 0 limit of CSMRPAE has satisfactorily tamed the
divergences and ambiguities of CSRPAE theory which
have been problematic for several decades. Our main
results for ν ¼ 1=2þ 1=2 are: for CE-CE pairing the
l ¼ þ1 pairing channel is unambiguously the strongest,
and for CE-CH pairing the l ¼ 0 pairing channel is
unambiguously the strongest. To very high precision we
also find that these two cases pair with the same strength in
agreement with the results of prior trial wave function
calculations [62]. This is rather satisfying since we believe
that the two types of pairing are simply different descrip-
tions of the same physics. In fact, it is perhaps a bit surpri-
sing that our two approximate approaches are so closely
equivalent given that we have not enforced any sort of

FIG. 1. The Eliashberg anomalous coupling constant λlϕðωmÞ
calculated using CSMRPAE for interlayer spacing d=lB ¼ 1. The
coupling constant is shown for different pairing channels l and
for both composite-fermion-electron-composite-fermion-electron
pairing (CE-CE) and for composite-fermion-electron-composite-
fermion-hole pairing (CE-CH). We see that CE-CH pairing with
l ¼ 0 and CE-CE pairing with l ¼ 1 are most attractive (most
negative) and are very nearly equal to each other (the two lowest
curves almost precisely overlap). The inset shows an enlargement
of the difference between the two lowest curves (l ¼ 0, CE-CH
pairing and l ¼ 0 CE-CE pairing). The difference is a factor of
order 100 smaller than the difference to other pairing channels.
Other values of d=lB, and larger range of ωm are shown in the
Supplemental Material [53] Sec. VII.
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symmetry between the two. One might think that this near
equivalence is a result of particle-hole symmetry (which
itself has been broken by the Chern-Simons calculational
approach even in themb → 0 limit). However, even given a
perfect particle-hole symmetry, it is not obvious that binding
CEs to CEs should be precisely equivalent to binding CEs to
CHs. This should be interpreted as a nontrivial duality
which is surprisingly accurately respected by the
CSMRPAE approach. It is an open question whether the
two apparently different types of pairing might look more
equivalent within the Dirac CF theory, where particle-hole
symmetry is manifest at least within each layer. We com-
ment, however, that the system does not need to have
particle-hole symmetry in order for the CSMRPAE to pre-
dict the (very near) degeneracy between CE-CE l ¼ þ1
pairing and CE-CH l ¼ 0 pairing. See Supplemental
Material [53] Sec. X for further elaboration of these issues.
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