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A description of long-lived photodoped states in Mott insulators is challenging, as it needs to address
exponentially separated timescales. We demonstrate how properties of such states can be computed using
numerically exact steady state techniques, in particular, the quantum Monte Carlo algorithm, by using a
time-local ansatz for the distribution function with separate Fermi functions for the electron and hole
quasiparticles. The simulations show that the Mott gap remains robust to large photodoping, and the
photodoped state has hole and electron quasiparticles with strongly renormalized properties.
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Introduction.—Short light pulses provide intriguing
avenues to manipulate material properties on ultrafast
timescales [1–3]. Mott insulators are particularly interesting
in this regard [4], because a zoo of complex orders can
emerge from a perturbed Mott phase. A versatile route
toward the generation of nonthermal phases involves
photodoping, i.e., the creation of charge carriers such as
doublons (doubly occupied sites) and holes in a single-
orbital Mott insulator. With increasing gap, carrier recom-
bination becomes exponentially slow [5–7], so that dou-
blon and hole densities are approximately conserved over
extended periods. Energy dissipation into the spin and
phonon background eventually yields a cold state akin to
electron-hole liquids in semiconductors [8]. Such cold
photodoped phases in correlated electron systems may
undergo metal insulator transitions and band reconstruction
[9–14] and potentially even manifest superconducting
instabilities [15–18].
Dynamical mean field theory (DMFT) [19] and its

extensions [20,21] are a powerful approach to study
Mott materials. The main challenge in extending these
methods to the time domain is the solution of a quantum
impurity model. Real-time nonequilibrium DMFT simu-
lations [22,23] based on numerically exact quantum
Monte Carlo (QMC) [24–26] or matrix-product states
[27,28] have been limited to short times, hindering the
study of cold photodoped states. Presently, state-of-the-art
methods to study photodoped Mott insulators are pertur-
bative variants of the strong-coupling expansion [29–31],
notably the noncrossing approximation (NCA), which
unfortunately is least reliable in the most relevant metallic

regime. For example, in equilibrium, NCA simulations are
known to overestimate the Mott gap. This raises skepticism
regarding predictions concerning photodoped phases,
which hinge on the assumption that the Mott gap is
resilient to photodoping. Conversely, significant advance
has been made with nonperturbative techniques aimed at
the nonequilibrium steady state, through the auxiliary
master equation formalism (AMEA) [32] and, more
recently, the steady state variant [33] of the inchworm
QMC algorithm [34], a high-order stochastic evaluation of
the self-consistent strong-coupling expansion.
In this Letter, we aim to use such potentially numerically

exact steady state solvers to investigate slowly evolving
(quasisteady) photodoped states. Previously, quasisteady
photodoped states have been modeled as an equilibrium
state of an approximate large-U Hamiltonian which exactly
conserves the doublon and hole densities [17] and, follow-
ing ideas introduced in [35], by maintaining the nearly
conserved doublon and hole densities by external charge
reservoirs [36,37]. Here we introduce an approach that is
not restricted to large U and does not alter the system by
additional reservoirs. As in quantum kinetic equations
[38,39], we take the distribution function Fðω; tÞ to be a
dynamical variable. The nonperturbative steady state solv-
ers mentioned above can be used to solve the many-body
problem with any given distribution function FsteadyðωÞ.
The equilibrium state is a special case where fluctuation-
dissipation relations guarantee that FsteadyðωÞ is equal to the
Fermi function fðωÞ. One can therefore introduce a time-
local-F ansatz (TLFA), taking the steady state solution with
Fðω; tÞ ¼ FsteadyðωÞ as an approximate description of the

PHYSICAL REVIEW LETTERS 132, 176501 (2024)

0031-9007=24=132(17)=176501(6) 176501-1 © 2024 American Physical Society

https://orcid.org/0000-0002-8494-4396
https://orcid.org/0000-0002-4907-8074
https://orcid.org/0000-0002-3230-459X
https://orcid.org/0000-0002-1347-3080
https://orcid.org/0000-0002-6082-1260
https://orcid.org/0000-0001-7404-4055
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.132.176501&domain=pdf&date_stamp=2024-04-23
https://doi.org/10.1103/PhysRevLett.132.176501
https://doi.org/10.1103/PhysRevLett.132.176501
https://doi.org/10.1103/PhysRevLett.132.176501
https://doi.org/10.1103/PhysRevLett.132.176501


slowly evolving state around time t. Below, we validate the
accuracy of the TLFA through real-time simulations and
use the ansatz to simulate complex photodoped phases with
nonperturbative techniques.
Model.—We consider the one-band Hubbard model at

half filling, with Hamiltonian

H ¼ −t̃0
X
σhi;ji

c†σicσj þ U
X
i

ni↑ni↓ −
U
2

X
σi

niσ: ð1Þ

Here, cð†Þσi are electronic annihilation (creation) operators at
site i and spin σ, niσ ¼ c†σicσi, U is the Coulomb repulsion,
and t̃0 is the hopping amplitude between nearest-neighbor
sites hi; ji. We solve this system by means of nonequili-
brium DMFT [22] on the Bethe lattice with coordination
number z → ∞ and hopping t̃0 ¼ t0=

ffiffiffi
z

p
. We use a hopping

t0 ¼
ffiffiffi
2

p
(bandwidth 8) and ℏ ¼ 1, i.e., all energies are

measured in t0=
ffiffiffi
2

p
and times are measured in units offfiffiffi

2
p

=t0. To describe the energy dissipation, we include
an external bosonic bath via a phonon self-energy
Σphðt; t0Þ ¼ g2Gðt; t0ÞDbathðt; t0Þ, with coupling strength
g2 ¼ 0.5 and a linear density of states DbathðωÞ ¼
ðω=ω2

cÞe−ðω=ωcÞ [40,41]. The cutoff ωc ¼ 0.2 ≪ U is
chosen such that only kinetic energy relaxation of doublons
and holes is possible, while direct recombination via
phonon emission is not.
TLFA.—For validating the TLFA, we solve the model in

Eq. (1) in real time in a setting similar to Ref. [42], using
DMFTþ NCA within the NESSi simulation package [43].
We start from the Mott phase (U ¼ 8) at a high initial
temperature Ti ¼ 2 and monitor the evolution as energy is
dissipated to the bosonic bath at lower temperature
Tbath ¼ 1=12.5. Such a temperature quench is convenient
to initiate the dynamics with a given density of doublons
and holes, but an analogous long-time dynamics is
expected if the initial state population is generated by a
short pulse [42]. The doublon-hole recombination after the
quench is evident in Fig. 1(a) through the slow decay of the
double occupancy dðtÞ ¼ hn↑ðtÞn↓ðtÞi. The kinetic energy
KðtÞ shows a much faster initial drop, which reflects the
initial intraband relaxation process due to the phonon bath
and a slower increase associated to doublon-holon recom-
bination. This temporal separation is more pronounced for
larger gaps [44].
To analyze spectral and distribution functions, we per-

form a partial Fourier transformation (Wigner transform)
of the real-time Green’s functions GR;<ðω; tÞ ¼ R

dseiωs

GR;<ðtþ s=2; t − s=2Þ at average time t, using a fixed
window jsj ≤ 150 for the relative time s. The spectral
function and distribution function are then given by
Aðω;tÞ¼−1

π ImfGRðω;tÞg andFðω;tÞ¼−1
2
ImfG<ðω;tÞg=

ImfGRðω;tÞg, respectively. The spectral function [Fig. 1(b)]
starts from twoHubbard bandswith a partially filled gap due
to the high initial temperature. As the kinetic energy of the

doublons relaxes within a few tens of inverse hoppings, the
occupied density of states A<ðω; tÞ≡ Fðω; tÞAðω; tÞ con-
centrates at the lower band edge of the upper Hubbard band.
At the same time, two peaks emerge in the spectrum at the
edges of the Mott gap, which indicate the simultaneous
presence of doublon and hole quasiparticles [18,40,42].
Correspondingly, the distribution function develops two
separate quasiparticle chemical potentials for the hole and
doublon charge carriers [Fig. 1(c)]. These spectral character-
istics slowly relax back to equilibrium as doublons and holes
recombine.
To implement the TLFA, we extract the function Fðω; tÞ

at a particular time t and determine a nonequilibrium
steady state solution with distribution function FsteadyðωÞ ¼
Fðω; tÞ. In practice, we solve the DMFT impurity model
with a time-translationally invariant hybridization function
whose spectral (retarded) component ΔRðωÞ is determined
through the DMFT self-consistency, while the lesser
component is determined by the given distribution function
FsteadyðωÞ, i.e., Δ<ðωÞ ¼ − 1

2
FsteadyðωÞImΔRðωÞ. The

resulting spectral functions ATLFAðωÞ are shown by dashed
lines in Fig. 1(b). They almost perfectly reproduce the real-
time spectra, i.e., the distribution function Fðω; tÞ charac-
terizes the system at time t, without further dependence on
the history.
Nonequilibrium steady state spectral functions in the

photodoped system.—The above validation motivates us to
use the TLFA to obtain the spectral function of photodoped

(a)

(b)

(c)

FIG. 1. Time evolution of the photoexcited state, initially
prepared at Ti ¼ 2.0. (a) Expectation value of the double
occupancy dðtÞ (left axis) an kinetic energy KðtÞ (right axis).
(b) Spectral function Aðω; tÞ (solid line) and occupied density of
states A<ðω; tÞ (shaded area) for different representative times.
(c) Distribution function Fðω; tÞ at different times. Dashed lines
in (b) show the spectra obtained from the TLFA, with the
corresponding distribution function taken from (c).
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systems using the numerically exact steady state inchworm
QMC algorithm. Figure 1(c) suggests to adopt an ansatz for
the distribution function, which interpolates between
Fermi functions fðω ∓ μex; TÞ with generalized chemical
potentials �μex for the electronlike (ω > 0) and holelike
(ω < 0) side, respectively. More precisely, FT;μexðωÞ ¼
ΘαðωÞfðωþ μex; TÞ þ ½1 − ΘαðωÞ�fðω − μex; TÞ, with a
smooth step function ΘαðωÞ ¼ 0.5ð1 − tanhðωα=2ÞÞ.
This ansatz also well describes the distribution function
observed in earlier simulations [36,42]. The interpolation
affects FT;μexðωÞ only within the gap, so that results are
largely independent of the parameter α [44]; below we
choose α ¼ β. We then fix a given photodoping density,

nexðT; μexÞ ¼ −
1

π

Z
∞

0

dωFT;μexðωÞImfΔRðωÞg; ð2Þ

by adapting μex. At half filling, spectra and quasiparticle
properties are symmetric with respect to hole and doublon
excitations.
The inchworm QMC algorithm computes the time-

translationally invariant Green’s functions GR;<ðt − t0Þ
from the real-time hybridization function ΔR;<ðt − t0Þ.
In each DMFT iteration, we transform GRðt − t0Þ to ob-
tain GRðωÞ, determine the self-consistent ΔRðωÞ, set
Δ<ðωÞ ¼ − 1

2
ImΔRðωÞFT;μexðωÞ, where μex is determined

to match condition (2) for a given nex, obtain ΔRðtÞ and
Δ<ðtÞ from the inverse Fourier transform, and perform the
Monte Carlo evaluation of G. For details of the inchworm
QMC implementation, we refer to [33]. The convergence of
the inchworm QMC data with the DMFT iteration and with
the diagrammatic order is analyzed in the Supplementary
Material [44]. We note that the DMFT iteration based on
the TLFA is easier to converge compared to a conventional
steady state setup, where the solution depends on external
reservoirs [36,37]. In the latter case, both ΔRðωÞ and
Δ<ðωÞ would be determined from independent self-
consistency conditions, and the additional Monte Carlo
noise in Δ<ðωÞ slows convergence.
In Fig. 2(a), we compare the spectral function AðωÞ

obtained for NCA and the numerically exact inchworm
QMC. The main characteristics of the cold photodoped
state, which is the simultaneous hole and electron quasi-
particle peak, is thereby validated by the numerically exact
data. From the spectra we can extract the gap Δg, see
Fig. 2(c). Here, NCA overestimates the gap Δg in the
photodoped state, consistent with its behavior in equilib-
rium [45]. Suppressing higher-order diagrams essentially
increases the effective interaction strength and leads to a
larger gap. Nevertheless, one finds that the gap remains
robust at large photodoping nex even in the numerically
exact solution, which is an important finding supporting the
stability of photodoped orders.
We also compute NCA and inchworm QMC spectra for a

photodoping close to population inversion, see Fig. 3(a).

Also in this extreme case, the inchworm code validates the
photodoped state and shows characteristic quasiparticle
peaks at the outer edges of the Hubbard band as well as a
superposition of two separate Fermi functions in the
distribution function FðωÞ in Fig. 3(b). This supports the
stability of states with large photodoping, which have
also been observed in DMFTþ NCA simulations of the
Hubbard model using other doping protocols [15,46].
The TLFA can also be evaluated with the AMEA, which

approximates the impurity problem with hybridization
function ΔRðωÞ and Δ<ðωÞ in terms of a finite open
system described by Nb bath orbitals with additional
Lindblad dissipators. For a detailed description of the bath
fitting procedure, see Refs. [47,48]. Relatively inexpensive
simulations are possible with up to Nb ¼ 8 sites within a
configuration interaction expansion [49]. While one can see
in Fig. 2(b) that these data are not yet converged as a
function of Nb, the difference between Nb ¼ 6 and 8 sites
indicates the correct trend. Even simulations with only
Nb ¼ 6 sites provide a significant improvement over the

(a)

(b)

(c)

FIG. 2. (a) Comparison of the spectral function AðωÞ for given
nex, obtained by inchworm QMC (solid lines) and by NCA
(transparent lines), at temperature TΔ ¼ 1=12.5. (b) Comparison
as in (a) with AMEA spectra using six (dashed gray line) and
eight bath sites (solid gray line), for nex ¼ 0.06. (c) The Mott gap
Δg for all three approaches. The gap is defined by the spectral
weight reaching 0.057, which is half of the maximum of the
equilibrium spectrum. For a visualization of the inchworm QMC
error, the mean of five inchworm DMFT iterations is plotted
together with the standard deviation (shaded region).
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NCA simulation regarding the size of the gap and accu-
rately capture the high-energy behavior of the spectra.
For the results presented here, we used an universal

ansatz for FsteadyðωÞ, whose form is motivated by previous
real-time simulations. An interesting question is if one can
validate that this ansatz corresponds to an actual long-lived
state. To answer this question, one could compute the time
evolution of this state using quantum Boltzmann equations
(QBEs) [38]. The latter can be formulated as an evolution
equation ∂tFðω; tÞ ¼ I½Fðω; tÞ� for F, where the scattering
integral I½F� is determined in terms of the self-energy
ΣTLFA½F� obtained from a TLFA. An infinitely long-lived
state would correspond to a case in which the distribution
functions of all quantities (G, Δ, Σ) coincide, and the
dynamics within the QBE is driven by the difference in
distribution functions. While solving the QBE with AMEA
or inchwormQMC is beyond the scope of the present work,
a useful quantity to analyze is therefore the difference
between FΔ and F, which is obtained from the computed
Green’s function.
In Fig. 4(a), we show an example of the distribution F.

To quantify how it differs from FΔ, we extract a tempera-
ture TG from linear fits of the form −ðω − μex;GÞ=TG to the
function logfFðωÞ=ð1 − FðωÞÞg in the vicinity of the
quasiparticle peak. Figure 4(b) shows that TG is consis-
tently larger than TΔ. The difference is larger in the
inchworm results (but still comparable in magnitude),
which is expected as the smaller gap would imply a faster
dynamics, so that the state found by the TLFA has a shorter
lifetime and eventually thermalizes.
Conclusion.—Optically excited Mott insulators exhibit

slowly evolving quasisteady photodoped states that are
challenging to describe theoretically. In this Letter, we
have demonstrated how properties of these long-lived

photodoped states can be accessed with numerically exact
techniques, by using a time-local ansatz for the electronic
distribution function. We have validated the consistency of
this ansatz upon comparison with real-time simulations in a
quenched Hubbard model. Employing a universal form of
the distribution function, we directly calculate photodoped
Mott spectra for various photoexcitation levels using steady
state NCA, inchworm QMC, and AMEA, providing a
direct comparison of the methods and novel insights about
the validity and reliability of the approximations made in
the NCA method. The resulting photodoped spectra can be
converged in a wide range of doping densities, and the Mott
gap remains robust up to large photodopings for all of the
methods. While NCA overestimates the gap, AMEA shows
a trend toward the direction of the numerically exact
inchworm QMC method. Inchworm QMC is highly accu-
rate at all energies and produces sharp quasiparticle peaks
as well as a clean gap. In comparison, AMEA is computa-
tionally much less expensive, while providing reasonably
accurate values for the gap size, peak positions, and high-
energy behavior. However, it introduces a spurious broad-
ening that makes the gap and the peaks less sharp. These
findings indicate that nonequilibrium steady state formal-
isms can be used to directly access quasistable photodoped
states in Mott insulators, allowing a numerically exact
exploration of photodoping at previously inaccessible
experimentally relevant timescales. Furthermore, by inte-
grating the steady state ansatz with QBE schemes, they
open up new avenues for characterizing the slow dynamics

(a)

(b)

FIG. 3. (a) Spectral function AðωÞ at nex ¼ 0.45, obtained with
inchworm QMC (solid lines) and NCA (transparent lines), at
temperature TΔ ¼ 1=12.5. The colored areas denote the occupied
spectrum A<ðωÞ. (b) Comparison of the inchworm QMC (solid
lines) and NCA (transparent lines) distribution function FðωÞ at
nex ¼ 0.45 and temperature TΔ ¼ 1=12.5. The mean of five
inchworm DMFT iterations is plotted together with the standard
deviation (shaded region).

(a)

(b)

FIG. 4. (a) Distribution function FðωÞ at nex ¼ 0.06, obtained
with inchworm QMC (solid lines) and NCA (transparent lines), at
temperature TΔ ¼ 1=12.5. (b) Effective temperature TG;NCA=TΔ
(left axis) and TG;inch=TΔ (right axis) of the quasiparticle
excitations using the two methods in relation to TΔ. For a
visualization of the Monte Carlo error, the mean of five inchworm
DMFT iterations is plotted together with the standard deviation
(shaded region).
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of Mott insulators. This approach has the potential to
extend into time scales far beyond the capabilities of
existing real-time simulations.
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