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Ab initio calculation of dielectric response with high-accuracy electronic structure methods is a long-
standing problem, for which mean-field approaches are widely used and electron correlations are mostly
treated via approximated functionals. Here we employ a neural network wave function ansatz combined
with quantum Monte Carlo method to incorporate correlations into polarization calculations. On a variety
of systems, including isolated atoms, one-dimensional chains, two-dimensional slabs, and three-
dimensional cubes, the calculated results outperform conventional density functional theory and are
consistent with the most accurate calculations and experimental data. Furthermore, we have studied the out-
of-plane dielectric constant of bilayer graphene using our method and reestablished its thickness
dependence. Overall, this approach provides a powerful tool to accurately describe electron correlation

in the modern theory of polarization.
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Electric polarization plays a crucial role in electromag-
netic phenomena such as ferro- and piezoelectricity.
Despite its significance, a proper microscopic definition
of polarization was only formulated in the 1990s [1,2],
which revealed the hidden relation between physical
polarization and the Berry phase of solid systems. This
theoretical advance leads to successful calculations of the
dielectric response of solid materials from first principles
[3-5], which is critical in several fields of condensed matter
physics, such as the ferroelectric and topological materials
[6]. However, the underlying electronic structure methods
are mostly mean-field approaches, such as density func-
tional theory (DFT) [7], which has its limitation because
the result depends heavily on the so-called exchange-
correlation functional. Exchange-correlation functionals
cannot fully account for the exact correlation effects of
electrons. In particular, widely used semilocal functionals
often produce an excessive overestimate of electric sus-
ceptibility [5,8]. Although correlated wave function meth-
ods, such as coupled-cluster theory, can also be employed
to calculate polarization [9], their high computational
complexity hinders their application in solid systems.
Furthermore, most of these correlated electronic structure
methods are limited in open boundary condition (OBC) for
polarization calculations, which leads to slow convergence
and heavy computational costs toward the thermodynamic
limit (TDL); see Fig. 1 for a summary of the state-of-the-art
methods in polarization calculations.

In addition to the conventional deterministic electronic
structure methods mentioned above, quantum Monte Carlo
(QMC) methods are also widely adopted for electronic
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structure calculations, showing favorable computational
scaling and high accuracy [10-12]. Pioneering works to
study electric susceptibility using QMC methods have been
reported [13,14], in which a traditional Slater-Jastrow-type
wave function is combined with diffusion Monte Carlo
(DMC) method to study polarization of hydrogen chains in
periodic boundary condition (PBC). The main difficulty for
DMC method is to write down the local self-consistent
Hamiltonian under a finite electric field and run calcula-
tions iteratively. Despite the promising results on hydrogen
chains [13], there are still grand challenges: multiple loops
of DMC simulation are needed for the self-consistent
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FIG. 1. A brief illustration of the computational cost and

accuracy of different electronic structure methods in polarization
calculations. N denotes the number of electrons in the system.
High-level correlated wave function methods are not shown in the
PBC panel because they have not been applied to PBC polari-
zation calculations so far. MP2, second-order Mgller-Plesset
perturbation theory; CCSD, coupled cluster with single and
double excitations; FCI, full configuration interaction.
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procedure, a complex forward walking strategy is required
for evaluating the polarization, and the quality of trial wave
function affects the accuracy of DMC method. Therefore, it
is desirable to develop more accurate and efficient appro-
aches to calculate the electric polarization of solid systems.

In recent years, there has been significant progress in the
application of neural networks in the electronic structure
community. Neural network wave function ansatz com-
bined with QMC simulations has demonstrated higher
accuracy with lower computational complexity [O(N*)]
than conventional high-order wave function methods [15—
33]. The expressiveness of neural networks overcomes the
main bottleneck of traditional wave function ansatz in
QMC method, making the approach a competitive option
for state-of-the-art electronic structure calculation. So far,
the neural network QMC calculations have shown great
power in treating spin systems [15—17], molecules [18-21],
periodic models [25-28], and real solids [28,29].

In this Letter, we extend the neural network QMC calcu-
lation to the electric polarization of solid systems. Specifi-
cally, we employ a recently developed solid neural network,
dubbed DeepSolid (DS) [28], in conjunction with variational
Monte Carlo methods. Antithetic sampling [34] is employed
for efficient computation of the Berry phase and thus the
electric polarization. We test our approach on a diverse range
of systems, including isolated atoms, one-dimensional chains,
two-dimensional slabs, three-dimensional cubes, and bilayer
graphene. The results demonstrate the accuracy of our
approach over traditional methods.

To introduce our methodology, let us consider a crystal
system under a finite electric field E; the enthalpy of this
system is formulated below [3,4,13,35],

(w|Hsly)

Fvl= (wlw)

—QgE - Ply]. (1)

where H g denotes the supercell Hamiltonian in the absence
of electric field E, and Qg is the supercell volume. The term
—QE - P represents the interaction between electric polari-
zation density P and electric field. However, a proper
microscopic definition of P[y| remained absent for decades
since the ordinary position operator T violates the periodic
boundary condition. This problem was finally solved after
recognizing the polarization as the Berry phase in the
Brillouin zone, according to which the polarization can be
extracted from a general wave function y as follows [36]:
(w|Uilw)
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U, = exp [ibi : <Zr - ZZ,R,H . (2)

where a;, b; denote lattice and reciprocal lattice vectors of
the supercell. U ; serves as a periodic generalization of the

position operator  in solid systems and Im In(x) is used to
extract the Berry phase within x. Note that U, is an intrinsic
many-body operator that includes all the electron coordi-
nates in the exponent. A charge-weighted sum of ion
coordinates Z;R; is also included to achieve translation
invariance of polarization.

With the enthalpy functional formulated above, tradi-
tional methods usually start with a Hartree-Fock (HF)
ansatz, which is typically expressed as follows:

wie(r) = Detle® T (r,)]. 3)
Electrons are treated independent of each other with a
mean-field interaction in Eq. (3), simplifying quantum
many-body problems, but also deviating from the ground
truth. To fully treat the electron correlation effects, we
employ a correlated neural network wave function
from DeepSolid [28], whose general form reads
Wne(r) = Detle® (k1)) (4)
where ry; denotes all the electron coordinates except r;.
Equation (4) resembles the form of the traditional Bloch
function, while cell-periodic functions u, are now repre-
sented using deep neural networks that rely on all electrons
to accommodate electron correlations [19]. Electron fea-
tures r; are converted to be periodic and permutation
equivariant before being fed into neural networks, and
complex-valued orbitals u are constructed with a pair of
neural networks outputting the real and imaginary part,
respectively. As a result, Fermionic antisymmetry, perio-
dicity, and complex-valued nature are all encoded in our
network, promoting it to be a legitimate and expressive
ansatz for solids. See Ref. [28] for more details of the
architecture.

Using the neural network we have constructed, the
enthalpy functional outlined in Eq. (1) can be efficiently
minimized through variational Monte Carlo method,
allowing for gradual convergence to the ground truth.
However, the polarization estimator in Eq. (2) has a large
variance, and a direct evaluation will seriously impede
optimization. As a solution, antithetic sampling is
employed in the Monte Carlo evaluation, which reads

) < Lot _ oo
00 =L = o
0,(6) = 5 U,.<r)+"|”<< Ui )

Thus, the fluctuations are significantly reduced through the
cancellation between U, (r) and its inverted image U;(—r).
A more detailed discussion of the polarization estimator in
QMC method is included in Supplemental Material [37]. It
is worth noting that centrosymmetric cells are assumed in
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TABLE L

Calculated atom polarizability in atomic units (bohr®). B3LYP, HF, and CCSD(T) results are calculated with PySCF [44] in

the def2-qzvppd basis set and nonrelativistic limit. Parameters and training curves of DeepSolid are presented in Supplemental Material,
Sec. V [37]. Recommended data are taken from Ref. [45], which is deduced from experiment data and the most accurate calculations.

H He Li Be N Ne MAE
B3LYP 5.187 1.485 142.727 43.090 7.711 2.838 4.669
HF 4.484 1.318 169.231 45.441 7.138 2.365 2.243
CCSD(T) 4.484 1.372 165.803 37.707 7212 2.642 0.326
DS 4511(1) 1.3903(3) 165.0(1) 36.95(2) 7.16(1) 2.672(4) 0.32
Recommended 4.5(exact) 1.38375(2) 164.1125(5) 37.74(3) 7.4(2) 2.66110(3) 0

Eq. (5), and one can choose other images for cancellation if
central symmetry is not satisfied. To further improve
efficiency, we have employed a Kronecker-factored curva-
ture estimator optimizer [38], which effectively integrates
second-order information into the optimization process,
surpassing traditional optimizers. See Supplemental
Material [37] for more computational details, including
recommended hyperparameters.

Isolated atoms are the first systems selected for direct
comparison with the most accurate methods and exper-
imental data. In our calculations, we place a single atom in
a large enough box to eliminate periodic image interactions
and the electric field is tuned small enough to ignore high-
order contributions [39—42]. The calculated polarizability «
is shown in Table I, which measures the linear response of
the dipole moment to the applied field and has some subtle
relation with the bulk susceptibility y (Supplemental
Material, Sec. III [37]). Results from DFT with the
Becke’s gradient-corrected hybrid exchange-correlation
density functional, HF, and CCSD(T) under OBC are also
listed for comparison. P-state atoms (B, C, O, F) are
skipped because their anisotropy requires special treat-
ments [43]. As can be seen from Table I, although B3LYP
is a widely trusted functional belonging to the fourth rung
of the so-called Jacob’s ladder of DFT, it consistently
deviates from the ground truth and has a relatively large
mean absolute error (MAE). The behavior of DFT is due to
the inaccuracy in treating the exchange-correlation effects,
which can be very different for energy and polarization
calculations. In HF calculations, because of the explicit
treatment of nonlocal exchange, deviations in polarization
are significantly reduced. CCSD(T) is the coupled-cluster
theory with single, double, and perturbative triple excita-
tions and is considered a very accurate method in the
literature. It further incorporates correlation effects on top
of HF wave functions and achieves smaller MAE than HF
results. Overall, DeepSolid results are comparable with
CCSD(T), showing that the exchange-correlation treat-
ments in our neural network are accurate and reliable for
polarization calculations.

Having demonstrated our technique with single atoms,
we proceed to simulate periodic systems by arranging
bonded molecules into a one-dimensional chain and a two-
dimensional slab. These systems are widely known as

challenging cases for conventional DFT methods, which
would have a serious overestimation of their longitudinal
susceptibility. This problem stems from the fact that surface
charges are insensitive to the bulk charge within the system
when nonlocal interactions are absent, and this can be
solved using more accurate ab initio methods [5]. For the
one-dimensional case, hydrogen chain (nH,) and polyyne
(nC,) are studied, and the simulation size is pushed to
22 H, and 9 C,, respectively, for TDL convergence.
Correlation-consistent effective core potential is employed
for polyyne to accelerate neural network optimization and
reduce fluctuation [31,46]. The final results are plotted in
Fig. 2, which show that susceptibility calculated by
DeepSolid agrees well with correlated wave function
methods CCSD(T) and random phase approximation
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FIG. 2. Calculations of chains and slabs. (a) Illustrations of
hydrogen chain, polyyne, hydrogen slab, and the applied electric
field. (b) Hydrogen chain, (c) Polyyne, (d) Hydrogen slab
susceptibilities y. 2, denotes the volume of the primitive cell.
Parameters and training curves of DeepSolid are presented in
Supplemental Material, Secs. VI-VIII [37]. For the hydrogen
system, LDA and HF results were calculated with the 3-21G
basis set under PBC [5]. CCSD(T) calculations were performed
with the 6-311G** basis set under OBC [9]. Intra- and interpair
distances are set to 2 and 3 bohr, respectively, for the hydrogen
chain. The interchain distance is set to 4.724 bohr for the slab. For
polyyne, the alternating distance between carbon atoms is set to
1.18 and 1.4 A. LDA, HF, and RPA results were calculated with
6-31G, 3-21G, and 4-31G basis sets, respectively, under OBC
[49-51].
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(RPA). Local-density approximation (LDA) functional
deviates severely from the ground truth for one-dimen-
sional chains [9], but the use of hybrid functions such as
B3LYP leads to partial recovery of nonlocal exchange
effects and, consequently, a reduction in the overshot. HF is
much better than DFT calculations, which further proves
the importance of the nonlocal exchange effect for electric
polarization calculation in this system. As we arrange
hydrogen chains periodically to form hydrogen slabs, the
computational cost of high-level deterministic wave func-
tion methods, such as CCSD(T), grows rapidly and is soon
beyond reach. However, our approach has a lower scaling
and enables us to extend the simulation size to the 6 x 6
supercell. Additional HF calculations are performed using
the Vienna ab initio simulation package (VASP) code
[47,48], which further prove the convergence of our
simulation (Supplemental Material, Sec. VII [37]). Based
on this, we obtain the first accurate polarization calculation
for such a hydrogen slab. For the slab, the performances of
DFT and HF compared with our accurate neural network
results are similar to those observed for the chains.

To further test our method, we applied it to alkali metal
hydrides and calculated their dielectric constants, allowing
direct comparison with experimental results. These systems
have a simple structure, consisting of alternating cations
and anions, but they are of considerable research signifi-
cance due to their relevance in hydrogen storage applica-
tions [52]. The high-frequency dielectric constant €., can
be extracted through optical experiments from the follow-
ing relations:

D =¢,E =E + 4zP,
€o =1 +4my = n}, (6)

where np, denotes the corresponding refractive index. In the
visible light regime, ions are almost frozen relative to the
incident light frequency and this leads to the dominance of
electric polarization in €. It is worth noting that three-
dimensional systems are qualitatively different from chains
and slabs. Specifically, for a d-dimensional supercell with
intrinsic length L in all directions, the fluctuation of the U ;
exponent is proportional to L2, which means that the
fluctuation increases at large L for three-dimensional
systems (Supplemental Material, Sec. I [37]). To balance
the influence from finite-size error and U; fluctuations, we
only tile the conventional cell in the direction of the applied
electric field E. Moreover, the Burkatzki-Filippi-Dolg
pseudopotential [53] is used to further reduce the cost by
removing inertial core electrons [31]. The final results
reported in Fig. 3 employ a 4 x 1 x 1 supercell with a
1 x 3 x 3 twist average, which ensures convergence to the
thermodynamic limit within a small range. Extended dis-
cussions on the finite-size error and details of twist average
are presented in Supplemental Material, Sec. IX [37]. In
Fig. 3, LDA, Perdew-Burke-Ernzerhof (PBE) and HF results

6
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FIG. 3. Calculated high-frequency dielectric constant e, of

alkali metal hydrides XH. Statistical errors are negligible for the
presented data. LDA and PBE results in PBC are taken from
Ref. [55]. HF results are obtained using the VASP code. Exper-
imental data are taken from Refs. [S6-58]. Exp1 is derived from
the refractive indexes np for sodium doublet (589.29 nm) via
Eq. (6), and Exp2 is the extrapolated result toward infinite wave
length. RbH experiments are absent.

are also plotted for comparison, while more accurate
conventional wave function methods are not applicable
due to computational costs. As we can see, numerical
simulations and experiments agree that e, decreases as
the alkali metal atom becomes heavy, since €, is inversely
proportional to the cell volume in Eq. (6). However, LDA
and PBE functionals [54] tend to overestimate ¢, and the
error is largest in CsH. In contrast, our DeepSolid results
agree well with the experiment for all systems, which
manifest the capability of neural network wave functions
to capture nonlocal exchange and correlation effects.

After demonstrating the accuracy of our methods in
previous sections, we now proceed to apply our method to
bilayer graphene (BLG), an extensively studied two-
dimensional material system known for its rich electronic
properties. Despite its fundamental importance, the precise
value of the dielectric constant of BLG remains elusive and
has been an important subject of both experimental and
theoretical works [59,60]. Specifically, theoretical calcu-
lations reported were either restricted to DFT level [59] or
based on values calculated with monolayer graphene [60].
Here we use DeepSolid to directly calculate the out-of-
plane dielectric constant e of bilayer graphene. 2 x 2
supercells containing monolayer and equilibrium AA-
stacked bilayer graphene were used (see Supplemental
Material, Secs. VII X and XI [37] for details on twist
average and finite-size errors). The calculated monolayer
polarizability equals 5.7(1) bohr® and bilayer polarizability
equals 11.6(1) bohr?®, which agrees with the linear depend-
ence of polarizability on the number of layers as shown in
Ref. [59]. Based on this linear dependence and following
Ref. [61], one can derive the expression of the out-of-plane
dielectric constant as a function of the layer separation d
(see Supplemental Material, Sec. III [37]),

27aBLGN -1
ek (d) = (“T;) , (7)
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FIG. 4. Calculated effective two-dimensional dielectric con-
stant e of bilayer graphene. Statistical errors are negligible for
the presented data. (a) Bilayer graphene under electric field.
(b) Calculated €% as a function of graphene layer distance d. The
equilibrium separation of BLG is set to 3.347 A.

where § = 5.25 A? denotes the area of the primitive cell.
Using the computed polarizability alLG, we can reestablish
the relation of e, which is plotted in Fig. 4. To further
check Eq. (7), we also calculate the polarizability of bilayer
graphene at slightly larger (4 A) and smaller (3 A) layer
distances and plot the corresponding dielectric constant in
Fig. 4, and the results agree well with each other. Moreover,
there are two notable limits when varying the layer
separation d: as d decreases, two graphene layers coincide
with each other and the system becomes metallic, which
explains the diverging of e¢%; as d becomes large, BLG
polarization becomes negligible and vacuum contribution
dominates in €L which approaches unity. The thickness-
dependent dielectric constant will be valuable for further
understanding and tuning the stacked multilayer graphene
systems.

In conclusion, this work proposes an accurate method for
investigating solid polarization based on the recently
developed solid neural network wave function combined
with quantum Monte Carlo method. For a large range of
systems, the errors of our calculations are one order of
magnitude smaller than the workhorse methods such as
DFT. The absolute errors in susceptibility are on the order
of 0.1 bohr? and the relative errors are within a few percent,
whereas the uncertainty of DFT calculations may be larger
than 50%. Our approach provides a reliable solution to the
electric polarization in solids with explicit treatment of
many-body electron correlation effects. The accurate
polarization data can also be used to evaluate the perfor-
mance of newly developed DFT functionals and other
ab initio methods. In the future, with the proposed
framework, it is promising to investigate a wide range of
phenomena, including ferroelectricity, topological elec-
tronic transport, quantum Hall effect, and orbital magneti-
zation, among others, on a higher level of accuracy and
with electron correlations accounted for properly. Further-
more, this work provides more possibilities for utilizing
neural network applications in condensed matter physics,

especially when more efficient neural networks are
developed.

The code of this work is publicly available from the
open-source repository of DeepSolid [62].
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