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We present a determination of quasiparticle-phonon interaction strengths at surfaces through measure-
ments of phonon spectra with ultrahigh energy resolution. The lifetimes of low energy surface phonons on a
pristine Ru(0001) surface were determined over a wide range of temperatures and an analysis of the
temperature dependence enables us to attribute separate contributions from electron-phonon interactions,
phonon-phonon interactions, and defect-phonon interactions. Strong electron-phonon interactions are
evident at all temperatures and we show they dominate over phonon-phonon interactions below 400 K.
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Since the theory of quasiparticles was proposed by
Lev Landau in the 1930s, it has been core to condensed
matter physics, and probing interactions between quasi-
particles has been a central research topic [1]. Interactions
involving phonons are of particular interest. On the one
hand, quasiparticle-phonon interactions play a vital role in
phononics and research areas studying dissipation and
propagation of phonons, such as acoustics and heat transfer
[2–6]. On the other hand, interactions with phonons are
also deeply involved in the research fields of other quasi-
particles, such as electrons in lattices; these fields include
topological surface states [7,8], electrical transport [9],
superconductivity [10–14], magnonics [15], plasmonics
[16,17], and the study of excitons [18]. Different appro-
aches are used to study these interactions [19–22] and the
observation of phonon linewidths [23] provides a direct
measure of the interaction strength. In the case of low
energy acoustic phonons, which are of interest in determin-
ing electrical and thermal properties [3], it is particularly
challenging to measure linewidths and associated lifetimes
directly. Here, we present measurements of acoustic surface
phonon linewidths with unprecedented μeV resolution,
through which quasiparticle-phonon interaction strengths
can be determined.
We make use of the extreme surface sensitivity of

inelastic helium atom scattering (IHAS) [24,25] to observe
the surface Rayleigh mode, while achieving sufficient

energy resolution to follow changes in the linewidth using
the helium-3 spin echo method (HeSE) [26,27]. The
method has previously been used to observe low-energy
quasiparticles in reconstructed surfaces [28], and makes it
possible to determine surface phonon linewidths accurately
[29]. In principle, the use of helium as a probe gives access
to the whole of the Brillouin zone [24], enabling us to
explore phenomena beyond the reach of other high-reso-
lution methods such as Raman spectroscopy [30–49].
As a demonstration of this technique, we study the

surface phonons of ruthenium. Our experiment follows the
temperature dependence of the phonon lifetime and we
analyze the measurements assuming contributions from
phonon-phonon and electron-phonon interactions [31,33],
together with a contribution from defect scattering [50]. At
room temperature, it has been generally assumed that
scattering between phonons is the dominant energy dis-
sipation mechanism limiting phonon lifetimes [3,51–57].
However, our analysis indicates that electron-phonon
interactions are one of the dominant contributions to
phonon lifetimes, particularly at low to moderate temper-
atures. These results suggest that Ru(0001) may be of
particular interest to research areas in thermal and electrical
transport. Moreover, the results imply that HeSE can be
potentially generalized to probe systems where there are
strong interactions between phonons and quasiparticles
other than electrons and phonons, such as magnons and
plasmons [15,16].
All the data in this work are collected by the Cambridge

HeSE spectrometer in ultra high vacuum [26,58]. As
indicated in Fig. 1, in a HeSE experiment a beam of
spin-polarized 3He atoms is produced by the 3He source and
polarizer. The atoms pass through the first solenoid, scatter
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from the surface, then traverse the second solenoid and
analyzer before being detected. The nuclear spin of each
3He atom undergoes Larmor precession in the two sol-
enoids. The total precession angle is related to the velocity
change during scattering, so information about the energy
change of the 3He atoms is encoded in the nuclear spin
polarization, which is measured by the spin analyzer and
detector [26]. In experiments the spin polarizations along
two perpendicular directions are measured, which are
denoted Px and Py. The currents in the two solenoids,
I1 and I2, are varied with I1=I2 remaining fixed. Px and Py

as a function of the magnitude of the current, ðI21 þ I22Þ1=2,
can be converted to the energy spectrum of the scattered
3He beam, within which surface phonons are seen [29,59].
By rotating the sample we can change the incidence angle
θi and measure phonons at different positions in the first
Brillouin zone. Full details of the method can be found in
[27,29,59] and the Supplemental Material [60].
Figures 2(a) and 2(b) show a typical dataset of spin po-

larizations as a a function of current magnitude. Figure 2(c)
displays the energy transfer spectrum obtained from the
data, together with the analysis used to extract the line-
width. We perform our analysis in the energy domain,
which is sparse for single phonon scattering, whereas the
time domain is not [69,70]. Thus, events with different
energy transfer appear separate in the energy spectrum and
are easily separable, whereas they overlap in the time
domain, where the separation is more problematic. Note
that the experimental resolution in the optimum tilted-scan
geometry is much smaller than the linewidth, so it can be

neglected in the analysis. The line shape of the Rayleigh
phonon is taken to be a Lorentzian function [71] (dotted
line), while a quartic polynomial (shown dashed) represents
other contributions, including the longitudinal resonance
(LR) mode phonon and multiphonon scattering [72]. The
goodness of the overall fit can be verified by the value of
R2, which is over 0.995 in every fit. Furthermore, the elastic
peak is fitted to a Gaussian function. This Gaussian
function and the Lorentzian function are transformed back
into the red curves in Figs. 2(a) and 2(b), which almost
overlap the experimental data and confirm the validity of
the analysis. The slight deviation from the data is mainly
because backgrounds around the peaks are not included
when generating the curves.
The linewidth, or FWHM, of the RW phonon peak, as

indicated by the red bar in Fig. 2(c), can then be extracted
from every phonon spectrum. Figure 3 displays the phonon
linewidths as a function of surface temperature for
(a) θi ¼ 25.825° and (b) θi ¼ 28.575°. In both cases the
phonon linewidths show an initial decrease with temper-
ature before rising at higher temperatures.
Previous studies investigated the temperature depend-

ence of phonon linewidths in various systems, including
surfaces [51–55], bulk crystals [14,30,37,39,43–47,56,73–
81], 2D materials [32,34,38,82], and nanoparticles [36].
Contrary to our results, almost all of them show that
linewidths of phonons increase monotonically with temper-
ature. The only exception is a linewidth decrease with
increasing temperature observed by Chae et al. in optical
phonons of graphene [33].
Chae et al. used a model that includes the effects of both

electron-phonon and phonon-phonon interactions to
describe this phenomenon [31,33]. The phonon linewidth
is expressed as γ ¼ γel−ph þ γph−ph, where γel−ph and γph−ph
are the contributions from electron-phonon interactions and
phonon-phonon interactions, respectively. The electron-
phonon interaction can be viewed as one electron (energy
E above the chemical potential) absorbing a phonon (ℏω)
to be excited to a higher energy Eþ ℏω, or the reverse
process of phonon creation. The contribution of those
processes to the phonon linewidth is γel−ph ∝ fðEÞ −
fðEþ ℏωÞ [33,83,84], where fðEÞ¼1=½expðE=kBTÞþ1�
is the Fermi-Dirac distribution. In the work by Chae and co-
workers, optical phonons at the center of the first Brillouin
zone were measured, so the momentum change of the
electrons is close to 0. Therefore, only electrons with an
energy E ¼ −ℏω=2 relative to the symmetric Dirac point
can be excited by the phonon and reach the state with the
same momentum but with an energy of ℏω=2 above the
Dirac point [33].
Since the present work studies acoustic phonons with a

finite momentum and the electronic band structure in
Ru(0001) is not a Dirac cone, we have to consider a range
of different initial energy levels. Therefore, the contribution

FIG. 1. A top down schematic representation of the Cambridge
HeSE spectrometer. A spin-polarized supersonic 3He beam is
scattered from the Ru(0001) sample surface to probe surface
phonons. The total scattering angle is θtot ¼ 44.4°. The angle of
incidence θi can be varied to probe phonons with different
momenta and energies.
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from electron-phonon interactions to the phonon linewidth
is [33,83,84]

γel−ph ∝
Z

½fðEÞ − fðEþ ℏωÞ�ρðEÞdE; ð1Þ

where ρðEÞ is the weight function describing the proba-
bility that an electron with energy E undergoes the electron-
phonon scattering process.
Figures 3(c) and 3(d) show fðEÞ − fðEþ ℏωÞ at differ-

ent temperatures and various values of E for the two
phononic states studied in this work. It can be found that

fðEÞ − fðEþ ℏωÞ only drops strongly as a function of
temperature when 20 meV≳ E≳ −20 meV. Therefore,
ρðEÞ is much stronger within �20 meV relative to the
Fermi level, i.e., electrons close to the Fermi level are more
likely to scatter with RW phonons than other electrons. It is
this key observation which allows us to explain the
reducing linewidth at low temperatures.
To investigate the origin of the enhancement in ρðEÞ

around the Fermi level, a density functional theory (DFT)
calculation was performed to evaluate the joint density of
states of electrons (number of electronic states available to
undergo the electron-phonon scattering process), as shown

FIG. 2. (a) and (b) Raw data for the 3He nuclear spin polarizations along the x and y directions as a function of current magnitude
ðI21 þ I22Þ1=2 are shown as blue points. The solid line is the result of a model describing the results after back transforming from the
energy domain (see below). Note that the range of currents includes the complete polarization decay, which leads to the corresponding
phonon spectrum. (c) The scattered intensity as a function of energy change, ΔE, of 3He atoms, which is the domain where the analysis
is performed. The data, blue crosses, are transformed using the method described in [27]. The RW phonon is modeled with a Lorentzian
profile and the broad background is represented by a quartic polynomial. In (a) and (b), the red curves are reconverted from the elastic
peak and the RW phonon peak in (c) using the reverse method. The location of the RW mode phonon peak indicates that the energy of
the phonon ℏω is 7.4 meV. The red bar, which is the FWHM of the peak, represents the phonon linewidth, denoted γ in the text. The
elastic peak around ΔE ¼ 0 is represented as a Gaussian function. The data shown correspond to a surface temperature of 625 K, an
incident angle of θi ¼ 28.575°, and the ½11̄00� azimuth. The mean kinetic energy of the incoming 3He atoms is 8.07 meV.

PHYSICAL REVIEW LETTERS 132, 176202 (2024)

176202-3



in the Supplemental Material [60]. However, the result of
the DFT calculation does not show a strong peak in the joint
density of states, so some future work is still needed to fully
understand why the value ρðEÞ is particularly large when
E ∼ 0, or whether some other mechanism is present. To
proceed with the analysis in this work, we assume a simple
form of ρðEÞ that peaks around zero,

ρðEÞ ¼
�
1 if − ε < E < ε;

0 otherwise;
ð2Þ

where ε is a factor to be determined. More precise
determination of ρðEÞ requires further improvement on
data quality.
Besides electron-phonon interaction, phonon-phonon

interaction will also broaden phonon linewidths. In the
temperature range studied in this work, γph−ph is approx-
imately proportional to the temperature of the crystal
[79,82,85–87].
Beyond electron-phonon and phonon-phonon inter-

actions, scattering from crystal defects will also shorten
phonon lifetimes, and in turn, broaden phonon linewidths.
This contribution depends on the defect density, which is
independent of temperature in the temperature range
used in this work, but is dependent on crystal qua-
lities and the particular phononic state that is studied
[50,76,77,81,82,88]. As such, a constant term γde−ph is
added in the model. Combining all scattering mechanisms,
we arrive at

γ ¼ γel−phðε; c1; TÞ þ γph−phðc2; TÞ þ γde−phðc3Þ

¼ c1

Z
½fðEÞ − fðEþ ℏωÞ�ρðEÞdEþ c2kBT þ c3

¼ c1

Z
ε

−ε
½fðEÞ − fðEþ ℏωÞ�dEþ c2kBT þ c3; ð3Þ

where c1, c2, and c3 describe the relative strength of
electron-phonon interactions, phonon-phonon interactions,
and defect-phonon interactions. The parameters are fitted to
the data in Fig. 3(a). The values obtained are ε ¼ 13.6 meV,
c1¼0.1029, c2¼0.0014, and c3 ¼ 0.143 meV. Figure 3(b)
uses the same value of ε while c1, c2, and c3 are varied; the
results of the fit are c1 ¼ 0.0481, c2 ¼ 0.00204, and
c3 ¼ 0.253 meV. While choosing a different form for
ρðEÞ would affect the exact value of the parameters, it
would not affect the key observation that a peaked form is
needed.
The good quality of both fits in Fig. 3 supports our

analysis of the data and demonstrates the importance of
including all scattering mechanisms. At higher temper-
atures, phonon-phonon interaction and defect-phonon
interaction are the main reason for phonon linewidth
broadening. The relatively large difference in defect-
phonon scattering between Figs. 3(a) and 3(b) is due to
the difference in phononic modes and surface quality in the
two sets of experiments. At lower temperatures, electron-
phonon scattering becomes the dominant contribution to
linewidths. This suggests a direct impact in research fields
of thermal and electrical transport [4,9], where researchers
need to choose from materials with different electron-
phonon interaction strengths at various temperatures.
Similarly, this phenomenon is particularly interesting in
superconductivity, where electron-phonon interactions are
crucial, as the results show the potential of HeSE as a
new route to understand superconducting materials using
IHAS [89,90].

FIG. 3. (a) and (b) Temperature dependence of RW phonon
linewidths along the ½11̄00� azimuth: (a) θi ¼ 25.825° and the
phonon energy is ℏω ¼ 3.8 meV. (b) θi ¼ 28.575° and
ℏω ¼ 7.4 meV. Blue points represent experimental data with
the error bars being 95% confidence bounds in peak fitting
processes illustrated in Fig. 2(b). The red solid lines represent
the calculated phonon linewidth γ in Eq. (3), which can be
expressed as the sum of contributions from electron-phonon
interaction (yellow lines), phonon-phonon interaction (purple
lines), and defect-phonon interaction (green lines). (c) and
(d) fðEÞ − fðEþ ℏωÞ as a function of temperature for various
E. The values of ℏω correspond to the energies of phonons studied
in (a) and (b), respectively.
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In summary, we demonstrate that information about
quasiparticle interactions in surfaces can be obtained from
ultrahigh resolution linewidth measurements. This method
is exemplified by the study of acoustic phonons in a
Ru(0001) surface. Analysis of the experiment was per-
formed on the basis of the expected temperature depend-
ence of three phonon energy dissipation channels; namely,
electrons, phonons, and defects. The contributions have a
temperature dependence corresponding to electron-phonon
scattering dominates that from phonon-phonon scattering at
and below room temperature. Our method should be
applicable to other quasiparticle systems accessible to
HeSE, such as phasons [28]. Potential future upgrades to
further improve the HeSE energy range, resolution, and
temperature range, will help expand the scope for ultrahigh
resolution studies of quasiparticles.

The supporting data for this work are openly available
from [91].
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