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The temporal coherence of an ideal Bose gas increases as the system approaches the Bose-Einstein
condensation threshold from below, with coherence time diverging at the critical point. However,
counterexamples have been observed for condensates of photons formed in an externally pumped,
dye-filled microcavity, wherein the coherence time decreases rapidly for increasing particle number above
threshold. This Letter establishes intermode correlations as the central explanation for the experimentally
observed dramatic decrease in the coherence time beyond critical pump power.
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Coherence is a ubiquitous feature of wave mechanics
that plays an important role in various fields of science,
ranging from quantum computing [1] to electronic coher-
ence [2] and neurobiology [3]. Originally the notion of
coherence had mostly been discussed in experiments
involving light [4], but since the development of quantum
theory, spatial and temporal coherence can also be observed
in massive particles with particularly pronounced wavelike
behavior, such as Bose-Einstein condensates (BEC) [5].
While lasers are the best known sources of coherent

light [4], unlike matter waves or BECs, they primarily
operate deep in the nonequilibrium regime. However, in
recent years, photonic systems such as polaritons and
photons in a microcavity and excitons in semiconductors,
have been curated to undergo a phase transition that
spontaneously creates a spatiotemporal coherent light
similar to an atomic BEC [6–10]. While still driven
dissipative in nature, in contrast to lasers, these systems
operate in a quasiequilibrium regime and offer rich dynam-
ics and coherent phenomena [11], ranging from simulta-
neous condensation in multiple modes [12], vortexlike
structures [13], critical behavior [14], and particle corre-
lation [15,16] in photons to superfluidity [17] and topo-
logical lasing [18] in polaritons.
Our work here focuses on the temporal coherence proper-

ties of Bose-Einstein condensates of photons, formed inside
a dye-filled microcavity [7,8]. A defining characteristic of
photon BECs is that thermalization is achieved not due to
some intrinsic nonlinearity and particle interaction but rather

through incoherent interactions between the photon gas and
the dye molecules, driven by an incoherent pump [19,20].
Phase coherence in these condensates results from photon
emission from molecules [21], and experimental observa-
tions show a spontaneous transition from short-range
coherence at thermal scale to long-range coherence in the
BEC phase [22,23].
The temporal coherence time τ of light inside the cavity

is experimentally observed to grow with increasing photon
number n as the system approaches the BEC threshold from
below [22,23]. This is consistent with the well-known
Schawlow-Townes limit τ ∝ n for n ≫ 1 [24]. A micro-
scopic model of photon BEC in a single mode cavity, gives
a closed theoretical expression for τ, which indeed reduces
to the Schawlow-Townes limit for large n [25]. However,
experimental observations show that this is no longer the
case for high photon numbers beyond the transition thresh-
old [12,22]. In contrast, the temporal coherence breaks
down and the coherence time decreases dramatically as the
pump power is increased above the BEC critical point.
Based on a concurrently developed framework for photon-

photon correlations in driven-dissipative photon gases [26],
we show that intermode correlations and competition of
different photon modes for access to molecular excitations
are the primary reason for the breakdown in temporal
coherence, as experimentally observed in photon conden-
sates inside a dye-filled microcavity [12,22].
A small decrease of molecular excitations can have a

substantial impact on the photonic state inside the cavity,
such as loss of population or decondensation of individual
modes [27]. Intermode correlations, even if weak, can alter
the molecular excitation profile, and we show that this can
cause a loss of temporal coherence in the condensed mode
without affecting the mode population. This allows the
coherence time τ to decrease even when the mode pop-
ulation n is large, contradicting the Schawlow-Townes
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limit, as observed in experimental studies of temporal
coherence in photonic BECs formed inside a dye-filled
microcavity [12]. Moreover, this observation is larger than
any loss of coherence that may arise from small nonlinear
effects such as the Henry factor [28] or thermo-optical
effects [29,30].
The temporal coherence between a pair of modes p and q

of a photonic system can be characterized in terms of the
two-time correlation function [4],

cpqðt2 − t1Þ ¼ hâ†pðt2Þâqðt1Þi; ð1Þ

where âkðâ†kÞ are the annihilation (creation) operator for the
kth photon mode, which, in steady-state experiments,
depends only on the time difference t ¼ t2 − t1. The real
and imaginary terms of the function cpqðtÞ can be directly
measured in the ports of a delayed-arm optical interfer-
ometer [4]. To represent correlation functions for multiple
modes in a compact form, we can consider the vectors cp
with elements ½cp�q ¼ cpqe−iωpt. Starting from a micro-
scopic, mode-coupled model of photon condensation in a
dye-filled microcavity [13,31], it is shown in Ref. [26] that
the equation of motion for each of the correlation function
vectors cp is given by

dcpðtÞ
dt

¼ −
1

2

�
κ þAh − ðAþ EÞf�cpðtÞ; ð2Þ

whereA andE are diagonal matrices with elementsAk and
Ek, which are the rates at which photons in mode k are
absorbed and emitted by the dye molecules. The matrices h
and f have elements

hpq ¼
Z

dμðrÞψ�
pðrÞψqðrÞ; and ð3Þ

fpq ¼
Z

dμðrÞψ�
pðrÞψqðrÞfðrÞ; ð4Þ

which are defined in terms of the Hermite-Gaussian mode
functions ψpðrÞ of the cavity, the molecular density μðrÞ
and the local excitation fraction fðrÞ of the molecules, at
position r in the cavity plane. The terms hpq and fpq,
represent the total and excited number of molecules,
respectively, that can be simultaneously accessed by modes
p and q, as governed by the overlap term ψ�

pðrÞψqðrÞ.
These values depend on the experimental setup of the dye-
filled microcavity [22]. The lowest energy mode ω0

depends on the cutoff frequency, which is set by cavity
length and the mode spacing Δω by the curvature of the
mirror. The modes of the cavity are thus given by
ωk ¼ ω0 þ kΔω, and the properties of the dye govern
the rates of absorption Ak and emission Ek. The choice of
the cutoff frequency and the ensuing absorption-emission
spectra is important to create near-equilibrium conditions

that allow the photons to thermalize and condense [19,32].
The dye is incoherently excited with a pump rate Γ↑, which
introduces photons inside the cavity via spontaneous and
stimulated processes, while photons and molecules are lost
with rates κ and Γ↓, respectively. The pump has a Gaussian
profile, focused at the center of the cavity, with the
molecular density μðrÞ assumed to be uniform.
WhileψpðrÞ, μðrÞ, κ,E,A, andh remain unchanged for a

specific experimental setting, f is dependent on the excita-
tion fraction fðrÞ, which is time dependent. However, for
most experiments, the longtime, steady state of the system is
often of primary interest, and this state will be taken as the
initial state in the following discussion. Temporal changes in
the excitation of the dyemolecules are thus negligible. Now,
the steady state values of fðrÞ and the correlation function
cpð0Þ are obtained by solving the equations of motion of the
microscopic model [13,31], where the term np ¼ cppð0Þ
gives the population of mode p, and npq ¼ cpqð0Þ is the
intermode correlation between modes p and q. Importantly,
the intermode correlations arise from terms such as
ðAþEÞf, which allow for molecules at r to absorb
excitation from mode p and emit to mode q based on the
overlap of the mode functions and the excitation profile
ψ�
pðrÞψqðrÞfðrÞ [26].
Equation (2) indicates that in the absence of any dye

inside the cavity the temporal coherence of each individual
modewould simply decay on a timescale proportional to the
photon loss rate κ. The presence of the dye inside the cavity
and the ensuing absorption and emission of photons by the
dye molecules give rise to additional terms. In particular,
irrespective of the photonic state in the cavity, the absorption
of photons by themolecules leads to an additional decay due
to the term Ah, which accelerates the decay of coherence.
On the other hand, the temporal coherence in the system is
boosted by the term ðAþ EÞf, which is intuitively expected
as the coherence increases as the molecular excitations
increase and the photon gas in the cavity is driven towards
the BEC phase transition. These general observations apply
equally well to the case of single mode systems [25].
The sudden loss of temporal coherence can be seen in

Fig. 1, that depicts the coherence time τp obtained from the
solution c̃pðtÞ ¼ exp½−t=τp�c̃pð0Þ of Eq. (2) [13,31]. The
figure shows the ground state coherence time τ0 as a
function of the pump rate Γ↑, both below and above the
BEC threshold. The condensation of the ground state
(mode [0]) leads to a sharp growth of the coherence time.
Importantly, the coherence reaches its maximum around
1.18Γ↓, at the point when the population of the second
excited state (mode [2]) starts growing. A subsequent
increase in Γ↑ leads to a sharp decline in the temporal
coherence of the ground state and a decrease of τ0,
consistent with recent experimental observations [12].
A simple qualitative picture for the coherence time

emerges if the matrices h and f can be considered to be
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diagonal. This approximation works well, since Eqs. (3)
and (4) involve an integration over the density of dye
molecules; for off-diagonal elements, the integrand is
oscillatory, whereas it is non-negative for diagonal ele-
ments. The integration thus results in a cancellation of
terms with different phase for off-diagonal elements in
contrast to the accumulation of non-negative contributions
for the diagonal terms [34]. Therefore, the solutions of
Eq. (2) are expected to behave qualitatively similar to the
single-mode case, such that the two-time correlation
function reads cppðtÞ ¼ exp½−t=τp�cppð0Þ (with p ¼ 0

for the ground state), with the coherence time given by

τp ¼ 2

½κ þAphpp − ðAp þ EpÞfpp�
: ð5Þ

It is instructive to compare this to the steady state
population of the ground state

n0 ¼ c00ð0Þ ¼
E0f00 þ

P
j≠0ðEj þAjÞf0jnj0

κ þA0h00 − ðA0 þ E0Þf00
; ð6Þ

derived from the microscopic model [26] where
nj0 ¼ cj0ð0Þ, is the intermode photon correlation. Since
τp in Eq. (5) and n0 in Eq. (6) have the same denominator,
one would expect qualitatively similar behavior for the
coherence time and the ground state population.
Far below the condensation threshold the molecular

excitation at steady state is small. However, as the molecu-
lar excitation f00 increases with growing pump power, the

term ðA0 þ E0Þf00 becomes larger, thus lowering the
denominator in Eqs. (5) and (6). This leads to an increase
of both the photon population n0 and the coherence time τ0
of the ground state. The system transitions to the Bose-
Einstein condensate phase as the denominator approaches
zero, i.e., f00 is clamped to the value ðκ þAphppÞ=
ðA0 þ E0Þ, and both n0 and τ0 diverge. However, if f00
is unclamped due to mode competition and decreases even
slightly, the denominator in Eqs. (5) and (6) increases,
leading to a loss of coherence time τ0.
Figure 2 shows the clamping and unclamping of the

molecular excitation f00 through the variation of the term
ðA0 þ E0Þf00 with increasing pump power. As the ground
state (mode [0]) condenses, the term rapidly approaches its
threshold value ðκ þA0Þh00. Comparison with Fig. 1
shows that condensation occurs when f00 is clamped to
a value close to ðκ þA0Þh00=ðA0 þ E0Þ. Notably, Eq. (5)
predicts that the coherence time τ0 rises sharply in this
region. In a single-mode system, there is no mechanism that
would break this clamping, but unclamping can occur in a
multimode system. From Fig. 2, close to the value of
1.18Γ↓, the excitation profile changes suddenly, i.e., f00 is
unclamped due to mode-competition arising from the
increase in population of the second-excited state (mode
[2]), which leads to a decrease of the coherence time τ0.
An important question here is why does the ground state

population n0 not decrease along with the coherence time
τ0, when the molecular excitation f00 drops below the
threshold. The answer lies in the intermode correlations,
which acts to preserve the ground state population, as
shown in Eq. (6). In the absence of correlations between the
modes (i.e., for nj0 ¼ 0), the ground state population is
given by the contribution ne ¼ n0jnj0¼0, which is driven

FIG. 2. Variation of the term ðA0 þ E0Þf00 in Eq. (5) as a
function of the pump rate Γ↑ (solid-red line), as it converges to
ðκ þA0Þh0 (dashed-blue line). The term starts decreasing at the
condensation threshold of mode ([2]) (dotted-gray line). Impor-
tantly, this decrease is not accompanied by drop in ground state
population n0, as evident from Fig. 1. The inset closes in on the
drop of the term around the threshold. The system parameters are
the same as Fig. 1.

FIG. 1. The breakdown of temporal coherence in photon
condensates. The figure shows the ground state coherence time
τ0 as a function of the pump rate Γ↑, obtained from Eq. (2) (solid-
black line) and via Eq. (5) (black crosses). In the background, the
steady state population of the lowest six photon modes ([0,5])
inside the cavity for different pump rates is shown. The coherence
of the condensed ground state decreases at the condensation
threshold ofmode ([2]) (dotted-gray line). For the numerical study,
the cavity cutoff (the ground state) frequency is ω0 ¼ 535 THz,
with mode spacing of Δω ¼ 1.7 THz. The photon loss and
the molecule decay rate are equal to κ ≈ 0.2 THz and Γ↓ ≈
3 × 10−5 THz, respectively. The absorption and emission rates
are calculated from experimental data [33].
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purely by stimulated emission term E0f00. As such, a drop
in the molecular excitation f00 would not only result in a
decrease of E0f00, but also in an increase of the denom-
inator, κ þA0h00 − ðA0 þ E0Þf00. Hence, for nj0 ¼ 0 the
ground state population ne decreases along with the
coherence time τ0, whenever f00 is unclamped.
The situation is drastically different in the presence of

intermode correlations (nj0 ≠ 0), where any drop in steady
state population n0 due to a decrease in the contribution ne
is countered by an increase in the contribution of
nc ¼ n0jne¼0. Importantly, nc is proportional to the
mode-correlation dependent term

P
j≠0ðEj þAjÞf0jnj0

in Eq. (6). Hence, even though the competition for
excitation between the modes leads to unclamping of f00
and a decrease in ne, the correlations between the modes
contribute to nc and compensate for the loss in ground state
photons.
Figure 3 shows the behavior of the key terms in the

expression for the ground state photon population n0
[Eq. (6)]. The two main contributing terms, the correlation
independent term ne and the correlation dependent nc, are
shown in Fig. 3(a). The contribution from nc is substantially
larger than that of the correlation independent term ne. As
such, even though the term ne decreases when f00 is
unclamped, the condensed ground state mode population
n0 remains unaffected. However, the condensed mode is no
longer temporally coherent as τ0 decreases with drop in f00.
Furthermore, Fig. 3(b), also compares the ground state
population n0 with the second mode population n2 and
the intermode correlation n02. At high pump powers, the
correlationn02 satisfies the relation jn02j ≃ ffiffiffiffiffiffiffiffiffiffi

n0n2
p

. Since the
correlation matrix n is positive semidefinite, its elements
must satisfy the inequality jnpqj ≤ ffiffiffiffiffiffiffiffiffiffinpnq

p , which implies
that the correlation n02 is maximal given the mode pop-
ulations n0 and n2. Therefore, even though the off-diagonal

excitation matrix element f02 is more than an order of
magnitude smaller than the diagonal term f00 (with
jf02=f00j ≈ 10−2 − 10−4), the large value of n20 ensures that
the correlation dependent term nc in Eq. (6) is large enough
to ensure that the ground state photon number n0 remains
unchanged.
Another question is whether the condensing mode is a

superposition of several modes. Diagonalizing the corre-
lation matrix nij ¼ cijð0Þ shows that the proportion of the
photons in the ground state p0 is rather high (p0 ≥ 0.93),
compared to modes [2] (p2 ≤ 0.064) and mode [4]
(p4 ≤ 6 × 10−3), and the average population of the odd
modes are negligible. Another interesting observation in
Fig. 1 is that only the even modes ([0],[2],[4]) condense,
whereas the odd modes ([1],[3],[5]) are poorly populated.
The spatial profile of the pump is not uniform in the cavity,
but rather a Gaussian of finite width focused at the center.
As such, even modes, with mode functions that peak at the
center, have greater access to excited molecules and also
correlate more strongly with the ground state. This behavior
is nullified by moving the pump spot.
The intermode correlations also give rise to other effects.

For instance, the population n2 of the second-excited mode
increases when the ground state mode condenses, for pump
rate values between 0.2Γ↓ and 0.5Γ↓, as shown in Figs. 1
and 3(b). The explanation lies in the intermode correlation
between the ground and second excited mode, which is anti-
correlated (n20 < 0) at low pump powers. However, in this
regime the off-diagonal excitation term f20 is also negative,
which leads to a net positive contribution to thepopulation, as
shown by the absolute value ofn20 in Fig. 3(b). This rise inn2
is purely driven by the correlations, as the contribution due to
stimulated emission E2f22 remains significantly smaller.
Another interesting observation is that the temporal coher-
ence does not completely disappear at higher pumppowers in

(a) (b)

FIG. 3. The contributing terms in the ground state population, the second excited mode and the intermode correlation as a function of
rate of pumping. (a) Ground state population, n0 ¼ ne þ nc (red, solid), along with the terms arising due to stimulated emission
ne ∝ E0f00 (blue, dashed) and intermode correlation nc ∝

P
j≠0ðEj þAjÞf0jnj0 (black, dotted). (b) Population of the ground state n0

(red, solid) and the second-excited mode n2 (blue, dashed dotted), along with the absolute value of the mode correlation jn02j (black,
dashed) and

ffiffiffiffiffiffiffiffiffiffi
n0n2

p
(black, dotted). The system parameters are the same as in Fig. 1.
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Fig. 1. This is due to the fact that the number of photons
arising from stimulated emission ne does not vanish but
converges to a significant steady state value at high pump
powers, as shown in Fig. 3.
The presently used nonequilibrium model for photon

condensation [26] provides the footing to identify inter-
mode correlations as the cause for changes in molecular
excitation profile, which ultimately leads to the breakdown
of temporal coherence, thus contradicting the behavior
predicted by the Schawlow-Townes limit. The mechanism
studied here is quite general and similar effects of inter-
mode correlations could be engineered in other optical
systems, where it could lead to generation of partially
coherent light, which is a powerful resource in imaging [35]
and communications [36]. A future direction is to inves-
tigate temporal coherence during other nonequilibrium
phenomena such as decondensation, where a higher mode
forces a lower condensed mode to lose its population. In
such a regime, the simultaneous loss of temporal coherence
and decondensation in a pair of higher energy modes, could
lead to favorable changes in the molecular excitation profile
and recoherence in the ground state mode. Other avenues
include the study of quantum correlations developing
between coupled, but spatially separated modes [37],
especially in condensates with only a few photons.
These will prove useful in manipulation of quantum states
of light [38], with potential application in interferometry
and metrology.
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