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We propose a method to change the effective interaction between two fluids by modulation of their local
density distributions with external periodic potentials, whereby the mixing properties can be controlled.
This method is applied to a mixture of dilute bosonic gases, and binodal and spinodal curves emerge in the
phase diagram. Spinodal decomposition into a mixed-bubble state becomes possible, in which one of the
coexisting phases has a finite mixing ratio. A metastable mixture is also realized, which undergoes phase
separation via nucleation.
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A binary mixture becomes thermodynamically unstable
and separates into two stable phases, when a control para-
meter, such as temperature, is quenched across the critical
point. Such spontaneous phase separation of mixtures is
known as spinodal decomposition [1–4].On the other hand, if
the binary mixture is prepared in a metastable state, finite
perturbation is required for nucleation and growth to proceed
to phase separation [5–7]. Spinodal decomposition and
nucleation are the two major mechanisms responsible for
phase separation in multicomponent systems. The boundary
between the spinodal and nucleation regions in the phase
diagram is called a spinodal curve, and that between the
nucleation and stable regions is called a binodal curve. These
three regions appear when the free energy has both concave
and convex shapes as a function of the mixing ratio.
The separated and mixed fluids have different free

energies, since the energy and entropy are changed by
mixing. Here we focus on the mixing energy, which is the
energy difference between separated and mixed fluids. The
mixing energy is determined by the interaction between
constituent particles of two fluids, which is generally
difficult to control. The purpose of this Letter is to alter
the mixing energy by a simple method—modulation of the
local density distributions by external periodic potentials,
whereby mixing properties of fluids are controlled. Let us
consider a mixing energy Emix½n1ðrÞ; n2ðrÞ�, which is
dependent on the density distributions n1ðrÞ and n2ðrÞ of
components 1 and 2. If we apply external potentials that
locally modulate the density distributions, the local overlap
between n1ðrÞ and n2ðrÞ is modulated. On a scale much
larger than the modulation wavelength, the effective mixing
energy is given by the spatial average hEmix½n1ðrÞ; n2ðrÞ�ir.
Therefore, the global mixing energy can be changed, which
alters the global mixing properties.
We apply this method to a binary mixture of Bose-

Einstein condensates (BECs) of ultracold gases [8–15],
which is a clean and highly controllable system. In this
system, external periodic potentials can be easily generated

and precisely controlled using optical lattices [16], making
the system suitable for the present purpose. In a mixture of
dilute BECs, in which simple mean-field theory is appli-
cable, the mixing property for a homogeneous system is
trivial, i.e., the mixture is either stable or unstable against
phase separation, irrespective of the mixing ratio, and there
are no binodal and spinodal curves in the phase diagram
(with respect to the mixing ratio). It was recently predicted
that a beyond-mean-field effect [17] can modify the energy
curve, and an interesting separated phase (mixed-bubble
state) is possible [18,19], in which one of coexisting phases
has a finite mixing ratio. Liquid-gas coexistence in this
system was also studied recently [20–22].
Here we show that binodal and spinodal physics emerge

in a binary mixture of BECs simply by applying a compo-
nent-dependent periodic external potential, which modu-
lates themixing energy as a function of themixing ratio.As a
result, spinodal decomposition into the mixed-bubble state
becomes possiblewithout beyond-mean-field effects.More-
over, the mixture can be brought to a metastable state, in
which a finite perturbation is required to cross the energy
barrier against phase separation, which leads to nucleation
and growth toward the separated phase.
We consider a binary mixture of dilute Bose gases at zero

temperature, which can be described by the macroscopic
wave functionsΨ1 andΨ2 in the mean-field approximation.
The energy of the system can be written as [23,24]

E ¼
Z

dr

�X2
j¼1

�
−
ℏ2

2m
Ψ�

j∇2Ψj þ VjjΨjj2 þ
gjj
2
jΨjj4

�

þ g12jΨ1j2jΨ2j2
�
; ð1Þ

where m is the atomic mass. The wave function Ψjðr; tÞ
satisfies

R
drjΨjðr; tÞj2 ¼ Nj, where Nj is the number of

atoms for component j. The interaction coefficients are
defined as gjj0 ¼ 4πℏ2ajj0=m, where ajj0 is the s-wave
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scattering length between components j and j0. In the
present work, the atomic interactions are repulsive with
positive scattering lengths, gij > 0. We consider a situa-
tion in which a periodic potential VjðrÞ¼Ujcos2ðkxÞ is ap-
plied to the system, whereU1>0 andU2<0 [see Fig. 1(a)].
Such a component-dependent periodic potential can be

produced by laser beams with a selected wave number and
polarization [25–32].
For a homogeneous system without an optical lattice, the

energy density is given by ε¼ðg11n21þg22n22Þ=2þg12n1n2,
whose curvature g11g22 − g212 is constant with respect to the
uniform densities n1 and n2. Therefore, there are only two
ways to minimize ω≡ ε − μ1n1 − μ2n2, where μj are the
chemical potentials. For a positive curvature, there can be a
single minimum with nonzero n1 and n2, which corre-
sponds to the uniformly mixed state. For a negative cur-
vature and appropriate μj, ω can be simultaneously mini-
mized at the two points n1 ¼ 0 (with n2 ≠ 0) and n2 ¼ 0
(with n1 ≠ 0), which corresponds to the separated state.
Thus, the phase diagram is trivial: the ground state is either
the uniformly mixed state or the totally separated state,
which is determined only by the sign of the curvature
g11g22 − g212, and is independent of the mixing ratio N1=N2.
In the presence of component-dependent periodic external
potentials, as shown in Fig. 1(a), the density distributions
jΨ1ðrÞj2 and jΨ2ðrÞj2 are modulated [see Fig. 1(d)], and
their local overlap can be decreased. As a result, the global
mixing energy of the system is changed, and the phase
diagram will be altered.
To present this clearly, we employ a simple variational

method. The wave function is approximated as

ΨjðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj½1þ aj cosð2kxÞ�

q
; ð2Þ

where aj is the real variational parameter satisfying
jajj < 1. Substituting the variational wave function ΨjðrÞ
into the energy of the system in Eq. (1) gives

ε≡ E
N

¼
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where g11 ¼ g22 ≡ g is assumed and N ¼ N1 þ N2. In
Eq. (3), all the quantities are dimensionless (see the
Supplemental Material [33] for details). It is also assumed
that jg12 − gj ≪ g, which maintains the total density
jΨ1j2 þ jΨ2j2 to be almost uniform. In this case, n1 and
n2 can be parametrized by the composition C as n1 ¼ C
and n2 ¼ 1 − C with 0 ≤ C ≤ 1. In the following, we also
assume U1 ¼ −U2 ≡U. These assumptions are only to
reduce the number of parameters and are not crucial for the
main results obtained later.
Figures 1(b) and 1(c) show the variational energy ε as a

function of the potential strength U and composition C,
where ε has been minimized with respect to the variational
parameters aj. For a small value of U, the energy curve is
concave (curve I), since the interaction parameters satisfy
g11g22 − g212 < 0. Therefore, C ¼ 0 and 1 minimize the

(b)

(c) (d)

(a)

FIG. 1. (a) Schematic illustration of external periodic potentials
V1 ¼ U cos2ðkxÞ for component 1 and V2 ¼ −U cos2ðkxÞ for
component 2. (b) Variational energy ε in Eq. (3) as a function of
potential strength U and composition C, where variational
parameters a1 and a2 are selected to minimize ε. The curves I,
II, III, and IV correspond toU ¼ 0.9, 1, 1.1, and 1.2, respectively,
which are shown in (c) as a function of C. The density
distributions jΨ1j2 and jΨ2j2 are shown in (d), where panels
A, B, and C correspond to the points marked in (b). The
tangential line and circles on curves IV and II in (c) correspond
to the mixed-bubble state and metastable state, respectively,
which are presented in Figs. 2 and 3. The interaction parameters
are g11 ¼ g22 ≡ g ¼ 15 and g12 ¼ 15.3.

PHYSICAL REVIEW LETTERS 132, 173402 (2024)

173402-2



energy, which indicates that the mixture is energetically
unstable against phase separation. As the value of U is
increased, the energy curve is modified, and the metastable
state appears for U ¼ 1 (curve II). For U ≳ 1.1, the energy
around C ¼ 0.5 decreases and goes below those for C ¼ 0
and 1 (curves III and IV). It should be noted that such a
concave-convex shape of ε is due to the nonlinear depend-
ence of Eq. (3) on C and U through the optimization of aj
(see the Appendix for details), yielding the nontrivial
mixing properties. This effect therefore cannot be described
by the tight-binding model [37], which has been used in
previous studies on a two-component BEC in an optical
lattice [38–47].
From the energy curves in Fig. 1(c), the energetic

stability of the state against phase separation can be
understood in a diagrammatic manner [48]. Let us consider
a point on an energy curve ½C0; εðC0Þ�, and consider a
situation in which the entire system is occupied by this
state. Although this state is alternately modulated in the x
direction, as shown in Fig. 1(d), from a coarse-grained
point of view on a scale much larger than the modulation
wavelength, the two components are uniformly mixed on
average, and we refer to this state as a “globally mixed
state.” Suppose that this phase with C0 separates into two
phases with Cþð> C0Þ and C−ð< C0Þ. It can be shown that
the energy of the separated state is given by εsep ¼
½εðC−ÞðCþ − C0Þ þ εðCþÞðC0 − C−Þ�=ðCþ − C−Þ (See
the Supplemental Material [33]), which corresponds to
the intersection point between the vertical line C ¼ C0 and
the line connecting the two points ½Cþ; εðCþÞ� and
½C−; εðC−Þ�. When this energy εsep is larger (smaller) than
εðC0Þ, the globally mixed state with C0 is energetically
stable (unstable) against phase separation into two phases
with C�. Thus, within the region of ∂

2ε=∂C2 < 0, the
globally mixed state is always unstable against phase
separation. If ∂2ε=∂C2 > 0 and there exist C� such that
εsep < εðC0Þ, then the globally mixed state is metastable.
For U ¼ 1.2, the energy curve with respect to C acquires

a concave-convex shape, as shown by the curve IV in
Fig. 1(c). In this case, the globally mixed state for, e.g.,
C ¼ 0.1 is unstable against phase separation. From the
above consideration, the most stable (lowest-energy) sep-
arated pair of phases is given by the tangential line shown in
Fig. 1(c), which gives C− ¼ 0 and Cþ ≃ 0.426 (two circles
on the line). This indicates that if the globally mixed state
with C ¼ 0.1 is prepared, it separates into two phases; one
phase is occupied by only component 2 (C− ¼ 0), and the
other phase is occupied by both components (Cþ ≃ 0.426).
This separated state is referred to as a mixed-bubble state,
and was first predicted in Ref. [18], in which the concave-
convex energy curve is caused by the beyond-mean-field
effect. Here, the mixed-bubble state emerged even in a
system described by simple mean-field theory, where
the concave-convex energy curve arises from the local
modulation.

To confirm the results of the variational analysis, we
numerically solve the coupled Gross-Pitaevskii (GP)
equation,

i
∂Ψj

∂t
¼

�
−
∇2

2
þ Vj þ gjΨjj2 þ g12jΨj0 j2

�
Ψj; ð4Þ

where ðj; j0Þ ¼ ð1; 2Þ and (2,1). Note that the results in
Fig. 1 are not dependent on the dimensionality, and here we
consider a two-dimensional system. The GP equation is
integrated using the split-operator pseudospectral method
[49] with the periodic boundary condition, where the
system is discretized into a mesh with dx ¼ dy ¼ 2π=64
and the time step is typically dt ¼ 0.001.
First, we solve the imaginary-time evolution of Eq. (4) to

obtain the ground state, in which i on the left-hand side is
replaced by −1. Figure 2(a) shows the density distributions,
jΨ1j2 and jΨ2j2, of the ground state for U ¼ 1.2 and
C ¼ 0.1. As expected from the variational results, the
ground state is the mixed-bubble state, which contains a
single bubble of a mixed phase surrounded by component 2.
Equating the typical energy ∼0.1 relevant to the phase

(a)

(b)

FIG. 2. Mixed-bubble state for C ¼ 0.1, g ¼ 15, g12 ¼ 15.3,
and U ¼ 1.2, which corresponds to the energy curve IV in
Fig. 1(c). (a) Ground state obtained by solving the GP equation.
(b) Dynamics of the mixed-bubble formation. The initial state is
the ground state for g ¼ g12 ¼ 15. At t ¼ 0, g12 is suddenly
changed to 15.3. See the Supplemental Material [33] for a movie
of the dynamics. The size of each panel is ð32πÞ2.
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separation [the energy difference along the curve IV in
Fig. 1(c)] with ð2π=ξsÞ2=2, we can estimate the quasispin
healing length ξs ∼ 4π, which is consistentwith the interface
width between the two phases in Fig. 2(a). The bubble in
Fig. 2(a) is slightly elongated in the y direction, which
implies that the interfacial tension between the two phases is
anisotropic due to the periodic potential in the x direction.
Figure 2(b) shows the real-time evolution, in which the
initial state is the ground state for g ¼ g12 ¼ 15 andC ¼ 0.1
with small randomnoise. This state is a globallymixed state,
as shown in the leftmost panels of Fig. 2(b). At t ¼ 0, g12
is suddenly changed to 15.3 [the same condition as in
Fig. 2(a)], and themixed bubbles are dynamically formed by
spinodal decomposition. In the Supplemental Material [33],
collective excitation of a single bubble is also provided.
ForU ¼ 1, the energy curve acquires the shape shown in

Fig. 1(c) (curve II). Around C ¼ 0.5, the energy curve is
convex, and therefore the globally mixed state is stable
against a small change in C (jC� − C0j ≪ 1). However, the
true ground state is the totally separated phases with C ¼ 0
and C ¼ 1, and the globally mixed state with C ≃ 0.5 is a
metastable state. Figures 3(a) and 3(b) show the dynamics
that start from the metastable state with C ¼ 0.5, where a
local perturbation potential Ae−ðx2þy2Þ=2 for component 1 is
switched on at t ¼ 0 to trigger the nucleation. Figure 3(a)
shows the case of A ¼ 1; the phase separation is triggered
around the center by the perturbation potential, and the
concentric phase separation extends outward. In the case of
a smaller perturbation (A ¼ 0.05), as shown in Fig. 3(b),
the density distributions around the center are slightly
modified by the perturbation potential, which is insufficient

to trigger the phase separation. This corroborates the
existence of an energy barrier against nucleation.
Figure 4(a) depicts the stability of the globally mixed

state with respect to C and U. For the region in which the
energy curve εðCÞ is concave, ∂2ε=∂C2 < 0, the globally
mixed state is unstable against phase separation, and the
inflection points [circles in Fig. 4(b) for U ¼ 1.2] trace the
spinodal curve in Fig. 4(a). For U ≲ 0.94, εðCÞ is concave
everywhere, and there are no inflection points. The tan-
gential lines, as shown in Fig. 4(b), give the mixed-bubble
states, and a globally mixed state for C between the square
and triangle in Fig. 4(b) has higher energy than the mixed-
bubble state. Therefore, the region between the circle and
triangle is metastable. For U ≃ 1.1, the states with C ¼ 0,
C ¼ 0.5, and C ¼ 1 become degenerate [curve III in
Fig. 1(c)], and these three phases (occupied only by
component 1 or 2, or equally mixed) can coexist.
Experimentally, the phenomena presented here can be

realized by a two-component BEC with scattering lengths
that satisfy the immiscible condition a212 − a11a22 > 0.
(See the Supplemental Material [33] for an example of
an experimental system.) A boxlike potential rather than
a harmonic potential is suitable to avoid the complexity

(a) (b)

FIG. 3. Dynamics for C ¼ 0.5, g ¼ 15, g12 ¼ 15.3, and U ¼ 1.
The energy curve for these parameters is shown in Fig. 1(c)
(curve II). The initial state is the metastable state with C ¼ 0.5
(circle on curve II). At t ¼ 0, a local perturbation potential
Ae−ðx2þy2Þ=2 is added to component 1 with (a) A ¼ 1 and
(b) A ¼ 0.05. The size of each panel is ð64πÞ2 with the origin
at the center. See the Supplemental Material [33] for movies of
the dynamics.

(a)

(b)

FIG. 4. (a) Stability of the globally mixed state with respect to
the composition C and potential strength U, where g ¼ 15 and
g12 ¼ 15.3. The spinodal (binodal) curve divides the unstable
(stable) and metastable regions. The parameters used in Figs. 2
and 3 are marked by the open circles. (b) Energy curve εðCÞ for
U ¼ 1.2. The inflection points (filled circles) trace the spinodal
curve in (a). The tangent points (squares and triangles) give the
mixed-bubble states. The points marked by the triangles trace the
binodal curve in (a).
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that arises from inhomogeneous density. A quasi-two-
dimensional (or one-dimensional) system is convenient
to observe the spatial density pattern, and also to suppress
the total number of atoms; however, the dimensionality is
not crucial for the present phenomena.
In conclusion, we have proposed a method to control the

mixing properties of two fluids. The mixing energy can be
changed by modulating the densities on a small scale using
component-dependent external potentials, which alters the
global mixing properties. This method was applied to a
two-component BEC of dilute gases. Although this system
originally has a trivial mixing property, the energy curve
acquires a concave-convex shape with respect to the
composition C by the present method, and spinodal and
binodal physics emerge. As a result, the mixed-bubble state
(Fig. 2), which has only been predicted for a system with
quantum fluctuation, becomes possible within simple
mean-field theory. The modification of the energy curve
also results in a metastable state that undergoes phase
separation via nucleation due to a finite local perturbation
(Fig. 3). The present method is not restricted to quantum
fluids and may also be applied to classical immiscible
fluids, such as oil and water.

This work was supported by JSPS KAKENHI Grant
No. JP23K03276.

Appendix: The concave-convex energy curve.—To
understand the underlying physics of the concave-convex
energy curve in Fig. 1(c), we study the parameter
dependence of the modulation amplitudes a1 and a2 in
the variational function in Eq. (2). Figures 5(a) and 5(b)
show the values of a1 and a2 that minimize the
variational energy. For C ≃ 0.5, both a1 and a2 increase
to large values (negative and positive) with U, which
indicates that both components are well modulated by
the periodic potential [see panel C of Fig. 1(d)]. On the
other hand, when C ≃ 0, i.e., component 2 is dominant,
a2 remains small, as shown in Fig. 5(b), and the two
components are not strongly modulated [see panel B of
Fig. 1(d)]. This is because the total density tends to
remain uniform due to the large chemical potential; if a2
became large, the total density would be modulated at a
high energy cost, because the modulation of component
2 (major component) cannot be compensated by that of
component 1 (minor component). A similar argument
applies to a1 for C ≃ 1. As a result, ja1a2j can become
large for C ≃ 0.5 and remains small for C ≃ 0 and
C ≃ 1, as shown in Fig. 5(c). The energy valley in
Fig. 1(b) originates from the behavior of Fig. 5(c)
through the intercomponent interaction energy that
includes a1a2 [see the last term of Eq. (3)], resulting in
the convex part of the energy curve. The concave part of

the energy curve originates from the usual immiscible
interaction energy that does not include aj. Thus, the
concave-convex curve results from the competition
between these energies.
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