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We observe spin rotations caused by atomic collisions in a nonequilibrium Bose-condensed gas of 87Rb.
Reflection from a pseudomagnetic barrier creates counterflow in which forward- and backward-
propagating matter waves have partly transverse spin directions. Even though inter-atomic interaction
strengths are state independent, the indistinguishability of parallel spins leads to spin dynamics. A local
magnetodynamic model, which captures the salient features of the observed spin textures, highlights an
essential connection between four-wave mixing and collisional spin rotation. The observed phenomenon is
commonly thought not to occur in Bose condensates; our observations and model clarify the nature of these
effective-magnetic spin rotations.
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Spin dynamics in cold atomic gases exhibit rich pheno-
mena due to the interplay of particle interactions, quantum
coherence, and particle statistics. In a Bose-Einstein con-
densate (BEC) with only contact interactions, spin dynam-
ics can be induced by the spin dependence of the interaction
strengths between particles. If interspin and intraspin
interaction strengths are the same, on the other hand, there
is only one scattering length, a. When all atoms have the
same kinetic energy and experience the same trapping
potential regardless of spin, one might be tempted to
conclude that all spin components have the same energy
and therefore distribute themselves evenly following the
density profile.
Wavelike spin excitations (i.e., spin waves), however,

have long been known to arise in Fermi gases and non-
degenerate Bose gases even in the absence of spin-
dependent interactions [1–4], and have been observed in
a variety of systems [5–13]. Spin waves in dilute quantum
gases are generated by the identical-spin rotation effect
(ISRE), an effective magnetic interaction in which colliding
spins precess about their net spin [11,14,15]. Both ISRE
and the closely related Leggett-Rice effect [16] arise from
the interaction energy difference when two identical par-
ticles collide with their spins aligned or anti-aligned due to
exchange-symmetry contributions. Particle exchange
modifies the interaction energy of a gas by gρ, for particle
density ρ and spin-independent interaction strength g ¼
4πℏ2a=m. In contrast, all particles in a BEC at zero
temperature occupy the same single-particle state and so
the many-body wave function can be written as one
already-symmetrized product of single-particle wave func-
tions (i.e., Hartree form), devoid of exchange contributions
or bunching [17,18]. Combining these two statements has
led to a widespread impression in the community that spin

rotations between identical particles do not occur in a
condensate.
In this Letter, we observe spin dynamics emerging in a

BEC that is reflected from a pseudomagnetic barrier.
Counterpropagating matter waves generate a density modu-
lation that leads to spin-dependent four-wave mixing,
which we show can also be recast as an effective-magnetic
spin rotation, whether or not the system is degenerate. This
equivalence arises because a two-body interaction term
â†þk;↓â

†
−k;↑â−k;↓âþk;↑ can be seen as either the exchange of

momentum between two spins or the exchange of spin
between two momentum modes.
Here we follow the latter picture and derive a magnetic

interaction when the position is coarse-grained over a
length scale much longer than that of the density modu-
lation π=k, such that the local density can be approximated
as constant. In this case, the populations of momentum
componentsþk and −k are conserved locally. Remarkably,
it follows [19] that pseudospin-half bosons with two such
momenta experience an effective magnetic interaction
given by

˙σ⃗þkðrÞ ¼ gρ−kðrÞσ⃗−kðrÞ× σ⃗þkðrÞ;
˙σ⃗−kðrÞ ¼ gρþkðrÞσ⃗þkðrÞ× σ⃗−kðrÞ; ð1Þ

where σ⃗�kðrÞ are position-dependent Bloch vectors for the
�k modes, and ρ�kðrÞ are the average densities of each
momentum mode, summed over spin states. In this local
magnetodynamic (LMD) model, the Bloch vector of each
momentum mode rotates about the Bloch vector of the
other, with a precession frequency determined by the
counterpropagating mean field, gρ.
In condensates with counterflow, the bosonic bunching

observed in thermal systems is not present and the
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nonequilibrium system can still be expressed in Hartree
form. Nonetheless, for identical spins, there are density
fluctuations due to interference. In both cases, the particle-
particle correlations lead to increased interaction energy.
Unlike ISRE, the spin-dependent dynamics arising from
four-wave mixing persist into the mean-field limit and can
be captured by a Gross-Pitaevskii (GP) treatment. Inter-
fering particles see a higher average density because they
spend more time near the peaks of the density distribution.
By comparison, the orthogonally polarized component of
the counterflow has a spatially uniform probability density.
Hence, the interaction energy is different for the two spin
states. This difference can be on the order of the energy of
an entire condensate, since it includes contributions from
all pairs of atoms, just as in the case of fragmentation
[20,21]. The indistinguishability of particles permits both
interference and exchange effects like ISRE.
Spatially inhomogeneous dynamics of two-component

BECs has been studied in systems where component
separation is created via the trapping potential [22,23] or
induced by differences in interaction strengths [24,25].
Furthermore, component separation has been used as a
mechanism for spin squeezing via the one-axis twisting
Hamiltonian for systems with nearly equal interaction
strengths [26–29]. Yet, the effective magnetic interaction
typically ascribed to ISRE has not been directly observed in
a condensed system, even though self-rephasing, a by-
product of this interaction, has [30,31].
We study the generation of spin textures in a BEC of

87Rb atoms in the mF ¼ 0 “clock” states of the F ¼ 1 and
F ¼ 2 ground-state hyperfine manifolds, where F is the
total angular momentum. This system can be conceptual-
ized as a pseudospin-half system, where j2; 0i≡ j þ xi and
j1; 0i≡ j − xi [Figs. 1(a) and 1(b)]. Thanks to a coinci-
dence of scattering lengths in 87Rb, atom-atom interactions
can be treated as spin-independent [32]. The experimental
setup has been described in detail previously [33,34].
Typically, 3 × 103 atoms in a nearly pure condensate are
prepared in jxi with a rms velocity width reduced to
≈0.3 mm=s via delta-kick cooling. Atoms are accelerated
by a variable-duration magnetic-field gradient, and guided
by a 1054 nm optical beam to preserve quasi-1D motion
along the y axis. Typical clouds have a peak chemical
potential μ=h ¼ 50 Hz, kinetic energy Ek=h ¼ 1.7 kHz
(velocity 3.9 mm=s), and cloud length 120 μm.
As illustrated in Fig. 1(c), the atoms encounter, and

are partially reflected from, a barrier. The barrier is a
421.38 nm beam of light that has a Gaussian profile with
1=e2 radius of 1.3 μm along the y direction. It is overlapped
by a pair of resonant Raman beams which act as a
pseudomagnetic field localized to the barrier region and
pointing along the z axis of the Bloch sphere [see Fig. 1(b)].
Hence, reflection generates a counterpropagating matter
wave whose spin is rotated to an extent controlled by the
Raman Rabi frequency ΩB. These reflected atoms must

then propagate through the rest of the condensate, and
collisions occur between reflected and incident atoms.
These collisions are observed to have a significant effect,
whereas in the previously studied case of transmitted atoms
[33,34], they could be neglected. The phenomenon at the
heart of our study is the counterflow spin dynamics, in
which left-going spin rotates about right-going spin and
vice versa. Note that the Raman beams are implemented
using the same spatial mode as the barrier, through a
combination of phase modulation at the clock frequency
and attenuation of unwanted sidebands.
After the wave packet has left the barrier region, spin

tomography is performed through a combination of sequen-
tial absorption imaging of the j � xi populations and a
microwave pulse to rotate the axis of interest onto this
measurement basis [34]. Spin profiles are extracted by
computing the difference in the measured atom number in
each absorption image pixel by pixel, integrating along the
perpendicular direction, and dividing by the total reflected
atom number. We report SiðyÞ ¼

R
dx dzσiðrÞρðrÞ=Nr,

where σi is the ith component of the Bloch vector of the
cloud, and Nr is the total reflected atom number. We also
report the aggregate rotation angles: θy describes the
precession angle in the Sx − Sy plane, and θz describes
rotation out of that plane, resulting from the preferential

FIG. 1. Experimental configuration. (a) Illustration of the quasi-
1D scattering configuration for the two-component BEC.
(b) Bloch sphere representation of the magnetization of the
BEC and the pseudomagnetic field B⃗ within the barrier. (c) Spin
rotation, Sx (orange), Sy (green), and Sz (magenta), during
collision of right-going (dashed curves) and left-going (solid
curves) atomic density (black), generated in reflection from a
barrier that also acts as a magnetic field. Initially, at t ¼ t0, the
spin of the right-going wave packet is polarized along j þ xi.
Later, reflection from the barrier generates a left-going wave
packet whose spin, not parallel with that of the right-going wave,
rotates about the right-going spin (backaction on the right-going
spin is not illustrated for simplicity). After complete reflection, at
t ¼ tf, a spin texture is evident across the left-going density.
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reflection of the j þ zi spin component which experiences
an effectively higher barrier because it is parallel to the
pseudomagnetic field [35].
Figures 2(a)–2(c) show the spin profiles observed in the

reflected cloud for a BEC incident with average energy
well below the barrier height, VB. For these data, ∼95% of
atoms are reflected. Because the magnetic barrier has a
spin-dependent transmission, the reflected cloud is parti-
ally polarized along þz. In the absence of interactions, this
polarization direction would be essentially constant across
the cloud. A billiardlike picture of elastic collisions could
allow the spin to be redistributed spatially, but would
never lead to local polarization along −z. Instead, we
observe a full spin oscillation, which is a signature of
coherent spin dynamics. We compare the observed
spin texture to 1D GP, Figs. 2(d)–2(f), and 1D LMD,
Figs. 2(g)–2(i), predictions.
The two-component GP simulation uses equal interac-

tion strengths between all spin states [19,36], such that all
atoms experience the same mean-field effective potential,
Veff ¼ gρ, proportional to the total density. However, the
interaction energy can be different for the two spin
components, since it depends on the overlap of the spatial
wave function with the effective potential. This leads to
mean-field-driven spin rotations generated by the differ-
ence in interaction energy between matter waves that do
and do not interfere (i.e., parallel vs antiparallel spins).

As shown in Fig. 2, the GP simulations capture many
details of the observed spin textures. Without inter-
actions, Schrödinger equation (SE) profiles [dashed line in
Figs. 2(d)–2(f)] are smooth and positive for small ΩB.
Aside from a small effect due to position-velocity corre-
lations in our system, the SE predicts constant polarization
across the cloud, even for larger ΩB. Interactions drive a
spatially varying polarization, including sign changes in Sz
and Sy, whose positions are well captured by the GP
simulations at various ΩB.
The LMDmodel isolates the effective magnetic action of

atomic collisions from the complicated density dynamics
that occur during reflection of the cloud from the barrier.
These calculations use only the average reflected velocity
and a static density profile, and thus omit wave packet
spreading, density changes due to mean-field kinematics
during reflection, as well as velocity-position correlations
in predicting the spin texture. Reflected spins traverse the
trailing portion of the atomic cloud after reaching the
barrier position and experiencing a spin-dependent reflec-
tivity determined by the SE simulation.
As shown in Figs. 2(g)–2(i), the LMD captures the low-

ΩB (ℏΩB=2 ≪ VB − Ek) spin texture, which can be under-
stood as follows. The barrier rotation is a small angle; the
first atoms reflected rotate about the incoming j þ xi spins.
We see from the figure that this results in a sign flip in Sy
and two sign flips in Sz (compared to the SE prediction),

FIG. 2. Observed spin textures. Sx (left), Sy (middle), and Sz (right) spatial profiles for the reflected atomic cloud for various ΩB
(denoted by color). The atomic cloud, with mean incident energy of 1.67(5) kHz and rms energy width of 0.30(3) kHz, scattered from a
barrier, located at the origin, with peak energy of 2.25(9) kHz. (a)–(c) Measured spin profiles with the bands representing 1 standard
error in either direction from the average profile of the dataset. (d)–(f) Spin profiles predicted by GP simulations of the experiment. The
shaded regions are bounded by simulations including 1 standard error in the measured barrier height and velocity width. The dashed line
shows the predicted spin profile without atomic interactions for ΩB=2π ¼ 170 Hz. (g)–(i) Predictions of the LMD model at ΩB=2π ¼
170 Hz for the average reflected velocity of this dataset.
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i.e., a relative phase shift of∼π between the j þ xi and j − xi
components. This is consistent with a transit time of roughly
10 ms and μ=h ∼ 50 Hz. Since the collisions conserve the
net magnetization, the integrals of the profiles agreewith the
SE prediction in the small-ΩB limit of Fig. 2; this explains
the emergence of a spin texture with a sign flip.
Let us now consider the regime of largerΩB, wherewe can

no longer make the assumption that the difference between
the incident and reflected polarizations is small. Absent
atomic interactions, θy will continue to precess about the
pseudomagnetic field and when ℏΩB becomes comparable
to the energy deficit of the incident particles with respect to
the barrier height, θz will tend toward π=2 as the reflected
spin becomes polarized along the field direction.
Figure 3 shows θy and θz measured for variable ΩB and

two barrier heights. We observe that both angles flatten out
as a function of ΩB, in qualitative agreement with the GP
and LMD calculations. Once the reflected spin becomes

polarized along þz, trailing atoms are driven toward j þ zi
prior to reflection from the barrier [19]. Thus, above a
certain ΩB, the net spin at the end of the scattering event is
largely determined by atomic collisions rather than rotation
about the external ΩB drive. We attribute the discrepancy
between the angles at which the dynamics saturate in the
models and the experimental data to the precise details of
the atomic density during the collision with the barrier that
are not captured by the idealized 1D simulations. Note that
since the LMD calculation does not incorporate the
interactions between atoms at different velocities, it cannot
replicate the spatial spin profiles in the large-ΩB regime
where the spin-dependent reflectivity becomes more sen-
sitive to incident energy [19]. Nevertheless, the aggregate
angles agree well even at higher ΩB because they are
predominantly set by the total spin rotation atoms acquire
while traversing the atomic cloud.
Transmission, shown in Fig. 4, corroborates that spin

rotations occur prior to collision with the barrier. When
the spin of the trailing portion of the cloud is driven to-
ward j þ zi, reflection is enhanced because this state
experiences an effectively higher barrier. The SE predicts
that transmission would tend toward 50% for large ΩB be-
cause all atoms collide with the barrier in j þ xi ¼ ðj þ ziþ
j − ziÞ= ffiffiffi

2
p

. Without atomic interactions, as jθzj → π=2,
transmission flattens at 50% over a range of incident
velocities, as exhibited in the inset of Fig. 4. Instead, for
energies near the barrier height, we observe enhanced

FIG. 3. Net rotation angles of the reflected cloud. Angles of
rotation, θy (top) and θz (bottom), of the reflected atomic cloud
for incident wave packets well below the barrier height (red) and
near the barrier height (blue). The peak energies of the barriers are
2.25(9) and 1.72(7) kHz in the two cases, while the incident
energy of the cloud was 1.61(6) kHz with an rms width of
0.29(3) kHz. Markers represent the measured angles of rotation.
Color-coded bands show GP simulations of the experiment, with
the shaded regions bounded as in Fig. 2, while the dashed lines
indicate SE simulations for the average parameters. The solid
curves depict LMD calculations for the average reflected velocity
in each scenario.

FIG. 4. Effect of spin rotation on transmission. Transmission
for the data presented in Fig. 3, color coded as before. Markers
display data with statistical error bars, shaded bands illustrate GP
simulations bounded as in previous plots, and the dashed lines
depict SE simulations for the average experimental parameters.
The solid lines indicate LMD calculations averaged over the
0.29 kHz rms energy width of the incident cloud. (Inset) Trans-
mission versus velocity for instances with ΩB=2π of 0 (black),
1 (blue), and 2 kHz (orange). Dashed lines depict SE simulations,
while solid lines represent GP simulations. In the inset, the
simulated energy width is 0.18 kHz, narrower than in the
experiment to demonstrate the trends clearly.
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reflection at large ΩB in qualitative agreement with the
simulations incorporating atomic interactions.
Returning to Fig. 3, we note that θy and θz become ΩB-

insensitive at lower ΩB for the lower of the two barriers
shown. For large energy deficits below the barrier, the time
reflected atoms spend inside the barrier is expected to be
shorter than for energies closer to the barrier height and
hence for fixed ΩB the rotation angles expected to be
smaller in the former case (as indicated by the SE
predictions in Fig. 3). This is consistent with previous
observations that transmitted particles spend less time
interacting with the barrier for lower incident energies
[34]. Yet, we do not associate the observed angles with the
time reflected atoms spend in the barrier because spin
rotations occur prior to interaction with the barrier. While
conservation of angular momentum during atomic colli-
sions does preserve the net angles of the cloud, premature
rotations cause the spin direction of many atoms entering
the barrier to be unknown.
In conclusion, we observe spin dynamics in a two-

component BEC with spin-independent interactions. We
show that in a counterflow scenario, four-wave mixing
gives rise to magnetodynamics. In a mean-field picture, this
system behaves as a phase-coherent two-component fluid,
and spin rotations are caused by the interaction energy
difference between components that do and do not expe-
rience interference. This is a new example of a spin-rotation
effect for identical spins, closely related to ISRE. In both
effects, the spin degree of freedom serves as a distinguish-
ing particle label. In the case of ISRE it is the interaction
energy due to particle exchange that is present only for
identical spins, while here it is the density fluctuations due
to single-particle interference—which also occurs only for
identical spins. Their common physical origin is under-
scored by the fact that in both cases, changing either
the particle statistics, bosons↔ fermions, or the sign of the
interactions, repulsive ↔ attractive, would reverse the
direction of spin rotation [19].
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