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Dileptons produced during heavy-ion collisions represent a unique probe of the QCD phase diagram,
and convey information about the state of the strongly interacting system at the moment their preceding off-
shell photon is created. In this study, we compute thermal dilepton yields from Auþ Au collisions
performed at different beam energies, employing a (3þ 1)-dimensional dynamic framework combined
with emission rates accurate at next-to-leading order in perturbation theory and which include baryon
chemical potential dependencies. By comparing the effective temperature extracted from the thermal
dilepton invariant mass spectrum with the average temperature of the fluid, we offer a robust quantitative
validation of dileptons as an effective probe of the early quark-gluon plasma stage.
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Introduction.—To clarify the many-body properties of
quantum chromodynamics (QCD), like its emergent phases
and their boundaries, remains a chief objective in nuclear
physics [1]. Relativistic nuclear collisions as performed and
studied in terrestrial laboratories constitute the onlymeans to
explore the properties of QCD matter under extreme but
controlled conditions [2]. The data generated by these events
can then be used to informour understanding ofQCD, and to
push further the extent of our knowledge. These explorations
come with significant challenges. For one, systems gener-
ated in heavy-ion collisions are highly dynamic and short-
lived, evolving over mere yoctoseconds [3]. The trajectory
of the strongly interacting system across the QCD phase
diagram, from birth of the quark-gluon plasma (QGP) to
emergence of confined hadrons, is complex and comprises
various stages. To decipher the properties of the transient
nuclear matter, an advanced multistage framework is requi-
red, and the resulting predictions must be compared to
sophisticated many-body experimental observables [4–11].
The fact that hadrons interact strongly with the medium

makes them mostly sensitive to the late stages of the
evolution; this complicates the extraction of information
about the early stage of QGP evolution from hadronic
measurements. Electromagnetic probes are not handicapped
in the same way: Real and virtual photons get generated
continuously throughout the entire collision evolution, but
unlike hadrons, they remain unaltered by the strong inter-
actions once emitted [12–16]. This distinctive feature has
made them exceptional tools for investigating the early-
stage QGP [17–19]. Among electromagnetic probes, lepton
pairs (dileptons) resulting from the decay of virtual photons,
are especially useful as their invariant mass renders their
spectrum impervious to flow effects, unlike that of real
photons which can be altered by Doppler shifts [20–22].

Thus, dileptons are usually considered a reliable thermom-
eter for assessing the properties of the hot and dense QCD
medium [24,25], even if their emission rate is suppressed
over that of real photons by a factor of the fine structure
constant, αem. Nonetheless, it’s important to acknowledge
that dileptons are generated at various stages of the collision
fireball [18,19], wherein the temperature undergoes signifi-
cant fluctuations both in space and time. Therefore, there
remains a need to establish a clear connection between the
effective temperatures derived from dileptons and the
underlying physical properties of the medium. That con-
nection, which requires delicate modeling, is the purpose of
this Letter.
Specifically, our goal is to investigate the fidelity of

dilepton spectra as “thermometers” of the excited partonic
medium formed in nucleus-nucleus collisions at energies
of the Relativistic Heavy-Ion Collider (RHIC), from the
beam energy scan (BES) regime to the top RHIC energy:ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV. In order to compute the dilepton
yields originating from the baryon-charged QCD medium
existing at collision energies on the low side of this range,
we utilize the dilepton emission rate at next-to-leading
order (NLO) with nonzero baryon chemical potential. We
compare values of the temperature extracted from dilepton
spectra in the intermediate invariant mass region (IMR),
1 GeV ≤ M ≤ 3 GeV [26], with the “true” values occur-
ring in the (3þ 1)-dimensional dissipative hydrodynamics
that is tuned to reproduce the hadronic measurements. In so
doing, we establish a reliable connection between the
effective temperatures extracted from dileptons and the
fundamental physical properties of the QCD medium.
Thermal dilepton radiation.—The yield of emitted ther-

mal dileptons can be obtained from the time and volume
integrated rate of a QGP that has attained local thermal
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equilibrium. We let TðXÞ, μBðXÞ, and uμðXÞ describe the
local temperature, baryon chemical potential and flow
velocity of the plasma, respectively, where X ¼ ðt; xÞ is
a spacetime coordinate. Conservation of energy, momen-
tum, and baryon current dictate the hydrodynamic evolu-
tion of the system [30–32], with viscous corrections
controlled by transport coefficients [31,33], and as con-
strained by an equation of state [34].
In finite-temperature field theory, the fully differential

rate is related to the in-medium self-energy of the photon,
Πμν [35,36], which is calculated as a function of the
dilepton’s energy ω and momentum k in the local rest
frame. As such, they are spacetime dependent:

ωðXÞ ¼ KμuμðXÞ; kðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωðXÞ2 −M2

q
;

where Kμ ¼ ðM⊥ cosh y; k⊥;M⊥ sinh yÞ is the (measured)
four-momentum of the dilepton, in the lab frame, with the z
direction aligned parallel to the axis of the colliding nuclei,
M⊥ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ k2⊥
p

is the transverse mass and, y is the rapi-
dity. The yield with respect toM and y can be expressed as

dN
dMdy

¼ α2em
3π3M

�Xnf
i¼1

Q2
i

�
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�
m2

l
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×
Z

d2k⊥
Z
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μ
�
ωðXÞ; kðXÞ�

exp
�
ωðXÞ=TðXÞ� − 1

; ð1Þ

where the quark charge fractions are Qi (in units of the
electron charge), and the kinematic factor to produce the
pair of leptons is BðxÞ≡ ð1þ 2xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4x
p

if x < 1
4
, other-

wise BðxÞ≡ 0. Three light flavors are assumed, i.e.,
nf ¼ 3, implying that

P
i Q

2
i →

2
3
. And since we focus

on the IMR, the lepton masses can be set to zero (ml ¼ 0)
and B ≃ 1 in Eq. (1).
The rates can be derived from the imaginary part of the

retarded photon self-energy [36–38]. We evaluate the QCD
corrections to the dilepton emission rate in perturbation
theory and include nonzero values of the baryon chemical
potential μB [39]. For intermediate masses M, it becomes
necessary to interpolate between two regimes [40], namely,
(i) for M ≳ T and (ii) for M ≲ ffiffiffiffiffi

αs
p

T. In the former case,
strict order-by-order perturbation theory can be used, see
ΠLO and ΠNLO in Fig. 1, but this approach breaks down as
the mass M becomes “parametrically” small [41]. The
upshot is that arbitrary orders in αs are needed to describe
both screening via hard thermal loop (HTL) insertions [42],
in addition to the Landau-Pomeranchuck-Migdal (LPM)
effect [43–46]. This resummation can be performed rigor-
ously for M → 0, involving ladder diagrams as shown in
Fig. 1, but only includes an approximate form of the strict
one- and two-loop self energy [when formally reexpanded
to Oð1Þ and OðαsÞ, respectively]. Therefore, we marry
regime (i) with regime (ii) by using the full LO and NLO

expressions and only keeping the higher order parts of the
LPM result [47]. The higher order LPM corrections are
necessary to obtain a finite result when M ¼ 0, and near
this point they serve to compensate the remnant of an
unphysical log divergence in ImΠNLO forM → 0� [50–54].
Far away from the light cone, the LPM corrections are
formally not justified, but remain negligible next to the LO
and NLO parts [55–57].
With these considerations in mind, we adopt the full

resummed spectral function [58], defined by

ImΠNLO
resummed ¼ Im½ΠLO þ ΠNLO þ ΔΠLPM�: ð2Þ

The formal power counting in αs is indicated in Fig. 1,
although it should be noted that collinear singularities
reorganize the naive interpretation of certain diagrams [46].
Each ingredient in (2) needs to be evaluated numerically,
for which the details can be found in Ref. [39]. For the
QCD coupling, we use the fixed value αs ¼ 0.3 which is
motivated in Sec. I of the Supplemental Material [59]
(where we also comment on the overall accuracy of
perturbation theory in the IMR).
The integration in Eq. (1) is performed over a (3þ 1)-

dimensional fluid dynamical evolution [65,66], with four-
volume element d4X ¼ τdτdηsd2x⊥, where τ is the longi-
tudinal proper time and ηs is the spacetime rapidity,
specifically calibrated to reproduce the hadronic data
measured at the energies discussed in this Letter [39,67].
The hydrodynamical framework includes both shear vis-
cosity and baryon diffusion, but bulk viscosity is neglected
and the dilepton emission rates themselves are not cor-
rected for viscous effects [68]. We integrate k⊥ over a range
sufficient for comparison with the acceptance-corrected
excess spectra measured by the STAR Collaboration [70–
73]. Since this study focuses on thermal dileptons origi-
nating from the QGP, we specifically consider fluid cells
with temperatures exceeding the freeze-out line as estab-
lished in Ref. [74]. This demarcation closely aligns with
the chemical freeze-out line determined by the STAR
Collaboration [75], and we attribute the thermal dileptons
emitted from the fluid cells below this line to contributions

FIG. 1. The perturbative diagrams included in our evaluation.
For the LPM class of ladder diagrams, indicates that rungs
are screened with HTL gluon self-energies while it should be
understood that the valence quarks are evaluated at their asymp-
totic thermal mass.
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from hadronic matter. In Fig. 2, one can see that
the calculated thermal signal is in fact in quantitative
agreement with measurements performed by the STAR
Collaboration [70–73], once the background contributions
[76] have been subtracted. While μB increases at lower
beam energies, the corresponding dependence in the
emission rate leaves little imprint of this on the dilepton
spectra themselves because a majority of the QGP fluid
satisfies μB=T ≲ 3 within jηsj < 1 even at a beam energy
of 7.7 GeV.
Probing the early QGP temperature.—In our longer

companion paper [39], we establish the effectiveness of the
temperature extraction method using the thermal dilepton
spectra within the IMR as a proxy for the temperatures of
the fluid cells. That region of dilepton invariant mass is
chosen to highlight the signal coming from the QGP phase,
as lower invariant masses are known to receive important
contributions from reactions involving composite hadrons
[77]. Furthermore, the perturbative scheme in Eq. (2) is
well suited for this mass range with an estimated theoretical
uncertainty comfortably below ∼10%.
The approximate large-M behavior of the rate, dΓ=dM∼

ðMTÞ3=2 expð−M=TÞ, motivates defining an effective tem-
perature Teff by assuming that the integrated spectrum
dN=dM follows a similar functional form in the IMR. We
perform an analysis where we derive Teff from dilepton
spectra at each time step, and then examine how it relates to
the evolving hydrodynamic temperatures as functions of
proper time. Figure S2 in the Supplemental Material [59]

clearly illustrates that Teff closely tracks the mean hydro-
dynamic temperature hTi as a function of proper time,
reflecting the cooling of the expanding QGP fireball. The
close alignment between Teff and hTi provides another
compelling validation of the temperature extraction
method, although we see that Teff is consistently above
hTi throughout the evolution.
Building upon these validations, we apply the same

temperature extraction method to determine Teff from the
spacetime-integrated thermal dilepton spectra seen in
Fig. 2. To make the most of Teff as a reliable thermometer
for the QGP fireball, we further investigate its connection
with the initial temperatures hT ini, marking the beginning
of the hydrodynamic expansion, and final freeze-out
temperatures hTfi across the eight beam energies. This is
illustrated in Fig. 3 (for 40%–50% centrality), which
includes the initial temperature variations originating from
both short-range lumpy fluctuations, and long-range gra-
dients on the system scale. (The latter is the dominant
factor, which shrinks with lower beam energies because of
the lower temperatures at the fireball’s center.) Figure 3
shows that the final freeze-out temperature remains rela-
tively stable down to

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV but experiences a
sudden drop at 7.7 GeV. This decline is due to the
significantly higher μB=T for this beam energy, which,
at the phase transition, accompanies a lower freeze-out
temperature. The picture is consistent across other central-
ity classes (not shown), which are primarily determined by
the characteristics of the freeze-out line [74,75].
While we do not find a significant correlation between

Teff and hTfi, it appears that Teff is proportional to hT ini.
Figure 3 indicates that, as the beam energy decreases, both
Teff and hT ini display similar behavior and tend to approach

FIG. 2. Dielectron excess mass spectra within rapidity jyj < 1,
normalized by midrapidity charged hadron multiplicity dNch=dy,
for 0%–80% Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6, 27, 39, 62.4,
200 GeV. The markers with error bars and open boxes indicate the
STAR experimental measurements with statistical and systematic
uncertainties, while the dot-dashed lines represent model calcu-
lations.

FIG. 3. Initial temperatures (red dots) and final temperatures
(blue squares) of the hydrodynamic evolution, along with
effective temperatures derived from dilepton spectra (green
triangles) for 40%–50% Auþ Au collisions, presented as a
function of beam energy. The error bars associated with the
hydrodynamic temperatures indicate standard deviations, while
the error bars of the effective temperatures represent uncertainties
resulting from the fitting procedure in the temperature extraction
method.
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each other; again, these trends are consistently observed
across various centralities. This observation, which was
anticipated on theoretical grounds [13,15], motivates us
to investigate the relationship between the initial mean
temperature hT ini and the effective temperature Teff in
Auþ Au collisions at a range of beam energies and
centralities. Figure 4 demonstrates a linear relationship
between the initial mean temperature and the effective
temperature,

hT ini ¼ κTeff þ c; ð3Þ

where a global fit yields the parameters

κ ¼ 1.55� 0.02; c ¼ −ð9.3� 0.3Þ × 10−2 GeV:

This linear relationship presents a reliable—and currently
unique—means of extracting the early temperatures of the
hot and dense nuclear matter, utilizing the effective temper-
ature derived from dilepton spectra, immune to the dis-
tortions caused by Doppler effects. Despite the initial
temperature variations depicted in Fig. 3, the definition
of mean temperature inherently integrates out these fluc-
tuations, and the obtained hT ini is impervious to significant
uncertainties via Eq. (3). Let us emphasize that hT ini should
thus be interpreted as the central value of some broad
distribution, whose statistical variance is relatively large
(see Fig. S2 of the Supplemental Material [59]). The quoted
standard errors, on κ and c, are due to the fitting procedure
alone. There exist global studies to address and incorporate
systematic model uncertainties [4–7]; future such inves-
tigations will incorporate the emission of electromagnetic

radiation. Importantly, as far as the emission rates are
concerned, we find negligible variations in Teff from fixing
the QCD perturbative coupling.
Several insights can be drawn from the results presented

in Fig. 4. First and foremost, the unmistakable correlation
between Teff and hT ini, as opposed to the final mean
temperature, naturally finds its explanation in the spacetime
evolution of dilepton production within a rapidly expand-
ing QGP fireball. As highlighted in our companion paper
[39], dilepton production is suppressed over time because
the temperature drops too fast for the expanding volume to
compensate. Hence, the IMR of dilepton spectra are
predominantly influenced by the early stages of QGP
evolution and are notably insensitive to the late-stage
expansion.
Furthermore, uncertainties in Teff tend to grow slightly

with
ffiffiffiffiffiffiffiffi
sNN

p
for a specific centrality class or when tran-

sitioning from peripheral to central collisions at a given
beam energy. This trend can be attributed to several factors,
including the extended lifetime of the QGP at higher beam
energies or in central collisions, combined with more
substantial temperature variations during its evolution
(see also Fig. S2 in the Supplemental Material [59]). As
a result, the dilepton spectra exhibit more pronounced
deviations from the profiles associated with a specific
effective temperature.
Finally, we emphasize that our study primarily focuses

on thermal dileptons due to the QGP, whose evolution is
described via dissipative hydrodynamics. At the lower end
of the considered beam energies, due to the substantial time
required for the two colliding nuclei to fully interpenetrate,
the prehydrodynamic stage becomes non-negligible and it
is reasonable to assume that its contribution to the dilepton
yields increases accordingly. In a more suitable dynamical
initialization scenario, energy continues to be deposited
into the collision fireball, causing the temperature to
increase until it reaches a maximum value when the two
colliding nuclei have completely traversed each other [78].
Subsequently, this is followed by the onset of a pure
hydrodynamic QGP expansion. Thus, the maximum tem-
perature of the prehydrodynamic stage and its correspond-
ing time should be treated as the initial temperature and
starting time for the hydrodynamic evolution in our study.
Examining the influence of the prehydrodynamic stage on
dilepton spectra and its impact on the associated effective
temperature is a topic worthy of dedicated research which
we leave for future investigations.
Conclusions.—From the studies reported here, using

state-of-the-art lepton pair emissivities and sophisticated
(3þ 1)-dimensional dissipative fluid dynamical modeling,
it is clear that the electromagnetic radiation measured in
relativistic nuclear collisions fulfills its promise of provid-
ing penetrating tomographic information of the strongly
interacting medium, particularly in serving as a thermo-
meter for the early-stage QGP. Complementary to the

FIG. 4. Correlation between initial average hydrodynamic
temperatures hT ini and the derived effective temperature Teff
from dilepton spectra for Auþ Au collisions at eight beam
energies, spanning from 7.7 to 200 GeV, within centrality bins
from 0%–10% to 70%–80% (see the Supplemental Material [59]
for a table containing all data points). The black dashed line
denotes a global fit to all data points, and the gray band illustrates
the uncertainties associated with the fitting procedure.
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findings in Ref. [79] that established the general correlation
between initial state energy and measured particle multi-
plicities, as well as in Ref. [80] where the initial baryon
density was constrained using rapidity-dependent directed
flows, our research provides a solid means of probing the
phase diagram of hot and dense nuclear matter, via the
slope of dilepton spectra in the IMR and at several beam
energies and centrality classes. As such, our research
contributes to filling in an essential piece of the puzzle,
enhancing our understanding of QCD matter and its
manifestation in heavy-ion experiments.
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