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7Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway
8Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

9Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, The University of Tokyo, Chiba 277-8583, Japan

(Received 28 February 2023; revised 28 November 2023; accepted 1 March 2024; published 26 April 2024)

The shortest distance around the Universe through us is unlikely to be much larger than the horizon
diameter if microwave background anomalies are due to cosmic topology. We show that observational
constraints from the lack of matched temperature circles in the microwave background leave many
possibilities for such topologies. We evaluate the detectability of microwave background multipole
correlations for sample cases. Searches for topology signatures in observational data over the large space of
possible topologies pose a formidable computational challenge.
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Introduction.—Standard cosmology combines general
relativity and quantummechanics to produce a simple model
accounting for the distribution of matter in the observable
Universe. The average spatial curvature of this model is
observationally constrained to be flat, or nearly so [1].
However, general relativity concerns only the local geometry
of the spacetime manifold, not its topology. Quantum
processes in the very early Universe may induce “nontrivial”
(multiply connected) topology of spacetime [2,3] that
remains present today on very large physical scales, even
if inflation occurs [4]. Indeed, the temperature variations in
the cosmic microwave background (CMB) suggest the
presence of statistically anisotropic correlations, much as
would result from nontrivial topology of comoving spatial
sections. These include anomalous statistical properties of
low-multipole harmonic coefficients [5–8], lack of large-
scale correlations [8–16], and asymmetry of power on the

sky [8,15–33]. If topology is the explanation for CMB
anomalies, there is detectable topological information in
the CMB. While unambiguous indicators of topology have
yet to be detected, we present evidence that prior searches for
topology [5,34–43] have far from exhausted the potentially
significant possibilities. Muchmore can be done to discover,
or constrain, the topology of space.
If the Universe is a manifold with nontrivial spatial

topology, then through any spatial point there are closed
spacelike curves that are not continuously deformable to a
point. An observer will perceive each object as having
multiple copies, with relative locations determined by
details of the manifold. This can be interpreted as space
having finite extent in one, two, or three dimensions.
The parameter space for such manifolds is much larger
than what has been systematically tested. Even limited to
spatially flat manifolds (i.e., curvature parameter ΩK ¼ 0),
there are 17 inequivalent nontrivial topologies, each with
multiple real parameters. Most attention so far has been
confined to the simple three-torus (though see, e.g.,
Ref. [44]) with a rectangular-prism fundamental domain,
though a parallelepiped is permitted.
The observed CMB fluctuations encode information

about topology [45,46], even when the topology scale
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exceeds the diameter of the visible Universe. CMB obser-
vations probe the last-scattering surface (LSS) of cosmo-
logical photons, at a comoving distance of nearly theHubble
scale H−1

0 (where H0 is the present value of the Hubble
expansion rate). Nontrivial topology, by breaking statistical
isotropy, induces anisotropic correlations in the CMB
temperature and polarization fluctuations. When the scale
of the topology is small compared to the LSS diameter, pairs
of circles with matched temperature (and polarization)
become visible in different parts of the sky [34]. These
have not been observed [5,35–43], but correlations can
persist evenwhen the scale of the topology is large enough to
preclude matched circles [47,48] as might other proposed
signatures of topology [49,50].
In this Letter, we demonstrate that (1) cosmic topo-

logy remains eminently detectable despite past negative
searches [5,34–43]; (2) previous analyses have not con-
sidered several topological degrees of freedom, even for
spatially flat manifolds; (3) constraints from nonobserva-
tion of matched circle pairs are less restrictive than widely
believed [51]; (4) anisotropic CMB correlations induced
by topology can be detectable even absent matched circle
pairs [48,52]; and (5) though significantly larger manifolds
may be detectable in future observations of large-scale
structure [53], if topology is the explanation for CMB
anomalies the topology scale probably cannot greatly
exceed the LSS diameter. Details of the calculations
leading to the results of this Letter can be found in
Refs. [48,51–53].
Cosmic topology.—Cosmic topology refers to the prop-

erties of spatial sections of the (3þ 1)-dimensional mani-
fold describing the Universe on the largest scales. We
assume the geometry of a Friedmann-Lemaître-Robertson-
Walker (FLRW) metric, with the usual cases of negative,
zero (flat or Euclidean), and positive spatial curvature.
Topologies of these geometries have been widely explored
mathematically. We concentrate here on the flat case, as it
suffices to make the general case for a renewed search for
topology. There are eighteen Euclidean topologies, with up
to six real parameters each, and a countable infinity of both
spherical and hyperbolic topologies, with just the curvature
scale as a parameter [54].
All possible Euclidean manifolds can be generated start-

ing from 1-2 parallelepiped or hexagonal prisms [35,55,56].
In the simplest three-torus (E1), opposite faces of a right
rectangular prism are identified, giving a finite volume and
simple periodic boundary conditions. One can “tilt” E1 by
starting instead with a parallelepiped. Alternately, before
identification, one can rotate a rhombic face by π (giving
E2), a square face by π=2 (E3), a hexagonal face by 2π=3
(E4) or π=3 (E5). These rotations accompanied by trans-
lations are called “corkscrew”motions. Flipping some faces
instead of rotating them generates the Klein spaces
(E7–E10). If one or two dimensions of the parallelepiped
have infinite length, space is periodic in the other

dimensions; but, one can still rotate or flip the remaining
faces (E11–E17). The Hantzsche-Wendt space (E6) uniquely
starts from two adjacent rectangular prisms and matches
faces between them (see, e.g., Ref. [44]). In the trivial
topology E18, also known as “the covering space,” any
closed loop can be deformed to a point.
These choices determine various characteristics of the

cosmic 3-manifold; it may be orientable (handedness
preserving) or nonorientable; finite in zero, one, two, or
three dimensions; statistically homogeneous (all observers
see the same pattern of their own images around them) or
inhomogeneous [57].
This classification was first applied to cosmology in

Ref. [58], but certain parameters of some topologies were
largely ignored (e.g., the tilt angles of the parallelepiped) as
were the consequences of statistical inhomogeneity. These
issues will be addressed in detail in Refs. [48,52].
One can fully describe the topology by determining the

images (periodic repetitions) of a coordinate triad based at
any point. These images need not form a simple periodic
lattice. We can equivalently relate topology to tilings of the
covering space of the associated geometry. The individual
tiles are called the fundamental domain. Despite the name,
different shape fundamental domains can tile the covering
space yet embody precisely the same set of isometries, and
different choices may seem natural to different observers.
For many purposes, we need the eigenmodes of the

Laplacian operator subject to the topological boundary
conditions—the analogues of Fourier modes on the cover-
ing space [59]. In a rectangular prism E1, the modes are
exactly the Fourier modes, just restricted to a countable set
of wave vectors. In other compact Euclidean topologies,
each eigenmode is a linear combination of a small number
of Fourier modes of different equal-magnitude wave
vectors. In the noncompact topologies E11–E17, the con-
tinuum is modified but not fully discretized. These changes
to the eigenmodes modify the statistical properties of the
matter fields, and are thereby potentially detectable in
the CMB.
We concentrate below on E1, E2, and E3 because they

suffice to demonstrate our broader points. Each is charac-
terized by two to six parameters describing the shapes of
the faces, and the translations and rotations that carry them
between one another. Another three to six parameters may
be needed to characterize an observer’s position and
orientation in the space (see Refs. [48,52] for more details
about these and other Euclidean spaces, including the exact
definitions of the parameters and the diagrams showing the
actions of the transformation generators for the topologies).
Correlations induced by topology.—For Gaussian fluc-

tuations, two-point correlations contain all the information
available to determine the observational repercussions of
the topology. Topology breaks the isotropy of covering-
space Fourier modes: a continuum of wave vectors becomes
a lattice, inducing correlations between amplitudes of
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spherical harmonics. Even for E1, a parallelepiped funda-
mental domain skews the grid of allowed wave vectors.
Reflections or rotations induce further correlations between
Fourier modes, and thus between spherical harmonics,
enhancing the prospects for observational signatures in the
CMB and large-scale structure.
For the CMB in particular, the correlation of sphe-

rical harmonic amplitudes changes from the diagonal
halmal0m0 i ¼ Clδll0δmm0 to a full covariance matrix
Clml0m0 . Observations indicate that initial perturbation
amplitudes on scales small compared to H−1

0 today are
well described by a Gaussian distribution following a
nearly scale-free spectrum depending only on the ampli-
tude of the wave vector, e.g., as predicted by inflation. With
topology, under linear evolution the CMB and large-scale
structure would each have an anisotropic Gaussian
distribution.
In Fig. 1, we show the rescaled correlation matrices of

CMB temperature fluctuations, Clml0m0=
ffiffiffiffiffiffiffiffiffiffiffiffi
ClCl0

p
, induced

by (unskewed) E2 topology; see Ref. [48] for details of
calculations. (Cl are elements of the diagonal covariance
matrix for the Euclidean covering space computed with the
same values of standard cosmological parameters.) We
consider a right rectangular prism fundamental domain
with length LA ¼ 1.4LLSS in the two pure translation
directions (x̂, ŷ), and LB ¼ f0.9; 1.1gLcircle in the cork-
screw direction (ẑ), where Lcircle ¼ 0.714LLSS is the
maximum value of LB for that manifold for which
≥95% of observers would detect a matched circle pair.
LLSS is the diameter of the last-scattering surface of CMB
photons. The observer is placed at 0.35LLSSx̂ from the
corkscrew axis, and does (not) see circles in the left (right)
panel. There are significant correlations between dispa-
rate l.
Little work has been done on CMB polarization and

topology, but Refs. [60,61] suggest it provides an additional
avenue for exploring topology, and may even have
enhanced correlations compared to temperature because
polarization originates more predominantly from the LSS.
Constraining the topology.—How can we search for the

anisotropic correlations induced by topology? For suffi-
ciently small topology scales, we would see clones of
individual objects, such as galaxies or quasars; these have
not been seen [62–69]. Similarly, in CMB temperature
fluctuations, matching pairs of circles on the sky would be
signatures of the self-intersection of the LSS. The size of
such circles, the locations of their centers, and the phase of
their matching along the circles depend on the details of the
topology, but the existence of circles depends only on
isotropic geometry and a small-enough topology scale [34].
The nonobservation of such matched patterns limits the
shortest closed paths across our fundamental domain,
which could in turn be interpreted as a limit on the
parameters of any given topology. This search is computa-
tionally challenging because of the large number of

candidate circle centers, radii, and relative phases, but
has been completed on both the Wilkinson Microwave
Anisotropy Probe (WMAP) and Planck data [5,35–43].
Once the length of such a returning path exceeds the

diameter of the LSS, there are no longer matching circles,
and we must search for excess anisotropic correlation. This
can be done by directly evaluating the likelihood as a
function of the parameters of the topologies [42,43,70,71].
However, this is computationally challenging because
we cannot take advantage of the usual simplification of
isotropy: the signal covariance matrix is diagonal in
harmonic space or, equivalently, it is only a function of
the angular distance between pixels. Even calculating and
storing the Oðl4

maxÞ entries of the full Clml0m0 matrix is
infeasible at high lmax.
Current constraints.—To date, none of the tests outlined

above have detected evidence of nontrivial topology.
The matched-circles search has the advantage of being

generic: for a sufficiently small fundamental domain, every
nontrivial topology of an FLRW cosmology predicts a
pattern of repeated circles. However, translating the non-
detection of matched circles into limits on topology
depends on the details of each individual topology [51].
In particular, for topologies in which any of the faces of the
fundamental domain is rotated, the induced pattern of
circles depends on the location of the observer with respect
to the corkscrew axis—as the observer moves away from
the axis, limits on the size of the domain change. In Fig. 2,
we display illustrative limits on the parameter space of
E1–E5 [51]: for the excluded parameter values, observers at
≥95% of locations in the manifold would detect at least
one matched circle pair of any size. These curves are
indicative of the limits that can be derived from a detailed
analysis of matched circles in the CMB temperature from
WMAP and Planck [5,34–43,72]. For the simple right-
angled E1 this straightforwardly limits the length of the
shortest side to the diameter of the LSS sphere, but the
rotations in E2 through E5 weaken the limits on the length

FIG. 1. Portions of rescaled CMB temperature correlation
matrices for a half-turn space (E2). Lcircle is the length scale
below which matched circles would be detected; LB ¼
f0.9; 1.1gLcircle is the length along the corkscrew axis; LA ¼
1.4LLSS is the other topological length scale. The observer is off-
axis at x0 ¼ ð0.35; 0; 0ÞLLSS.
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LB along the corkscrew axis—as the size of the square or
hexagonal face perpendicular to that rotation, LA, increases,
observers in more and more of the manifold would not
observe matched circles.
In Fig. 3 we display the square cross section through the

E3 manifold with dimensions LA ¼ 2LLSS along both axes,
in a plane perpendicular to the axis of rotation at
ðx; yÞ ¼ ðLLSS; LLSSÞ, where x, y are coordinates in this
plane. We shade the regions in which an observer would
detect one or more matched circle pairs as a function of LB,
the length of the translation associated with the π=2
rotation. In regions of a given color observers would see
matched circle pairs for all values of LB less than or equal
to the value listed on the legend. As LB is reduced, more
and more observers see matched circles, but even for
LB ¼ 0.4LLSS a substantial fraction of the volume is
“circle-free,” and hence allowed by current observations.
Conversely, the likelihood search is not generic—the

covariance matrix must be calculated anew for each top-
ology and each set of topological parameters. Hence, only a
very small fraction of testable parameter values [73] of a
subset of Euclidean manifolds have been tested [74].
Future constraints.—We have already seen in Fig. 1 that

anisotropic correlations persist even when the size of the
fundamental domain is larger than the diameter of the LSS
and there are no matched circles. Can we detect this richer
correlation structure? The presence of matched circles is a
geometric effect, independent of the statistical properties of
the fluctuations themselves. Once the scale of the topology is
outside of the LSS, we depend on details of statistical
properties to detect the induced correlations. We expect this
to be more tied to the cosmological parameters than circles.

In the following we specialize to models in which the
fluctuations are described by the Planck 2018 cosmology [1].
We can use the Kullback-Leibler (KL) divergence to

compare the probability distribution functions for the
falmg in a nontrivial topology, pðfalmgÞ, and in the trivial
topology, qðfalmgÞ. It is given by

DKLðpjjqÞ ¼
Z

dfalmgpðfalmgÞ ln
�
pðfalmgÞ
qðfalmgÞ

�
; ð1Þ

the likelihood ratio between the distributions, averaged
over p [43,47], which describes the information gain from
discovering that the Universe is described by a nontrivial
topology. Given data alm from an experiment, DKL favors
nontrivial topology if DKL > 1, giving a threshold for the
detectability of nontrivial topology in a perfect experiment
with no noise, foreground emission, and mask. This can be
interpreted as a Bayes factor giving the relative odds of the
models, or calibrated using Wilks’ theorem, which states
that twice the likelihood ratio is asymptotically χ2 distrib-
uted with the number of degrees of freedom equal to the
difference between those of the two distributions. In our
case, this implies a strong detection when DKL is greater
than about three (assuming three degrees of freedom for the
orientation, and three more to describe the relevant lengths
and angles for the particular topology).
Figure 4 shows the KL divergence as a function of

L=Lcircle and lmax. They convey a somewhat more opti-
mistic message than Ref. [47] which considered a simple
cubic torus E1. We see here (top panel) that E2 domains
larger than E1 domains have detectable KL divergence.
However, we also see that, in E2, once an observer is unable
to detect matched circle pairs (LB > Lcircle) only l≲ 30
add significantly to the KL divergence. Though DKL is
challenging to calculate for large l, a signal-to-noise

FIG. 2. Regions of topology parameter space where observers
would or would not see matched circle pairs. For each topology
(E1–E5), for values of LA and LB in the regions below and to the
left of the associated curve, ≥95% of observers have a clone
closer than LLSS. (In the region to the right of LA=LLSS ¼ 1 and
above LB=LLSS ¼ 1, no topology will produce any matched
circles.) For the E2 manifold we choose the right rectangular
prism. This figure is identical to Fig. 5 of Ref. [51].

FIG. 3. For E3 with LA ¼ 2LLSS, locations ðx=LLSS; y=LLSSÞ of
observers in planes of constant z (the corkscrew axis) in which
matched circle pairs would be detected, as a function of LB, the
length along the corkscrew axis; LA is the other topological
length scale. Even for LB ¼ 0.4LLSS 20% of observers would still
not see matched circles (white regions). This figure is identical to
Fig. 3(a) of Ref. [51].
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calculation of off-diagonal correlations as signal and
statistically isotropic Gaussian random fields as noise gives
a similar level of potential detectability [48].
The dependence of DKL on lmax and on topology

parameters depends on the specific manifold, and on the
observer location within that manifold. This is a matter for
ongoing investigation, as is the maximum size of each
manifold that can be observationally identified. However, it
is important to realize that if topology is the physical cause
of CMB large-angle anomalies then ipso facto the CMB
must contain detectable topological information. Thus the
KL divergence would inform us what values of various
topological parameters we need to explore for each mani-
fold, avoiding those values for which there is no topological
information. A topological explanation for any observed
CMB anomaly that exhibits parity-violating Δl-odd cor-
relations would only arise from a manifold that encodes
parity violation, precluding E1, E11, E16, and, of course,
E18. The behavior of DKL with lmax implies that correla-
tions between different alm induced by topology with LB >
Lcircle are limited to low l, a potential explanation for large-
scale CMB anomalies, and holds out the promise for
testable predictions with future observations.
Information from the interior of the last-scattering sur-

face should significantly increase DKL, since it will include
many more modes of the same wavelength as those that
contributed to the DKL of the CMB. In the covering space,
we could think of this as resolving the different radial
modes that contribute to the same alm of CMB temper-
ature. In addition, because the projection from the full

3-space to the two-dimensional surface of the LSS mixes
many uncorrelated Fourier modes, especially at higher
wave number, information from shorter wavelength modes
will increase DKL by some to-be-quantified amount even
for LB > Lcircle. These questions will be explored in
depth in a future publication [53]. Future galaxy surveys,
21 cm surveys, and other eventual probes of the interior
of the LSS thus hold the promise of increasing the range
of the topology parameter space that can be explored
observationally.
Expanding the reach of past topology searches will be

discussed in upcoming work. We anticipate that the
dimensionality of the parameter space, the size of the
covariance matrix, and its lack of sparsity will make an
exhaustive likelihood calculation untenable, even for just
Euclidean manifolds. Instead we anticipate developing
machine learning techniques to accelerate the likelihood
calculation and to be used in the framework of likelihood-
free inference [75] to more generally address the challenge
of mining CMB data for evidence of nontrivial topology.
Conclusions.—We have shown that current observations

of the CMB have not been comprehensively translated to
limits on the allowed large-scale topology of the Universe.
We report that for generic Euclidean manifolds, whose
isometry groups include rotations or reflections, the lower
limit on the topology scale is smaller than the diameter of the
LSS by factors of 2–6, and potentiallymuchmore. All of the
Euclidean manifolds, other than the covering space, violate
statistical isotropy; most of them also violate statistical
homogeneity. The ability to detect topology even in the
absence of explicit matched circles depends on the induced
statistical anisotropy. The KL divergence suggests that there
is information in CMB temperature correlations even when
an observer does not see circles, although the topology scale
cannot be much larger than LLSS if topology is to explain
CMB anomalies. How much this depends on the manifold,
its size and other parameters, and the observer’s position, is
unknown. Large-scale structure information from future
surveys will provide still more information which appears
likely to offer a qualitative improvement on CMB temper-
ature correlations. These possibilities will be explored in a
series of forthcoming papers.

The GitHub repository associated with this study is
publicly available at [76]. Codes will be deposited there as
publicly usable versions become available.
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