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We study states with intrinsic topological order subjected to local decoherence from the perspective of
separability, i.e., whether a decohered mixed state can be expressed as an ensemble of short-range
entangled pure states. We focus on toric codes and the X-cube fracton state and provide evidence for the
existence of decoherence-induced separability transitions that precisely coincide with the threshold for the
feasibility of active error correction. A key insight is that local decoherence acting on the “parent” cluster
states of these models results in a Gibbs state. As an example, for the 2D (3D) toric code subjected to
bit-flip errors, we show that the decohered density matrix can be written as a convex sum of short-range
entangled states for p > pc, where pc is related to the paramagnetic-ferromagnetic transition in the 2D
(3D) random bond Ising model along the Nishimori line.
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In this Letter, we will explore aspects of many-body
topological states subjected to decoherence from the
perspective of separability, i.e., whether the resulting
mixed state can be expressed as a convex sum of short-
range entangled (SRE) states [1–3]. This criteria is central
to the definition of what constitutes an SRE or long-range
entangled (LRE) mixed state, and various measures of
mixed-state entanglement, such as negativity [3–8] and
entanglement of formation [9], are defined so as to quantify
nonseparability. We will be particularly interested in
decoherence-induced “separability transitions,” i.e., tran-
sitions tuned by decoherence such that the density matrix in
one regime is expressible as a convex sum of SRE states,
and in the other regime, it is not. One salient distinction
between pure-state versus mixed-state dynamics is that
although a short-depth unitary evolution cannot change
long-range entanglement encoded in a pure state, a short-
depth local channel can fundamentally alter long-range
mixed-state entanglement. Therefore, even the limited class
of mixed states that are obtained by the action of local
short-depth channels on an entangled pure state offer an
opportunity to explore mixed-state phases and phase
transitions [10–22]. We will focus on mixed states that
are obtained via subjecting several well-understood topo-
logically ordered phases of matter to short-depth quantum
channels.
Error-threshold theorems [23–28] suggest a topologi-

cally ordered pure state is perturbatively stable against
decoherence from a short-depth, local quantum channel,
leading to the possibility of a phase transition as a function
of the decoherence rate [29]. Such transitions were origi-
nally studied from the perspective of quantum error
correction (QEC) in Refs. [30,31] and more recently using
mixed-state entanglement measures such as topological
negativity [14], and other nonlinear functions of the density

matrix (Refs. [13–15]). These approaches clearly establish
at least two different mixed-state phases: one where the
topological qubit can be decoded, and the other where it
cannot. However, it is not obvious if the density matrix in
the regime where decoding fails can be expressed as a
convex sum of SRE pure states, which, following
Refs. [1,2], we will take as the definition of an SRE mixed
state. Our main result is that for several topologically
ordered phases subjected to local decoherence, which are
relevant for quantum computing [30–32], one can explicitly
write down the decohered mixed state as a convex sum of
pure states which we argue all undergo a topological phase
transition, from being long-ranged entangled to short-
ranged entangled, at a threshold that precisely corresponds
to the optimal threshold for QEC. We find that the
universality class of such a separability transition also
coincides with that corresponding to the QEC error-
recovery transition. Therefore, in these examples, we argue
that the error-recovery transition does indeed coincide with
a many-body separability transition. As discussed below,
our method also provides a new route to obtain the
statistical mechanics models relevant for the quantum
error-correcting codes [14,30,31,33].
Let us begin by considering the ground state of the 2D

toric code [see Fig. 1(b)] with Hamiltonian H2D toric ¼
−
P

vð
Q

e∈ v ZeÞ −
P

pð
Q

e∈p XeÞ subjected to phase-flip
errors. The Hilbert space consists of qubits residing on the
edges (denoted as “e”) of a square lattice and we assume
periodic boundary conditions. Denoting the ground state as
ρ0, the Kraus map corresponding to the phase-flip errors act
on an edge e as Ee½ρ0� ¼ pZeρ0Ze þ ð1 − pÞρ0, and the full
map is given by the composition of this map over all edges.
The key first step is to utilize the idea of duality [34–38] by
identifying the corresponding “parent” cluster Hamiltonian
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(in the sense of Refs. [39–42]). Interestingly, the application
of the aforementioned Kraus map to its ground state results
in a Gibbs state. For the problem at hand, consider
H2Dcluster ¼

P
v hv þ

P
e he, where hv ¼ −Xvð

Q
e∋v ZeÞ

and he ¼ −Xeð
Q

v∈ e ZvÞ whose Hilbert space consists of
qubits both on the vertices and the edges of the square lattice
[Fig. 1(b)]. The ground state densitymatrix ρ0 of the 2D toric
code can be written as ρ0 ∝ hxv ¼ 1jρC;0jxv ¼ 1i, where
jxv ¼ 1i ¼ ⊗v jxv ¼ 1i is the product state in the Pauli-X
basis, and ρC;0½∝

Q
eðI − heÞ

Q
vðI − hvÞ� is the ground

state of the H2Dcluster. The projection selects one specific
ground state of the toric code that is an eigenvector of the
noncontractible Wilson loops Wl ¼ Q

e∈l Xe with eigen-
value þ1 along both cycles l of the torus. A simple

calculation shows that Ee½ρC;0� ∝ e−β
P

e
he
Q

vðI − hvÞ
where tanhðβÞ ¼ 1–2p. This implies that the decohered
density matrix ρ of the toric code is ρ ∝ hxv ¼
1je−β

P
e
he jxv ¼ 1iPZ, where PZ ¼ Q

vðI þ
Q

e∋v ZeÞ.
By inserting a complete set of states, one may simplify
the above expression as ρ ∝ PZρePZ where ρe¼P

xeZ2DIsing;xe jxeihxej and Z2DIsing;xe ¼
P

zv e
β
P

e
xe
Q

v∈e
zv

is the partition function of the 2D Ising model with
Ising interactions determined by fxeg. Thus,
ρ ∝

P
xe Z2D Ising;xe jΩxeihΩxe j, where jΩxei ∝

Q
vðI þQ

e∋v ZeÞjxei are nothing but a subset of toric code eigen-
states. Note that in this derivation, the 2D Ising model

emerges due to the he terms in the parent cluster
Hamiltonian, and ultimately, this will lead to the relation
between the separability transition and the statistical
mechanics of the 2D random-bond Ising model (RBIM)
that also describes the error-recovery transition [30]. We
note that the above spectral representation of ρ in terms of
toric code eigenstates has also previously appeared in
Ref. [13], using a different derivation. Since noncontractible
cycles of the torus will play an important role below, let us
note that distinct eigenstates jΩxei can be uniquely specified
by two labels: the first label corresponds to the set of localZ2

fluxes fp ¼ Q
e∈p xe through elementary plaquettes p,

while the second label L ¼ ðLx ¼ �1; Ly ¼ �1Þ with
Lx ¼

Q
e∈l;ekx̂ xe, Ly ¼

Q
e∈l;ekŷ xe and l a noncontrac-

tible loop along x̂=ŷ direction, specifies the topological
sector (L representing “logical data”) in which jΩxei lives.
We now probe the mixed state ρ using the separability

criteria, i.e., we ask whether it can be decomposed as a
convex sum of SRE states. Clearly, the aforementioned
spectral representation is not a useful decomposition since
it involves toric code eigenstates which are all LRE. Taking
a cue from the argument for separability of the Gibbs
state of toric codes [43], we decompose ρ as ρ ¼P

ze ρ
1=2jzeihzejρ1=2 ≡P

m jψmihψmj where fzeg are a
complete set of product states in the Pauli-Z basis, and
jψmi ¼ ρ1=2jzei. Generically, to determine whether ρ is an
SRE mixed state, one needs to determine whether each
jψmi is SRE. However, for the current case of interest, it
suffices to consider only jψi ¼ ρ1=2jm0i with jm0i ¼
jze ¼ 1i. The reason is as follows. The Gauss’s law
(
Q

e∋v Ze ¼ 1) implies that the Hilbert space only contains
states that are closed loops in the Z basis. Therefore, one
may write jmi ¼ gxjm0iwhere gx is a product of single-site
Pauli-Xs forming closed loops. Since ½gx; ρ� ¼ 0, this
implies that jψmi≡ jψgxi ¼ gxjψi, and therefore, if jψi
is SRE (LRE), so is jψgxi. ρðβÞ may then be written as
ρðβÞ ¼ P

gx jψgxðβÞihψgxðβÞj. Now, using the aforemen-
tioned spectral representation of ρ, the (non-normalized)
state jψi ¼ ρ1=2jze ¼ 1i is

jψðβÞi ∝
X
xe

½Z2D Ising;xeðβÞ�1=2jxei: ð1Þ

It is easy to see that when β ¼ ∞, jψi ∝ jΩ0i, the non-
decohered toric code ground state, while when β ¼ 0,
jψi ∝ jze ¼ 1i is a product state. This suggests a phase
transition for jψðβÞi from being an LRE state to an SRE
state as we increase the error rate p (i.e., decrease β). We
will now show that this is indeed the case.
We first consider the expectation value of the “anyon

condensation operator” (also known as ’t Hooft loop) in
state jψðβÞi, defined as [15,44–46] Tl̃ ¼ Q

e∈ l̃ Ze, where
l̃ denotes a homologically noncontractible loop on the dual
lattice (in the language of Z2 gauge theory [46,47],

FIG. 1. (a) Topological orders under local decoherence can
undergo a separability transition, where only above a certain
critical error rate, the decohered mixed state ρdec can be written as
a convex sum of SRE pure states. The bottom depicts the parent
cluster states and their offspring models obtained by appropriate
measurements (indicated by an arrow); (b) 2D cluster Hamil-
tonian and 2D toric code; (c) 3D cluster Hamiltonian and 3D toric
code; and (d) “Cluster-X” Hamiltonian [39] and the X-cube
Hamiltonian.
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Ze ∼ eiπðelectric fieldÞe). Physically, hT l̃i≡ hψ jT l̃jψi=hψ jψi
is the amplitude of tunneling from one logical subspace
to an orthogonal one, and therefore it is zero in the Z2

topologically ordered phase, and nonzero in the topologi-
cally trivial phase (= anyon condensed phase) [48]. Indeed,
onemay easily verify that hTl̃i ¼ 0ð1Þwhen β¼∞ðβ¼ 0Þ.
Using Eq. (1), Tl̃ flips spins along the curve l̃ (i.e.,
xe → −xe, ∀ e∈ l̃), and we denote the corresponding
configuration as xl̃;e. While xl̃;e and xe have the same flux
through every elementary plaquette, they live in different
logical sectors L. Therefore, Tl̃jψi ∝

P
xe ½Zxe �1=2jxl̃;ei ¼P

xe ½Zxl̃;e
�1=2jxei, where we have suppressed the subscript

“2D Ising” under the partition function Z for notational
convenience. Thus,

hTl̃i ¼
P

xe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZxeZxl̃;e

q
P

xeZxe

¼
P

xeZxee
−ΔFxl̃;e

=2

P
xeZxe

¼ he−ΔFl̃=2i ≥ e−hΔFl̃i=2; ð2Þ

where ΔFxl̃;e
¼ − logðZxl̃;e

=ZxeÞ is the free energy cost of

inserting a domain wall of size jl̃j ∼ L (= system’s linear
size) in theRBIMalong theNishimori line [30], andwe have
used Jensen’s inequality in the last sentence. We are along
the Nishimori line because the probability of a given gauge
invariant label ffp;Lg along the Nishimori line is precisely
the partition function Zxe [30]. Since hΔFl̃i, the disorder-
averaged free energy cost, diverges with L in the ferromag-
netic phase of the RBIMwhile converges to a constant in the
paramagnetic phase [30], Equation (2) rigorously shows that
for p > pc ¼ p2DRBIM ≈ 0.109 [49], hTl̃i saturates to a
nonzero constant. Therefore, jψi is a topologically trivial
state when p > pc, and hence the mixed state is SRE for
p > pc. In contrast, for p < pc, due to nonvanishing
ferromagnetic order (and associated domain wall cost) of
the RBIM, we expect that hT l̃i ∼ e−hΔFl̃i=2 ∼ e−cL → 0 in
the thermodynamic limit (c > 0 is a constant), implying that
jψi is topologically ordered. This does not necessarily imply
that the decohered state ρ is long-range entangled for
p < pc, because there may exist some other way to
decompose it as a sum of SRE pure states. However, for
p < pc, long-range entanglement as quantified by topo-
logical entanglement negativity is nonzero as shown in
Ref. [14]. Since a state of a form ρ ¼ P

i pijSREiiihSREj
can be prepared by an ensemble of finite-depth unitary
circuits starting with a product state, it is reasonable to
assume that it cannot support long-range entanglement as
quantified by any valid measure of entanglement. Assuming
that topological negativity is one suchmeasure (as supported
by previous works [14,43]), the above discussion implies
that the state of our interest undergoes a separability
transition at p ¼ pc.

Another diagnostic of topological order in pure states is the
(Renyi) topological entanglement entropy (TEE) [50–52].
Dividing the system in real space as A ∪ B, and defining the
reduced density matrix ρA ¼ trBjψðβÞihψðβÞj for the state
jψðβÞi [Eq. (1)], one finds [53]:

trðρ2AÞ ¼
P

xe;x0eZxA;xBZx0A;x
0
B
e−ΔFABðxe;x0eÞ=2

P
xe;x0eZxA;xBZx0A;x

0
B

: ð3Þ

Here, xAðxBÞ denotes all the edges belonging to the
region AðBÞ, ZxA;xB denotes the partition function of the
2D Isingmodelwith the sign of Ising interactions determined
by xA and xB, and ΔFABðxe; x0eÞ ¼ − log½Zx0A;xB

ZxA;x0B
=

ðZxA;xBZx0A;x
0
B
Þ� is the free energy cost of swapping bonds

between two copies of RBIM in region A. We provide a
heuristic argument (Ref. [53]) that the TEE jumps from log
(2) to zero at pc ¼ p2DRBIM. The main idea is that in the
ferromagnetic phase of the RBIM, the free energy penalty of
creating a single Ising vortex leads to a specific nonlocal
constraint on the allowed configurations that contribute to the
sum in Eq. (3). The constraint is essentially that one needs to
minimize the free energy cost ΔFABðxe; x0eÞ for each fixed
flux configuration ffpg and ff0pg corresponding to fxeg and
fx0eg in Eq. (3). One finds that there always exists a pair of
configurations that contribute equally to trðρ2AÞ while sat-
isfying the aforementioned constraint. This results in a
subleading contribution of − logð2Þ in the entanglement
entropy, which we identify as TEE. In the paramagnetic
phase, the aforementioned nonlocal constraint does not exist,
and one therefore does not expect a nonzero TEE. Therefore,
we arrive at the sameconclusion as theone obtained using the
anyon condensation operator.
Incidentally, one may also construct an alternative convex

decomposition of the decohered mixed state ρ that shows a
phase transition at a certain (nonoptimal) thresholdpnonoptimal

which is related to 2D RBIM via a Kramers-Wannier duali-
ty [34]. The main outcome is that tanhðβnonoptimalÞ ¼
1–2pnonoptimal satisfies tanh2ðβnonoptimal=2Þ ¼ p2DRBIM=
ð1 − p2DRBIMÞ which yields pnonoptimal ≈ 0.188. See
Ref. [53] for details.
Let us next consider the 3D toric code with H3D toric ¼

−
P

fð
Q

e∈ f ZeÞ −
P

vð
Q

e∈ v XeÞ [see Fig. 1(c)] subjected
to phase-flip errors (local nontrivial Kraus operators ∼Ze).
Previous work has already identified error recovery tran-
sition at pc ≈ 0.029 with universality determined by the 3D
random-plaquette gauge model (RPGM) along the
Nishimori line [31]. We first verify that the corresponding
mixed-state density matrix is long-range entangled for
p < pc by calculating its entanglement negativity. We find
a nonzero, quantized topological negativity log(2) for
p < pc and zero for p > pc. The calculation is concep-
tually similar to that for the 2D toric code [14], see Ref. [53]
for details. Having confirmed the presence of long-
range entanglement for p < pc, we now ask whether the
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mixed-state at p > pc is separable? To proceed, we follow
a strategy similar to that for the 2D toric code, and rewrite
the ground state of 3D toric code in terms of the ground
state ρC;0 of a parent cluster state with Hamiltonian
H3Dcluster ¼−

P
eXe

Q
f∋e Zf−

P
f Xf

Q
e∈f Ze ¼

P
e he þP

f hf. The corresponding ground state density matrix
of the 3D toric code ρ0 on a three-torus is
ρ0 ∝ hxf ¼ 1jρC;0jxf ¼ 1i, which is an eigenstate of the
noncontractible ’t Hooft membrane operators Txy; Tyz; Tzx

along the three planes with eigenvalue þ1 (Txy ¼
Q

ekz Xe

where the product is taken over all edges parallel to the z
axis in any xy plane; Tyz and Tzx are defined analogously).
Following essentially the same steps as in 2D toric
code, one obtains the decohered density matrix ρ ¼P

gx jψgxðβÞihψgxðβÞj with jψgxi ¼ gxjψðβÞi and gx a
product of single-site Pauli-Xs forming closed membranes.
Therefore, we again only need to analyze whether jψi≡
ρ1=2jze ¼ 1i is SRE or LRE. Again, one may rewrite

jψðβÞi ∝ P
xe ½Z3Dgauge;xeðβÞ�1=2jxei where Z3Dgauge;xe ¼P

zf e
β
P

e
xe
Q

f∋e
zf is now the partition function of a

classical 3D Ising gauge theory with the sign of each
plaquette term determined by fxeg. To probe the topologi-
cal transition in jψi as a function of β, we now consider the
Wilson loop operator Wl ¼ Q

e∈l Ze, where l denotes a
homologically nontrivial cycle on the original lattice, say,
along the z axis (so that it pierces and anticommutes with
Txy). One finds hWli ¼ he−ΔFl=2i ≥ e−hΔFli=2, where ΔFl

now denotes the free energy cost of inserting a domain wall
along the noncontractible loop for the 3D RPGM along the
Nishimori line. Since hΔFli diverges as the length of
jCj ∼ L (= system size) in the Higgs (ordered) phase, while
it converges to a constant in the confinement (disordered)
phase [31], one finds hWli saturates to a nonzero constant
when p > p3DRPGM ≈ 0.029 [31], while it vanishes for
p < pc. Therefore, jψi, and correspondingly the decohered
state ρ, is SRE when p > p3DRPGM and LRE for
p < p3DRPGM. One can similarly study the 3D toric code
with bit-flip errors. In this case, one finds that the
separability transition is dictated by the transition out of
the ferromagnetic phase in the 3D RBIM along the
Nishimori line, which matches the optimal error-recovery
threshold, pc ≈ 0.233 [54,55]. See Ref. [53] for details.
Finally, let us briefly consider the 3D X-cube model

(Ref. [61]), where the Hilbert space consists of qubits
residing on the edges (e) of a cubic lattice, and the
Hamiltonian isHXcube ¼−

P
c

Q
e∈c Ze−

P
vð
Q

e∈vx Xe þQ
e∈vy Xeþ

Q
e∈vz XeÞ ¼−

P
c Ac−

P
vðBvx þBvy þBvzÞ

where e∈ vγ; γ ¼ x, y, z denotes all the edges emanating
from the vertex v that are normal to the γ direction [see
Fig. 1(d)]. Previous work has already established that under
local decoherence, this system undergoes an error-recovery
transition at pc ≈ 0.152with universality determined by 3D
plaquette Ising model [62]. We now show that for p > pc,

the density matrix can be written as a convex sum of SRE
pure states. We exploit the observation in Ref. [39] that
the ground state density matrix ρ0 of the X-cube model
can be written as ρ0 ∝ hxc ¼ 1jρC;0jxc ¼ 1i, where
ρC;0 ∝

Q
cðI − hcÞ

Q
eðI − heÞ (hc ¼ −Xc

Q
e∈ c Ze and

he ¼ −Xe
Q

c∋e Zc) denotes the ground state density matrix
of the parent cluster state, and jxc¼1i¼⊗c jxc¼1i is the
product state in the Pauli-X basis. The qubits in the parent
cluster state live at the edges and the centers of the cubes
so that hc involves 13-qubit interactions, and he involves
5-qubit interactions [Fig. 1(d)]. The density matrix after
subjecting ρ0 to the phase-flip channel (Kraus operators
∼Ze) can be written as ρ ∝

P
xe Z3Dplaquette;xe jΩxeihΩxe j,

where jΩxei ∝
Q

eðI þ
Q

e∈ c ZeÞjxei and Z3Dplaquette;xe ¼P
zc e

β
P

e
xe
Q

c∋e
zc is the partition function of the 3D

plaquette Ising model [63] with the sign of interaction
on each plaquette determined by fxeg. One again only
needs to analyze the state jψi ¼ ρ1=2jze ¼ 1i to study the
separability transition for ρ. Now there exist exponentially
many topological sectors [61], and in the nondecohered
ground state ρ0, the membrane operators defined asQ

ekâ Xe with a ¼ x, y, z for any plane have expectation
value one. To detect the presence or absence of topological
order in jψi, one therefore considers noncontractible
Wilson loop operators Wl ¼ Q

e∈l Ze that anticommute
with the membrane operators orthogonal to l. The expect-
ation value of any such Wilson loop takes a form similar to
Eq. (2) where the partition function Zxe ¼ Z3Dplaquette;xe
and one is again along the Nishimori line. This again
indicates that the pure state jψi undergoes a transition at the
error threshold pc ¼ p3Dplaquette ≈ 0.152 [62].
Finally, an alternative, heuristic approach to any of the

phase transitions discussed above is via considering a more
general class ofwave functions jψ ðαÞi ∝ ρα=2jze ¼ 1i, which
capture the separability transition for the density matrix
ρðαÞ ≡ ρα=trðραÞ. For example, it is known that when ρ is the
decohered 2D toric code state, jψ ð2Þi undergoes a phase
transition frombeing topologically ordered to an SRE state at

a thresholdpð2Þ
c that is related to the critical temperature of the

2D translationally invariant classical Ising model [56], and
correspondingly, we find that the topological negativity of

ρð2Þ undergoes a transition from log 2 to 0 at pð2Þ
c (see

Ref. [53]). This transition can also be located by the wave
function overlap logðhψ ð2ÞðβÞjψ ð2ÞðβÞiÞ, which is propor-
tional to the free energy of the classical 2D Ising model.
This motivates a generalization of this overlap to general α
for any of the models considered above by defining
FαðβÞ ¼ ½1=ð1 − αÞ� logðhψ ðαÞðβÞjψ ðαÞðβÞiÞ. Taking the
limit α → 1, which corresponds to the wave function of
our main interest [Eq. (1) for the 2D toric code, and
analogous states for the other two models], one finds that
F1ðβÞ precisely corresponds to the free energy of the
corresponding statistical mechanics model along the
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Nishimori line, which indeed shows a singularity at the
optimal error-recovery threshold pc.
To summarize, we showed that decoherence-induced

separability transitions in several topological states coincide
with the optimal threshold for QEC [13–15,30,62].
Therefore in these models, the inability to correct logical
errors implies an ability to prepare the mixed state using an
ensemble of short-depth unitary circuits, which is our main
result. The parent cluster Hamiltonian approach we discuss
also provides an alternative method to find the relevant
statistical mechanics models. The convex decomposition
discussed captures the universal aspects of the phase
diagram, as well as the threshold correctly, and it is optimal
in this sense. It will be interesting to consider generalization
of our approach to non-CSS and/or non-Abelian topological
states. It might also be interesting to explore connections
between decohered mixed states and perturbed pure topo-
logical states since they are both connected to finite temper-
ature classical phase transitions [59]. Finally, we remark that
using standard duality arguments [13,35], the separability
transitions discussed here may also be reformulated as
transitions for quantummagnets with a globalZ2 symmetry.
For example, our result implies that the ground state
of the 2D quantum Ising model with Hamiltonian H ¼
−
P

hi;ji τ
z
i τ

z
j − h

P
i τ

x
i will undergo a separability transition

in the paramagnetic phase when subjected to decoherence
with Kraus operators Kij ∝ τzi τ

z
j at strength p. Above a

certain pc (which, at h ¼ 0, equals p2DRBIM ≈ 0.109),
one will enter a new phase where the density matrix is
expressible as a convex sum of states where each of them
spontaneously breaks the Z2 symmetry, while such a
representation is not possible below pc [recall that under
Wegner duality, SRE states map to Greenberger-Horne-
Zeilinger states].We leave a detailed exploration of this dual
description for a future study.
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