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GKP states, introduced by Gottesman, Kitaev, and Preskill, are continuous variable logical qubits that
can be corrected for errors caused by phase space displacements. Their experimental realization is
challenging, in particular, using propagating fields, where quantum information is encoded in the
quadratures of the electromagnetic field. However, traveling photons are essential in many applications of
GKP codes involving the long-distance transmission of quantum information. We introduce a new method
for encoding GKP states in propagating fields using single photons, each occupying a distinct auxiliary
mode given by the propagation direction. The GKP states are defined as highly correlated states described
by collective continuous modes, as time and frequency. We analyze how the error detection and correction
protocol scales with the total photon number and the spectral width. We show that the obtained code can be
corrected for displacements in time-frequency phase space, which correspond to dephasing, or rotations, in
the quadrature phase space and to photon losses. Most importantly, we show that generating two-photon
GKP states is relatively simple, and that such states are currently produced and manipulated in several
photonic platforms where frequency and time-bin biphoton entangled states can be engineered.
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Derived from classical error-correction protocols, quan-
tum error correction plays a central role in quantum
information theory. The counterintuitive features of quan-
tum mechanics are inherently fragile and necessitate error
correction to enable the manifestation of the quantum
advantage of protocols over their classical counterparts.
Originally devised for qubits and finite-dimensional dis-
crete systems [1,2], quantum error-correcting codes rely on
creating redundant states composed of multiple physical
qubits to define logical qubits. By measuring well-chosen
observables that do not affect the state of the logical qubit
—the stabilizers—one can detect and correct errors affect-
ing the physical qubits. Entanglement is usually an impor-
tant ingredient in error correction, as exemplified by the
states that withstand physical qubit flips and dephasing
[3,4].
When dealing with continuous variables such as position

and momentum, it is also possible to encode quantum
information into states that can be corrected for errors [5–
8]. One of the most successful models for error correction
in continuous variables is known as the GKP code [9] (see,
for instance, [10] for a review) named after its creators:
Gottesman, Kitaev, and Preskill. GKP states are a direct
extension of the discrete variable codes into the continuous
domain [11,12] and are correctable for errors modeled as
displacements in phase space. In the realm of quantum
optics, one usually thinks of encoding GKP states using
two orthogonal quadratures of the electromagnetic field,
since the associated observables obey the same commuta-
tion relation as position and momentum. In such a system,

phase space displacements can be the consequence of
unwanted interference with a parasite classical field or
model photon losses [13,14]. However, a main difficulty
consists of the experimental production of such highly
nonclassical states, which involves, for instance, the prior
(nondeterministic) production of Schrödinger catlike states
(or, in practice, kittens) that are made to interfere [15].
Several proposals exist [16–21], as well as a first exper-
imental realization [22]. Of course, one can also encode
GKP states using other bosonic systems as superconducting
circuits [23] or the motional states of trapped ions [24,25].
However, building a robust code adapted to propagating
fields is clearly of major importance if one wills to transmit
quantum information, in particular, to several independent
users [26].
In the present Letter, we propose a new way to encode

GKP states in quantum optics using an original approach to
continuous variables. We use continuous collective varia-
bles of single photons occupying distinct auxiliary modes,
as the propagation direction [27] to define redundant states.
Our model can apply to different single photon continuous
modes, as time and frequency (that we discuss in detail), the
transverse position and momentum [28], the propagation
direction [29,30], and also to the collective modes of
massive particles, as the normal modes of trapped ions
[31,32]. Using the established formalism, we theoretically
investigate how GKP code words can be defined in a
system comprising n individual photons, elucidating how
some known properties of the encoded states can be
retrieved, as for instance, the scaling of the error rate with
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the number of photons, their possibility to recover from
photon losses, and the effects of imperfect preparation and
measurement. Notably, we show that in the time-frequency
(TF) encoding scheme, these properties have a fundamen-
tally different physical origin compared to quadrature-
based (QB) encoding. Finally, we demonstrate that the
generation and manipulation of TF GKP states in quantum
optics is already a reality in laboratories. This is particularly
evident in experimental setups where entangled photon
pairs with a correlated comblike temporal or spatial
structure are observed, as exemplified in Refs. [26,33–
45]. Consequently, these experimental platforms and the
associated quantum protocols can immediately benefit
from our findings.
We define as Sn the subspace consisting of n single

photons occupying each an auxiliary mode, as the propa-
gation direction. Photons are characterized by a collective
spectral function that also depends on the auxiliary mode.
The auxiliary modes can be seen as external degrees of
freedom and frequency as internal degrees of freedom [46].
Pure states are written as

jψi ¼
Z

dω1…dωnfðω1;…;ωnÞjω1;…;ωni; ð1Þ

where f is a normalized function (the spectral amplitude)
that determines the properties of state (1) as entanglement
and its mode decomposition [47,48], and â†i ðωiÞj0i ¼ jωii.
In Sn, errors are represented in the basis of time and
frequency displacements, and they can affect the photons
locally; i.e., they act independently on the photons of each
auxiliary mode, a situation similar to the one affecting a
collection of physical qubits. Such displacements are de-
scribed by operators acting on a given mode j∈ f1;…; ng
as D̂ω̂j

ðδtjÞ ¼ e−iω̂jδtj and D̂t̂jðδωj
Þ ¼ e−it̂jδωj , where ω̂i ¼R

dωωâ†i ðωÞâiðωÞ and t̂i ¼
R
dtt ˜̂a†i ðtÞ ˜̂aiðtÞ, with ˜̂aiðtÞ ¼

ð1= ffiffiffiffiffiffi
2π

p Þ R dωeiωtâðωÞ, where â†i ðηÞ creates one photon
at frequency η at the ith auxiliary mode and ½ω̂k; t̂j� ¼
iδk;j

R
dωâ†kðωÞâkðωÞ ¼ n̂kiδk;j (n̂k ¼ 1 on Sn) [27,49].

Now we show that entangled states of n photons in the
TF continuous variables sharing the same properties of
GKP states can be corrected for this type of error. Such
states can be written in the general separable form in
collective variables:

jk̄i ¼
Z

dΩ1…dΩnFkðΩ1ÞΠn
i>1GiðΩiÞjω1;…;ωni; ð2Þ

where Ωj ¼
P

n
i αi;jωi are collective variables, αi;j is an in-

vertible matrix with αi;j ∈ f−1= ffiffiffi
n

p
; 1=

ffiffiffi
n

p g, and k∈ f0; 1g.
We consider for simplicity and without loss of generality
that αi;1 ¼ 1=

ffiffiffi
n

p ∀ i, and that n ¼ 2m, m∈N. The matrix
α is unitary and symmetric, hence, ωi ¼

P
j αj;iΩj.

An ideal n photon GKP state jk̄i in Sn can be defined
from (2) using FkðΩ1Þ ¼

P
s¼∞
s¼−∞ δ(Ω1 − ð2sþ kÞΩo),

where δ is the Dirac delta function and Ωo is an arbitrary
(constant) frequency. Hence, the logical qubits j0̄ð1̄Þi are
nonphysical states formed by an infinity of peaks localized
at frequencies which are integer multiples ofΩo, and 2Ωo is
the peak interspacing in each logical qubit (the choice of
αi;j means that we have supposed that all the photons’
frequencies are equally spaced [50]). States jk̄i are defined
uniquely using the collective variable Ω1. The functions Gi
are arbitrary, and their role, not crucial for the code working
principles, will be discussed later in this Letter. Thus, all
the relevant information for error diagnosis and correction
is contained only in variable Ω1, and we disregard the
information contained in Ωi>1. This type of situation is
current in quantum optics where different physical proper-
ties, as group and phase velocity for multimodal fields, are
associated with different collective variables. For instance,
in the Hong-Ou-Mandel experiment [51] (see Refs. [52,53]
for its generalization to many photons), the variable
Ω1 ¼ ðω1 − ω2Þ=

ffiffiffi
2

p
is directly measured, while the infor-

mation in variable Ω2 ¼ ðω1 þ ω2Þ=
ffiffiffi
2

p
is disregarded

[54]. By combining different interferometric techniques
[55], one can access different collective variables measur-
ing not only frequency but other continuous modes, as the
transverse position and momentum [28,39].
TF GKP states are intrinsically multimode states relying

on the particle-mode nonseparability, so they are funda-
mentally different from optical combs in single-mode states
using spectral engineering of classical (coherent) states or
single photons [33,56]. Thanks to the encoding in collec-
tive variables (modes) of individual photons, TF GKP states
reveal their multiphotonic properties as the scaling of the
error tolerance with the number of photons n. Hence, they
are also fundamentally distinct from QB GKP states—that
can be defined in single modes—even in their multidi-
mensional version [57].
An example of a possible jk̄i state with GiðΩiÞ ¼

δðΩiÞ ∀ i in (2) is [58]

jk̄i ¼
X∞
s¼−∞

����ð2sþ kÞ Ωoffiffiffi
n

p
�

1

…

����ð2sþ kÞ Ωoffiffiffi
n

p
�

n
: ð3Þ

Analogous to the QB GKP states, we can identify non-
Hermitian operators that act in jk̄i as Pauli matrices [33].
One way to see this is using displacements in the collective
TF variables D̂T̂1

ðΔωÞ ¼ e−iT̂1Δω and D̂Ω̂1
ðΔtÞ ¼ e−iΩ̂1Δt ,

where ΔtðωÞ ∈R, Ω̂1 ¼
P

n
i ω̂i=

ffiffiffi
n

p
, and T̂1 ¼

P
n
i t̂i=

ffiffiffi
n

p
,

with ½Ω̂1; T̂1� ¼ 1i in Sn [49]. Collective operators can also
be associated with variablesΩi>1. By an appropriate choice
of ΔtðωÞ, we can define the Pauli-like operators in the TF

GKP subspace as X̂ ¼ e−iΩ̂1To and Ẑ ¼ e−iT̂1Ωo , with To ¼
π=Ωo and Ŷ ¼ iẐ X̂ so j1̄i ¼ X̂j0̄i. Also, a combination of
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the universal time-frequency gates defined and physically
described in [49] can be used to complete the universal gate
set in the TF GKP space [59]. A key aspect of the proposed
encoding is that the construction of the logical operators X̂,
Ŷ, and Ẑ (and consequently of the TF GKP universal gate
set) is not unique. Nevertheless, the formal construction of
the TF GKP code is identical to the QB one, so all the
properties of the latter can be retrieved here, but now
associated with different continuous variables. States (3)
enable correcting for collective time and frequency errors
corresponding to TF displacements such that jΔωj < Ωo=2
and jΔtj < π=ð2ΩoÞ, delimiting a TF phase space area of
correctable errors satisfying 4jΔωjjΔtj < π. Physically,
displacement errors can correspond to imperfect aligning
of an interferometer and the effects of a nonlinear device as
an optical fiber.
Restricting to collective errors is missing our main

goal, which is creating states which are robust against
local displacements in the TF variables of each photon.
Physically, this corresponds to a situation where each
photon occupying a different propagation mode is distrib-
uted throughout different channels, and frequency and time
displacements occur independently in each mode (and
consequently, each photon). Such TF displacements are
rotations in the quadrature phase space, a type of error
against which the usual QB GKP is not very efficient [10]
and require using rotation-symmetric states in the quad-
rature space [61]. As for states (3), they are robust against
global and local rotations by construction. We now study
the effect of local noise in the TF GKP states (2). We have

D̂ω̂j
ðδtjÞjk̄i ¼

Z
dΩ1…dΩne

−i
Ω1δtjffiffi

n
p

FkðΩ1Þ

×
Yn
k>1

G̃kðΩkÞjω1;…;ωni; ð4Þ

where G̃kðΩkÞ ¼ e−i
αj;kΩkδtjffiffi

n
p

GkðΩkÞ. In addition,

D̂t̂jðδωj
Þjk̄i ¼

Z
dΩ1…dΩnFk

�
Ω1 −

δωjffiffiffi
n

p
�

×
Yn
k>1

GkðΩk − Ω̄kÞjω1;…;ωni; ð5Þ

where Ω̄k ¼ αj;kδωj
. Equations (4) and (5) lead to an

important result: The code words (3) protect against shifts
in local variables ωj in a way that scales with

ffiffiffi
n

p
with the

number of photons n. Some examples of correctable errors
are then a single photon in mode j that is displaced by
jδtj j <

ffiffiffi
n

p
π=ð2ΩoÞ, up to ≈

ffiffiffi
n

p
photons in different modes

j that are each displaced by jδtj j < π=ð2ΩoÞ, and n photons
that are each equally displaced by jδtj j < π=ð2Ωo

ffiffiffi
n

p Þ.
Thus, if one focuses on local errors, the code words (3)

can protect them provided that they lie in a phase space area
of size 4jPn

j δωj
jjPn

j δtj j < nπ [62]. We can see this as a
rescaling of the code, since the overall protection corre-
sponds to the one of a single-photon GKP state formed by
peaks that are distant of 2

ffiffiffi
n

p
Ωo and

ffiffiffi
n

p
=ð2ΩoÞ in time and

frequency variables, respectively. Interestingly, contrary to
what one would observe in a classical time-frequency
Fourier relation where the dilatation of the frequency space
is accompanied by the shrinking of the time space and
vice versa, the observed effective phase space dilatation
is a geometric consequence of encoding information in
collective variables while errors occur in local ones. This
rescaling leads to a photon number dependency of the
probability error rate analogous to the one observed for QB
GKP encoding, as we will see later.
Operators X̂ and Ẑ are not unique. We can define X̂j ¼

e−iω̂jTo
ffiffi
n

p
and check by computing X̂jjk̄i that X̂j acts in

variablesΩ1 in the sameway as X̂ does (see Fig. 1 and [59]).
Using this, we can detect the loss of one photon in mode j0
(unknown) and adapt to its effects bymeasuring the time and
frequency displacements only. If a photon is lost, the TF
GKP state becomes jk̄i−1 ¼

R
dωâjðωÞjk̄i ¼ Êjjk̄i (we

considered that the photon loss rate is independent of
the frequency [63]). Defining Ŝj ¼ e−iηjΩot̂j X̂2

je
iηjΩot̂j ¼

e−i2ðω̂j−n̂jηjΩoÞTo
ffiffi
n

p
, ηj ∈R, and only considering the infor-

mation in Ω1, we have that ŜjŜjþ1 stabilizes jk̄i in Sn if
ðηj þ ηjþ1Þ

ffiffiffi
n

p ¼ m, m∈Z, for all j, and it stabilizes

Êj0 jk̄i ¼ jk̄i−1 if j0 ≠ j; jþ 1. In addition, ŜjŜjþ1Êjjk̄i ¼
ÊjŜjþ1jk̄i ¼ e−2iηjπ

ffiffi
n

p
Êjjk̄i, so by judiciously choosing ηj

we can detect a photon loss and the mode from which it was
lost (j or jþ 1 here). We can also define Ŝ ¼ ΠjŜj, which is

a stabilizer of jk̄i. Using that ŜÊjjk̄i ¼ e−iηjπ
ffiffi
n

p
Êjjk̄i, we can

detect in a single shot that a photon has been lost and from
which mode, by judiciously choosing ηj’s and ifP

n
j¼1 ηj

ffiffiffi
n

p ¼ m [59]. The stabilizer measurement provides
essential information about the mode that lost a photon,
permitting us to adapt the operations and measurements to
an n − 1 photon configuration: If a photon is lost, the

FIG. 1. Left: physical TF GKP state with peak spacing 2Ωo in
the collective variable Ω1. Ω⊥ is a collective variable orthogonal
to Ω1. Right: a displacement of 2

ffiffiffi
n

p
Ωo in the local variable ωj

also displaces variable Ω1. The displacement in the orthogonal
direction Ω⊥ is not relevant since we ignore the information it
contains.
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collective effects in displacements are smaller, and in order
to have e2iΩ̂1T 0

o jk̄i−1 ¼ jk̄i−1, we must use T 0
o ¼ Ton=

ðn − 1Þ. One can also reinsert the lost photon by applying
a two-photon conditional gate involving mode j and an
arbitrary mode i0 in the code, and a displacement, so that
D̂T̂1

ð−ωjÞeit̂jω̂i0 â†jðωjÞjk̄i−1 ¼ jk̄i [49,59,64].
States (3) are not physical. We can define

their normalizable version j0̃ð1̃Þi using F̃kðΩ1Þ ¼P
s¼∞
s¼−∞ e−κ

2ð2sþkÞ2Ω2
oe−

½Ω1−ð2sþkÞΩo �2
Δ2 , k∈ f0; 1g, where each

peak of the TF GKP code has a Gaussian spectrum of
width Δð≪ Ωo) in variable Ω1, and the comb of peaks
distribution is modulated by a Gaussian envelope of width
κ−1 ≪ To=π [9]. We will consider for simplicity that
Δ ¼ κ. A finite width provides an intrinsic error probability
to states j0̃ð1̃Þi, seen as perfect states (3) that have been
subjected to a distribution of displacements (errors). Hence,
an error probability EðΔ=ΩoÞ is associated with the error-
correction protocol through the definition of nonperfectly
orthogonal states as code words. The finite spectral width
can be modeled as independent displacements of individual
photons with a Gaussian amplitude distribution of width
Δj. Each photon j in (3) is described by state

���� g
ð2sþkÞΩoffiffiffi

n
p

�
j
¼
Z
dωe−Δ

2
j ð2sþkÞ2

�
Ωoffiffi
n

p
�
2

e
−

�
ω−ð2sþkÞΩoffiffi

n
p

�
2

Δ2
j jωij: ð6Þ

The local variables ωi behave as independent random
variables, and we can suppose Δj ¼ Δ. Each n photon

peak has the form Πn
j j gð2sþ kÞðΩo=

ffiffiffi
n

p Þij, and the total
state’s temporal envelope is Δ−1. By changing to the
collective variables Ωi, each peak is described by a
Gaussian spectral distribution of width Δ in all variables
Ωi, leading to F̃kðΩ1Þ shown above. Hence, different
from the QB GKP encoding, the spectral width does
not depend on the average photon number, and
the probability of mistaking j0̃i and j1̃i is given by

EðΔ=ΩoÞ ¼ ðΔ=πΩoÞe
−πΩ2o
4Δ2 [9]. We recall however that in

the present encoding the effective displacement on the
collective variable Ω1 decreases with

ffiffiffi
n

p
, increasing the

effective distance between peaks. Consequently, the region
of potential overlap between the two supposedly orthogo-
nal QB GKP qubit states is modified [65].
By analyzing the effects of photon losses discussed

above for physical TF GKP states, we see that the loss
of m photons will not significantly affect the code if the
cumulated effective peak interspacing modification Tom=n
[59] in the whole state [≈1=ð2ΔToÞ peaks] is within each
peak’s half-width Δ=2, leading to the condition
2Tom=n × 1=ð2ΔToÞ ¼ m=ðΔnÞ ≤ Δ, or n=m ≥ 1=Δ2 ≫
π=ðΩoToÞ ¼ 1. These errors propagate with the number of
gates, and a detailed analysis should be carried out, but

displacement-based correction strategies can be devised
based on this scaling [59].
We now discuss the role of a finite frequency width in the

collective variables Ωj>1. For simplicity, we will consider
Ω⊥ to be one of these variables and ignore all the others,
considering a state with spectral amplitude FkðΩ1ÞGðΩ⊥Þ.
The width of the spectral distributions Fk and G in (2) can
be independent and related to different physical constraints,
as, for instance, energy conservation and the phase match-
ing condition in spontaneous parametric down-conversion.
If the spectral function of state (2) is separable in variables
Ω1 andΩ⊥ and all the measurements performed on variable
Ω1, the spectral width σ or the particular shape ofG have no
importance. However, state preparation may be imperfect,
leading to a state that is still separable but in the variables
Ω0

1 ¼ cos θΩ1 þ sin θΩ⊥ and Ω0⊥ ¼ cos θΩ⊥ − sin θΩ1.
This model also describes the situation of imperfect
measurements, where variable Ω0

1 is measured instead of
Ω1. In these cases, the peaks’ width in the measured
variable is broadened by an additive factor σ sin θ, and
the peak spacing is rescaled to 2Ωo cos θ (for details and a
figure, see Ref. [59]). This effective width and peak spacing
can be seen as errors that do not significantly affect the
code if the cumulated change in peak spacing Ωoð1 −
cos θÞ½1=ð2ΩoΔÞ� lies within the peak’s half-width Δ=2, or
ð1 − cos θÞ≲ Δ2 ≪ ΩoTo=π ¼ 1. Otherwise, we can adapt
the code to the modified interspacing 2Ωo cos θ (where θ is
known), with an associated error probability Eðσ tan θ=ΩoÞ
in frequency and E½tan θ=ðσToÞ� in time, leading to tan θ ≪
minfπσ=ð2ΩoÞ;Ωo=ð2σÞg [59].
Finally, two n photon TF GKP states can be entangled by

applying frequency controlled-NOT (CNOT) gates Ĉi;j ¼
eiω̂i⊗t̂j [33,49], implementing Ĉi;jjωiiijωjij ¼ jωiiijωiþ
ωjij. We define D̂1;2 ¼⊗n

i¼1 Ĉði;1Þ;ði;2Þ [59], where ði; jÞ
denotes the ith spatial mode of the jth TF GKP qubit,
with j ¼ 1ð2Þ for the control (target) qubit. Hence,
D̂1;2jk̄1i1jk̄2i2 ¼ jk̄1i1jðk2 þ k1Þ mod 2i2, and using
jþii ¼ ð1= ffiffiffi

2
p Þðj0̄ii þ j1̄iiÞ, we obtain D̂1;2jþi1j0̄i2 ¼ 1=ffiffiffi

2
p ðj0̄i1j0̄i2 þ j1̄i1j1̄i2Þ. Interestingly, it is also possible to
implement the CNOT gate between two TF GKP qubits by
coupling only one photon from the target qubit to one photon
of the control qubit: Since information is encoded in the
collective variables Ω1 of each qubit, for qubit states as (3),
for instance, we also have that einω̂ði;1Þ⊗t̂ði;2Þ jk̄1i1jk̄2i2 ¼
jk̄1i1jðk2 þ k1Þ mod 2i2 (see Ref. [59] for details). In
[64,66], frequency controlled two-photon gates were exper-
imentally implemented, and promising proposals exist for
cavity QED platforms; e.g., [67].
We can compare our results to other encodings based on

GKP-like states within the continuous modes of single
photons. In the TF domain, it is possible to define GKP
qubits using a frequency comb spectral distribution in
single photons. In that case, one photon corresponds to one
qubit, and the spectral function of each photon defines a
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two-level-like system that exhibits local robustness against
TF displacements [33,68]. This is a single-mode classical-
like effect independent of the number of photons involved,
and if the photon’s peaks are separated by 2Ωo=

ffiffiffi
n

p
[as in

(3)], the protection against displacement errors is limited to
amplitudes δωj

∼Ωo=ð2
ffiffiffi
n

p Þ per photon. Of course, it is
possible to enhance protection against local (single-photon)
quibit flipping and dephasing by using entangled photons.
However, the so-constructed codes operate similarly to
discrete ones [1–4], and correction for qubit flip and
dephasing requires using entangled states of at least five
photons. In contrast, the encoding proposed here demon-
strates enhanced protection starting from n ¼ 2.
Based on our analysis, we can reinterpret the results of

[33] as the production of a two-photon GKP state. While it
remains a GKP state on a small scale, the existing
techniques for producing QB GKP states involve the
manipulation of Schrödinger kittens with a mean photon
number of the order of 1. Therefore, TF GKP states hold
significant promise: Techniques to directly generate large
entangled states [42,69–75] and high-dimensional combs
[76] to manipulate photons using nonlinear devices so as to
implement single mode [77–79] or two-mode controlled
[64,66,67] time-frequency operators in the universal set
rapidly develop, together with high-performance frequency
(or mode) resolved [80–82] and nondestructive single-
photon detectors [83,84].
In conclusion, we have introduced and conducted an

extensive study of a novel quantum optical encoding
method for GKP states that can be implemented in small
scale in many laboratories using current technology. Using
the presently available TF GKP states, we can already
envision applications in various domains as quantum
communications [26,85], quantum computation [86], and
quantum metrology [87]. Moreover, we can broaden the
scope of potential applications by applying the proposed
GKP encoding from the flourishing domain of TF-based
quantum photonics [88] to other continuous degrees of
freedom of mode entangled photons, such as their trans-
verse position and momentum [28,39], the propagation
direction [29,30], and even to individual electrons in
distinguishable modes with an underlying bosonic structure
[89]. An interesting perspective involves adapting recent
theoretical and experimental advancements related to QB
GKP states in quantum information to the modal domain
[16,90–96]. Finally, the tools we have provided for defining
quantum continuous variables using collective variables of
single photons can also be extended to other error-cor-
recting codes, such as cat codes [97–101]. However, this
remains a subject for future investigation.

We acknowledge funding from the Plan France 2030
through the project ANR-22-PETQ-0006 and N. Fabre,
F. Baboux, and S. Ducci for fruitful discussions.

*Corresponding author: perola.milman@u-paris.fr
[1] P. W. Shor, Scheme for reducing decoherence in quantum

computer memory, Phys. Rev. A 52, R2493 (1995).
[2] A. M. Steane, Error correcting codes in quantum theory,

Phys. Rev. Lett. 77, 793 (1996).
[3] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek,

Perfect quantum error correcting code, Phys. Rev. Lett.
77, 198 (1996).

[4] D. Gottesman, Stabilizer codes and quantum error correc-
tion, arXiv:quant-ph/9705052.

[5] I. L. Chuang, D. W. Leung, and Y. Yamamoto, Bosonic
quantum codes for amplitude damping, Phys. Rev. A 56,
1114 (1997).

[6] P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macro-
scopically distinct quantum-superposition states as a bo-
sonic code for amplitude damping, Phys. Rev. A 59, 2631
(1999).

[7] S. L. Braunstein, Error correction for continuous quantum
variables, Phys. Rev. Lett. 80, 4084 (1998).

[8] S. Lloyd and Jean-Jacques E. Slotine, Analog quantum
error correction, Phys. Rev. Lett. 80, 4088 (1998).

[9] D. Gottesman, A. Kitaev, and J. Preskill, Encoding
a qubit in an oscillator, Phys. Rev. A 64, 012310
(2001).

[10] A. L. Grimsmo and S. Puri, Quantum error correction with
the Gottesman-Kitaev-Preskill code, PRX Quantum 2,
020101 (2021).

[11] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A.
Sloane, Quantum error correction and orthogonal geo-
metry, Phys. Rev. Lett. 78, 405 (1997).

[12] D. Gottesman, Class of quantum error-correcting codes
saturating the quantum Hamming bound, Phys. Rev. A 54,
1862 (1996).

[13] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T.
Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M.
Girvin, B. M. Terhal, and L. Jiang, Performance and
structure of single-mode bosonic codes, Phys. Rev. A
97, 032346 (2018).

[14] A. Joshi, K. Noh, and Y. Y. Gao, Quantum information
processing with bosonic qubits in circuit QED, Quantum
Sci. Technol. 6, 033001 (2021).

[15] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, and K. K.
Sabapathy, Progress towards practical qubit computation
using approximate Gottesman-Kitaev-Preskill codes, Phys.
Rev. A 101, 032315 (2020).

[16] B. W. Walshe, B. Q. Baragiola, R. N. Alexander, and N. C.
Menicucci, Continuous-variable gate teleportation and
bosonic-code error correction, Phys. Rev. A 102,
062411 (2020).

[17] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I.
Tzitrin, T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G.
Dauphinais, K. K. Sabapathy, N. C. Menicucci, and I.
Dhand, Blueprint for a scalable photonic fault-tolerant
quantum computer, Quantum 5, 392 (2021).

[18] M. V. Larsen, C. Chamberland, K. Noh, J. S. Neergaard-
Nielsen, and U. L. Andersen, Fault-tolerant continuous-
variable measurement-based quantum computation
architecture, PRX Quantum 2, 030325 (2021).

[19] Y. Zheng, A. Ferraro, A. F. Kockum, and G. Ferrini,
Gaussian conversion protocol for heralded generation of

PHYSICAL REVIEW LETTERS 132, 170601 (2024)

170601-5

https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.1103/PhysRevLett.77.198
https://arXiv.org/abs/quant-ph/9705052
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevA.56.1114
https://doi.org/10.1103/PhysRevA.59.2631
https://doi.org/10.1103/PhysRevA.59.2631
https://doi.org/10.1103/PhysRevLett.80.4084
https://doi.org/10.1103/PhysRevLett.80.4088
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PhysRevA.64.012310
https://doi.org/10.1103/PRXQuantum.2.020101
https://doi.org/10.1103/PRXQuantum.2.020101
https://doi.org/10.1103/PhysRevLett.78.405
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1088/2058-9565/abe989
https://doi.org/10.1088/2058-9565/abe989
https://doi.org/10.1103/PhysRevA.101.032315
https://doi.org/10.1103/PhysRevA.101.032315
https://doi.org/10.1103/PhysRevA.102.062411
https://doi.org/10.1103/PhysRevA.102.062411
https://doi.org/10.22331/q-2021-02-04-392
https://doi.org/10.1103/PRXQuantum.2.030325


generalized Gottesman-Kitaev-Preskill states, Phys. Rev.
A 108, 012603 (2023).

[20] M. Eaton, R. Nehra, and O. Pfister, Non-Gaussian and
Gottesman-Kitaev-Preskill state preparation by photon
catalysis, New J. Phys. 21, 113034 (2019).

[21] R. Dahan, G. Baranes, A. Gorlach, R. Ruimy, N. Rivera,
and I. Kaminer, Creation of optical cat and GKP states
using shaped free electrons, Phys. Rev. X 13, 031001
(2023).

[22] S. Konno, W. Asavanant, F. Hanamura, H. Nagayoshi, K.
Fukui, A. Sakaguchi, R. Ide, F. China, M. Yabuno, S. Miki,
H. Terai, K. Takase, M. Endo, P. Marek, R. Filip, P. van
Loock, and A. Furusawa, Propagating Gottesman-Kitaev-
Preskill states encoded in an optical oscillator, Science
383, 6680 (2024).

[23] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard et al.,
Quantum error correction of a qubit encoded in grid states
of an oscillator, Nature (London) 584, 368 (2020).

[24] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky,
K. Mehta, and J. P. Home, Encoding a qubit in a trapped-
ion mechanical oscillator, Nature (London) 566, 513
(2019).

[25] C. Flühmann, V. Negnevitsky, M. Marinelli, and J. P.
Home, Sequential modular position and momentum mea-
surements of a trapped ion mechanical oscillator, Phys.
Rev. X 8, 021001 (2018).

[26] F. Appas, F. Baboux, M. Amanti, A. Lemaître, F. Boitier,
E. Diamanti, and S. Ducci, Flexible entanglement-
distribution network with an AlGaAs chip for secure
communications, npj Quantum Inf. 7, 118 (2021).

[27] E. Descamps, N. Fabre, A. Keller, and P. Milman,
Quantum metrology using time-frequency as quantum
continuous variables: Resources, sub-shot-noise precision
and phase space representation, Phys. Rev. Lett. 131,
030801 (2023).

[28] D. S. Tasca, R. M. Gomes, F. Toscano, P. H. Souto Ribeiro,
and S. P. Walborn, Continuous variable quantum compu-
tation with spatial degrees of freedom of photons, Phys.
Rev. A 83, 052325 (2011).

[29] A. S. Solntsev, F. Setzpfandt, A. S. Clark, C. W. Wu,
M. J. Collins, C. Xiong, A. Schreiber, F. Katzschmann,
F. Eilenberger, R. Schiek, W. Sohler, A. Mitchell, C.
Silberhorn, B. J. Eggleton, T. Pertsch, A. A. Sukhorukov,
D. N. Neshev, and Y. S. Kivshar, Generation of non-
classical biphoton states through cascaded quantum walks
on a nonlinear chip, Phys. Rev. X 4, 031007 (2014).

[30] A. Raymond, S. Francesconi, J. Palomo, P. Filloux, M.
Morassi, A. Lemaître, F. Raineri, M. Amanti, S. Ducci, and
F. Baboux, in Proceedings of the Conference on Lasers
and Electro-Optics/Europe (CLEO/Europe 2023) and
European Quantum Electronics Conference (EQEC
2023), https://opg.optica.org/abstract.cfm?URI=EQEC-
2023-eb_6_6.

[31] A. Steane, The ion trap quantum information processor,
Appl. Phys. B 64, 623 (1997).

[32] D. F. V. James, Quantum dynamics of cold trapped ions
with application to quantum computation, Appl. Phys. B
66, 181 (1998).

[33] N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer, A.
Keller, T. Coudreau, F. Baboux, M. I. Amanti, S. Ducci,

and P. Milman, Generation of a time-frequency grid state
with integrated biphoton frequency combs, Phys. Rev. A
102, 012607 (2020).

[34] G. Maltese, M. I. Amanti, F. Appas, G. Sinnl, A. Lemaître,
P. Milman, F. Baboux, and S. Ducci, Generation
and symmetry control of quantum frequency combs, npj
Quantum Inf. 6, 13 (2020).

[35] M. Kues, C. Reimer, P. Roztocki, L. Cortés, S. Sciara, B.
Wetzel, Y. Zhang, A. Cino, S. Chu, B. Little, D. Moss,
L. Caspani, J. Azaña, and R. Morandotti, On-chip gen-
eration of high-dimensional entangled quantum states
and their coherent control, Nature (London) 546, 622
(2017).

[36] P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, K. Han,
D. E. Leaird, J. M. Lukens, P. Lougovski, M. Qi, and
A. M. Weiner, 50-GHz-spaced comb of high-dimensional
frequency-bin entangled photons from an on-chip silicon
nitride microresonator, Opt. Express 26, 1825 (2018).

[37] L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar,
J.-M. Merolla, and K. P. Huy, Frequency-bin entangled
photons, Phys. Rev. A 82, 013804 (2010).

[38] Y. Tomohiro, R. Ikuta, T. Kobayashi, S. Miki, F. China, H.
Terai, N. Imoto, and T. Yamamoto, Massive-mode polari-
zation entangled biphoton frequency comb, Sci. Rep. 12,
8964 (2022).

[39] M. R. Barros, A. Ketterer, O. J. Farías, and S. P. Walborn,
Free-space entangled quantum carpets, Phys. Rev. A 95,
042311 (2017).

[40] C. L. Morrison, F. Graffitti, P. Barrow, A. Pickston, J. Ho,
and A. Fedrizzi, Frequency-bin entanglement from
domain-engineered down-conversion, APL Photonics 7,
066102 (2022).

[41] J. M. Lukens and P. Lougovski, Frequency-encoded pho-
tonic qubits for scalable quantum information processing,
Optica 4, 8 (2017).

[42] F. A. Sabattoli, L. Gianini, A. Simbula, M. Clementi, A.
Fincato, F. Boeuf, M. Liscidini, M. Galli, and D. Bajoni, A
silicon source of frequency-bin entangled photons, Opt.
Lett. 47, 6201 (2022).

[43] X. Zhang, B. A. Bell, A. Mahendra, C. Xiong, P. H. W.
Leong, and B. J. Eggleton, Integrated silicon nitride
time-bin entanglement circuits, Opt. Lett. 43, 3469 (2018).

[44] M. Clementi, F. A. Sabattoli, M. Borghi, L. Gianini, N.
Tagliavacche, H. el Dirani, L. Youssef, N. Bergamasco,
C. Petit-Etienne, E. Pargon, J. Sipe, M. Liscidini, C.
Sciancalepore, M. Galli, and D. Bajoni, Programmable
frequency-bin quantum states in a nano-engineered silicon
device, Nat. Commun. 14 (2023).

[45] F. Kaneda, H. Suzuki, R. Shimizu, and K. Edamatsu,
Direct generation of frequency-bin entangled photons via
two-period quasi-phase-matched parametric downconver-
sion, Opt. Express 27, 1416 (2019).

[46] C. Dittel, G. Dufour, G. Weihs, and A. Buchleitner, Wave-
particle duality of many-body quantum states, Phys. Rev.
X 11, 031041 (2021).

[47] C. Fabre and N. Treps, Modes and states in quantum
optics, Rev. Mod. Phys. 92, 035005 (2020).

[48] C. K. Law, I. A. Walmsley, and J. H. Eberly, Continuous
frequency entanglement: Effective finite Hilbert space and
entropy control, Phys. Rev. Lett. 84, 5304 (2000).

PHYSICAL REVIEW LETTERS 132, 170601 (2024)

170601-6

https://doi.org/10.1103/PhysRevA.108.012603
https://doi.org/10.1103/PhysRevA.108.012603
https://doi.org/10.1088/1367-2630/ab5330
https://doi.org/10.1103/PhysRevX.13.031001
https://doi.org/10.1103/PhysRevX.13.031001
https://doi.org/10.1126/science.adk7560
https://doi.org/10.1126/science.adk7560
https://doi.org/10.1038/s41586-020-2603-3
https://doi.org/10.1038/s41586-019-0960-6
https://doi.org/10.1038/s41586-019-0960-6
https://doi.org/10.1103/PhysRevX.8.021001
https://doi.org/10.1103/PhysRevX.8.021001
https://doi.org/10.1038/s41534-021-00454-7
https://doi.org/10.1103/PhysRevLett.131.030801
https://doi.org/10.1103/PhysRevLett.131.030801
https://doi.org/10.1103/PhysRevA.83.052325
https://doi.org/10.1103/PhysRevA.83.052325
https://doi.org/10.1103/PhysRevX.4.031007
https://opg.optica.org/abstract.cfm?URI=EQEC-2023-eb_6_6
https://opg.optica.org/abstract.cfm?URI=EQEC-2023-eb_6_6
https://opg.optica.org/abstract.cfm?URI=EQEC-2023-eb_6_6
https://opg.optica.org/abstract.cfm?URI=EQEC-2023-eb_6_6
https://opg.optica.org/abstract.cfm?URI=EQEC-2023-eb_6_6
https://doi.org/10.1007/s003400050225
https://doi.org/10.1007/s003400050373
https://doi.org/10.1007/s003400050373
https://doi.org/10.1103/PhysRevA.102.012607
https://doi.org/10.1103/PhysRevA.102.012607
https://doi.org/10.1038/s41534-019-0237-9
https://doi.org/10.1038/s41534-019-0237-9
https://doi.org/10.1038/nature22986
https://doi.org/10.1038/nature22986
https://doi.org/10.1364/OE.26.001825
https://doi.org/10.1103/PhysRevA.82.013804
https://doi.org/10.1038/s41598-022-12691-7
https://doi.org/10.1038/s41598-022-12691-7
https://doi.org/10.1103/PhysRevA.95.042311
https://doi.org/10.1103/PhysRevA.95.042311
https://doi.org/10.1063/5.0089313
https://doi.org/10.1063/5.0089313
https://doi.org/10.1364/OPTICA.4.000008
https://doi.org/10.1364/OL.471241
https://doi.org/10.1364/OL.471241
https://doi.org/10.1364/OL.43.003469
https://doi.org/10.1038/s41467-022-35773-6
https://doi.org/10.1364/OE.27.001416
https://doi.org/10.1103/PhysRevX.11.031041
https://doi.org/10.1103/PhysRevX.11.031041
https://doi.org/10.1103/RevModPhys.92.035005
https://doi.org/10.1103/PhysRevLett.84.5304


[49] N. Fabre, A. Keller, and P. Milman, Time and frequency as
quantum continuous variables, Phys. Rev. A 105, 052429
(2022).

[50] As a matter of fact, this last point is related to the type of
error (3) can correct for and the definition of the collective
variables we used. We could adapt these points to states
where the peak spacing contribution per photon is different
from the chosen one.

[51] C. K. Hong, Z. Y. Ou, and L. Mandel, Measurement of
subpicosecond time intervals between two photons by
interference, Phys. Rev. Lett. 59, 2044 (1987).

[52] Z. Y. Ou, Multi-photon interference and temporal distin-
guishability of photons, Int. J. Mod. Phys. B 21, 5033
(2007).

[53] T. Douce, A. Eckstein, S. P. Walborn, A. Z. Khoury, S.
Ducci, A. Keller, T. Coudreau, and P. Milman, Direct
measurement of the biphoton Wigner function through
two-photon interference, Sci. Rep. 3, 3530 (2013).

[54] Notice that this is different from the arbitrary choice we
made previously of setting αi;1 ¼ 1=

ffiffiffi
n

p ∀ i.
[55] D. Branning, A. L. Migdall, and A. V. Sergienko, Simul-

taneous measurement of group and phase delay between
two photons, Phys. Rev. A 62, 063808 (2000).

[56] T. Yamazaki, T. Arizono, T. Kobayashi, R. Ikuta, and T.
Yamamoto, Linear optical quantum computation with
frequency-comb qubits and passive devices, Phys. Rev.
Lett. 130, 200602 (2023).

[57] B. Royer, S. Singh, and S. M. Girvin, Encoding qubits in
multimode grid states, PRX Quantum 3, 010335 (2022).

[58] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-
enhanced positioning and clock synchronization, Nature
(London) 412, 417 (2001).

[59] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.170601 for de-
tails, which includes Ref. [60].

[60] K. M. Jordan, R. A. Abrahao, and J. S. Lundeen, Quantum
metrology timing limits of the Hong-Ou-Mandel interfer-
ometer and of general two-photon measurements, Phys.
Rev. A 106, 063715 (2022).

[61] A. L. Grimsmo, J. Combes, and B. Q. Baragiola, Quantum
computing with rotation-symmetric bosonic codes, Phys.
Rev. X 10, 011058 (2020).

[62] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T.
Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M.
Girvin, B. M. Terhal, and L. Jiang, Performance and
structure of single-mode bosonic codes, Phys. Rev. A
97, 032346 (2018).

[63] C. W. Gardiner and M. J. Collett, Input and output in
damped quantum systems: Quantum stochastic differential
equations and the master equation, Phys. Rev. A 31, 3761
(1985).

[64] H. Le Jeannic, A. Tiranov, J. Carolan, T. Ramos, W. Ying,
M. Appel, S. Scholz, A. Wieck, A. Ludwig, N. Rotenberg,
L. Midolo, J. García-Ripoll, A. Sørensen, and P. Lodahl,
Dynamical photon–photon interaction mediated by a
quantum emitter, Nat. Phys. 18, 1191 (2022).

[65] This can be seen by comparing the error probability of a
single photon comblike state with interspacing 2ωo=

ffiffiffi
n

p
.

[66] H.-H. Lu, J. M. Lukens, B. P. Williams, P. Imany, N. A.
Peters, A. M. Weiner, and P. Lougovski, A controlled-NOT

gate for frequency-bin qubits, npj Quantum Inf. 5, 24
(2019).

[67] U. Alushi, T. Ramos, J. J. García-Ripoll, R. Di Candia, and
S. Felicetti, Waveguide QED with quadratic light-matter
interactions, PRX Quantum 4, 030326 (2023).

[68] Y. L. Len, T. Gefen, A. Retzker, and J. Koł odyński,
Quantum metrology with imperfect measurements, Nat.
Commun. 13, 6971 (2022).

[69] P. Thomas, L. Ruscio, O. Morin, and G. Rempe, Efficient
generation of entangled multiphoton graph states from a
single atom, Nature (London) 608, 677 (2022).

[70] H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu,
Y.-M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang,
L. You, X.-L. Wang, X. Jiang, L. Li, Y.-A. Chen, N.-L. Liu,
C.-Y. Lu, and J.-W. Pan, 12-photon entanglement and
scalable scattershot boson sampling with optimal en-
tangled-photon pairs from parametric down-conversion,
Phys. Rev. Lett. 121, 250505 (2018).

[71] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz,
O. Kenneth, N. H. Lindner, and D. Gershoni, Deterministic
generation of a cluster state of entangled photons, Science
354, 434 (2016).

[72] C.-W. Yang, Y. Yu, J. Li, B. Jing, X.-H. Bao, and J.-W.
Pan, Sequential generation of multiphoton entanglement
with a Rydberg superatom, Nat. Photonics 16, 658 (2022).

[73] G. Corrielli, M. Pont, A. Fyrillas, I. Agresti, G. Carvacho,
N. Maring, P. E. Emeriau, F. Ceccarelli, R. Albiero,
P.-H. D. Ferreira, N. Somaschi, J. Senellart, M. Morassi,
A. Lemaitre, I. Sagnes, P. Senellart, F. Sciarrino, M.
Liscidini, N. Belabas, and R. Osellame, Generation of four-
photon GHZ states on a laser written integrated platform, in
Proceedings of the Optica Quantum 2.0 Conference
and Exhibition (Optica Publishing Group, 2023),
p. QM4A.7, 10.1364/QUANTUM.2023.QM4A.7.

[74] M. Pont, G. Corrielli, A. Fyrillas, I. Agresti, G. Carvacho,
N. Maring, P.-E. Emeriau, F. Ceccarelli, R. Albiero, P.
Ferreira, N. Somaschi, J. Senellart, I. Sagnes, M. Morassi,
A. Lemaître, P. Senellart, F. Sciarrino, M. Liscidini, N.
Belabas, and R. Osellame, High-fidelity generation of
four-photon GHZ states on-chip, arXiv:2211.15626.

[75] M. Liscidini and J. E. Sipe, Scalable and efficient
source of entangled frequency bins, Opt. Lett. 44, 2625
(2019).

[76] R. Ikuta, R. Tani, M. Ishizaki, S. Miki, M. Yabuno, H.
Terai, N. Imoto, and T. Yamamoto, Frequency-multiplexed
photon pairs over 1000 modes from a quadratic nonlinear
optical waveguide resonator with a singly resonant con-
figuration, Phys. Rev. Lett. 123, 193603 (2019).

[77] B. Niewelt, M. Jastrzebski, S. Kurzyna, J. Nowosielski, W.
Wasilewski, M. Mazelanik, and M. Parniak, Experimental
implementation of the optical fractional Fourier transform
in the time-frequency domain, Phys. Rev. Lett. 130,
240801 (2023).

[78] S. Kurzyna, M. Jastrzebski, N. Fabre, W. Wasilewski, M.
Lipka, and M. Parniak, Variable electro-optic shearing
interferometry for ultrafast single-photon-level pulse char-
acterization, Opt. Express 30, 39826 (2022).

[79] M. Lipka and M. Parniak, Ultrafast electro-optic time-
frequency fractional Fourier imaging at the single-photon
level, Opt. Express 32, 9573 (2024).

PHYSICAL REVIEW LETTERS 132, 170601 (2024)

170601-7

https://doi.org/10.1103/PhysRevA.105.052429
https://doi.org/10.1103/PhysRevA.105.052429
https://doi.org/10.1103/PhysRevLett.59.2044
https://doi.org/10.1142/S0217979207038186
https://doi.org/10.1142/S0217979207038186
https://doi.org/10.1038/srep03530
https://doi.org/10.1103/PhysRevA.62.063808
https://doi.org/10.1103/PhysRevLett.130.200602
https://doi.org/10.1103/PhysRevLett.130.200602
https://doi.org/10.1103/PRXQuantum.3.010335
https://doi.org/10.1038/35086525
https://doi.org/10.1038/35086525
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.170601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.170601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.170601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.170601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.170601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.170601
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.170601
https://doi.org/10.1103/PhysRevA.106.063715
https://doi.org/10.1103/PhysRevA.106.063715
https://doi.org/10.1103/PhysRevX.10.011058
https://doi.org/10.1103/PhysRevX.10.011058
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1103/PhysRevA.31.3761
https://doi.org/10.1038/s41567-022-01720-x
https://doi.org/10.1038/s41534-019-0137-z
https://doi.org/10.1038/s41534-019-0137-z
https://doi.org/10.1103/PRXQuantum.4.030326
https://doi.org/10.1038/s41467-022-33563-8
https://doi.org/10.1038/s41467-022-33563-8
https://doi.org/10.1038/s41586-022-04987-5
https://doi.org/10.1103/PhysRevLett.121.250505
https://doi.org/10.1126/science.aah4758
https://doi.org/10.1126/science.aah4758
https://doi.org/10.1038/s41566-022-01054-3
https://doi.org/10.1364/QUANTUM.2023.QM4A.7
https://arXiv.org/abs/2211.15626
https://doi.org/10.1364/OL.44.002625
https://doi.org/10.1364/OL.44.002625
https://doi.org/10.1103/PhysRevLett.123.193603
https://doi.org/10.1103/PhysRevLett.130.240801
https://doi.org/10.1103/PhysRevLett.130.240801
https://doi.org/10.1364/OE.471108
https://doi.org/10.1364/OE.507911


[80] T. B. Propp and S. J. van Enk, How to project onto an
arbitrary single-photon wave packet, Phys. Rev. A 102,
053707 (2020).

[81] H.-H. Lu, J. M. Lukens, N. A. Peters, O. D. Odele, D. E.
Leaird, A. M. Weiner, and P. Lougovski, Electro-optic
frequency beam splitters and tritters for high-fidelity
photonic quantum information processing, Phys. Rev. Lett.
120, 030502 (2018).

[82] L.-W. Luo, S. Ibrahim, A. Nitkowski, Z. Ding, C. B.
Poitras, S. J. B. Yoo, and M. Lipson, High bandwidth
on-chip silicon photonic interleaver, Opt. Express 18,
23079 (2010).

[83] D. Niemietz, P. Farrera, S. Langenfeld, and G. Rempe,
Nondestructive detection of photonic qubits, Nature
(London) 591, 570 (2021).

[84] E. Distante, S. Daiss, S. Langenfeld, L. Hartung, P.
Thomas, O. Morin, G. Rempe, and S. Welte, Detecting
an itinerant optical photon twice without destroying it,
Phys. Rev. Lett. 126, 253603 (2021).

[85] K. Fukui, R. N. Alexander, and P. van Loock, All-optical
long-distance quantum communication with Gottesman-
Kitaev-Preskill qubits, Phys. Rev. Res. 3, 033118 (2021).

[86] E. Knill, R. Laflamme, and G. Milburn, A scheme for
efficient quantum computation with linear optics, Nature
(London) 409, 46 (2001).

[87] K. Duivenvoorden, B. M. Terhal, and D. Weigand, Single-
mode displacement sensor, Phys. Rev. A 95, 012305
(2017).

[88] H.-H. Lu, M. Liscidini, A. L. Gaeta, A. M. Weiner, and
J. M. Lukens, Frequency-bin photonic quantum informa-
tion, Optica 10, 1655 (2023).

[89] B. Roussel, C. Cabart, G. Fève, and P. Degiovanni,
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