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Quantum systems are unavoidably open to their surrounding degrees of freedom. The theory of open
quantum systems is thus crucial to understanding the fluctuations, dissipation, and decoherence of a
quantum system of interest. Typically, the bath is modeled as an ensemble of harmonic oscillators, which
yields Gaussian statistics of the bath influence on the quantum systems. However, there are also phenomena
in which the bath consists of two-state systems, spins, or anharmonic oscillators; therefore, the non-
Gaussian properties of the bath become important. Nevertheless, a theoretical framework to describe
quantum systems under the influence of such non-Gaussian baths is not well established. Here, we develop
a theory to describe quantum dissipative systems affected by Poisson noise properties of the bath, because
the Lévi-Itô decomposition theorem asserts that Poisson noise is fundamental in describing arbitrary white
noise beyond Gaussian properties. We introduce a quantum bath model that allows for the consistent
description of dissipative quantum systems. The obtained master equation reveals non-Gaussian bath
effects in the white noise regime, and provides an essential step toward describing open quantum dynamics
under the influence of generic baths.
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Introduction.—In principle, quantum systems cannot be
regarded as isolated systems because they are unavoidably
in contact with their outside world; hence, their quantum
natures are sometimes sustained and sometimes destroyed.
Especially in condensed matter systems such as solids
and complex molecules, quantum systems are affected by
numerous dynamic degrees of freedom. The balance
between robustness and fragility of the quantum natures
may dramatically alter the properties and dynamical be-
haviors of these systems. Therefore, it is crucial to inves-
tigate the impact of ambient degrees of freedom on
quantum systems in various research fields, ranging from
condensed matter physics [1,2] to quantum biophysics [3–
6]. Quantum information science, which has been making
remarkable progress in recent years, is no exception [7–13].
In quantum information science, it is crucial to elucidate
and eradicate noise sources to achieve long quantum
coherence times, which is necessary for practical applica-
tions in quantum computing, communications, and sensing.
In the literature of such investigations, the surrounding

degrees of freedom affecting a quantum system under study
are referred to as bath or environment. Typically, the bath
has been modeled as an ensemble of harmonic oscillators,
namely a boson bath [14], which introduces Gaussian
fluctuations and dissipation into the quantum system.
However, these Gaussian baths cannot characterize noise
sources, such as the shot noise in mesoscopic conductors
[15,16] and radiation pressure inside optomechanical sys-
tems [17]. It is also believed that one of the primary sources

of decoherence in solid-state quantum devices could be
two-state fluctuators, which represent the ambient micro-
scopic degrees of freedom [18–21]. There is significant
interest in utilizing dissipative qubits to model and imple-
ment tunable baths [22–27], with possible applications to
dissipative quantum state engineering [10,26]. Moreover,
anharmonicity in lattice vibrations has been argued to
increase charge carrier lifetimes in the lead halide per-
ovskite materials [28]. However, a theoretical framework
describing the dynamics of quantum systems under the
influence of such non-Gaussian baths is not well estab-
lished [29–35].
To develop a theory to describe the impact of a non-

Gaussian bath on a quantum system, we address the Lévi-
Itô decomposition theorem of stochastic processes [36–38].
This theorem states that any white noise, in which the noise
correlation time is negligibly short, decomposes into
Gaussian white noise and a sum of Poisson white noises.
Therefore, describing quantum dissipative systems under
the influence of Poisson noise facilitates the investigation
of the effect of generic baths with arbitrary white noise
properties.
In this Letter, we develop a theory to describe quantum

dissipative systems affected by Poisson noise and discuss
the physical properties of the resulting Poisson bath master
equation. To explore the noise properties of the bath, past
studies have primarily focused on cases where the bath is
modeled as a classical stochastic noise source [39–46].
On the other hand, we start with a quantum mechanical
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modeling of the bath using dissipative two-level systems. It
is worth pointing out that our setup is relevant to physical
situations of two-state fluctuators [18–21] and engineered
baths [22–27]. We demonstrate that the property of the
constructed bath model is consistent with the Poisson noise
statistics when the bath correlation time is short and the
bath interacts with the quantum system strongly but
discretely. We then derive an equation of motion to describe
the time evolution of a quantum system coupled to the
constructed Poisson bath. The statistical differences
between the Poisson and Gaussian baths are captured in
the emission and absorption rates. The rates of the obtained
Poisson noise master equation saturate as the system-bath
coupling increases, whereas those of the Gaussian noise
master equation depend quadratically on the coupling.
These differences are illustrated by considering a Dicke
superradiance model, which describes a collective coupling
between identical two-level systems and a bath [47].
System-bath model.—We consider a situation where a

general system is coupled to a bath whose inverse temper-
ature is β. The time evolution of the entire system is
described by the Liouville equation,

∂tρSBðtÞ ¼ LρSBðtÞ; ð1Þ

where L ¼ LS þ LB þ Lint is the Liouville superoperator
defined by LS• ¼ −i½HS; •� and Lint• ¼ −i½Hint; •�
describes the effect of unitary time evolution according
to the system Hamiltonian HS and interaction Hamiltonian
Hint, respectively (we set ℏ ¼ 1). In the standard approach

[48], LB is defined as −i½HB; •�, where HB is the bath
Hamiltonian. We could instead consider a nonunitary time
evolution modeled by the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) master equation LB• ¼ −i½HB; •� þD½•�
[49–51]. Here,D is the dissipator that causes B to approach
the Gibbs state ρeqB ¼ expð−βHBÞ=Tr½expð−βHBÞ� in the
long-time limit, i.e., LBρ

eq
B ¼ 0. For example, see Eq. (6).

In the first approach, the size of the bath is typically
assumed to be sufficiently large to avoid recurrence and
describe dissipation of the system. In the second approach,
the system interacts with a few bath modes denoted by B,
and the rest of the bath modes are modeled explicitly to
induce dissipation via the dissipator.
Nakajima-Zwanzig projection operator method.—In

what follows, we obtain the equation of motion for the
reduced density operator of the system, ρSðtÞ¼TrB½ρSBðtÞ�.
To proceed, we introduce the projection operator to the bath
Gibbs state, P ¼ ρeqB TrB [52,53]. We also introduce the
orthogonal complement, Q ¼ 1 − P. The conventional
projection operator method considers the case of D ¼ 0;
however, it can be directly generalized to a case ofD ≠ 0 as
follows.
We assume that the initial state is given by a product state

and the bath is initially in the Gibbs state, ρSBð0Þ ¼
ρSð0Þ ⊗ ρeqB . Additionally, we assume that TrB½Hintρ

eq
B �¼0,

which can always be satisfied by modifying the Hamiltonian
appropriately. The time evolution equation for the reduced
density operator ρSðtÞ is obtained as follows:

∂tρSðtÞ ¼ LSρSðtÞ þ
Z

t

0

duTrB
�
LinteQLQuQLintρ

eq
B

�
ρSðt − uÞ: ð2Þ

The interaction Hamiltonian can be written as Hint ¼P
k S

k ⊗ Bk, where Sk and Bk are the system and bath
operators, respectively. Additionally, we use the left-right
superoperator notationAþρ ≔ Aρ andA−ρ ≔ ρA, and write
the Liouville superoperator as Lint ¼

P
l¼�;kð−iÞlSkl Bk

l .

We then move to the interaction picture defined by
ρISðtÞ ¼ e−LStρSðtÞ and SðtÞ ¼ e−LStSeLSt for system oper-
ators, and expand Eq. (2) to infinite orders of coupling [48]
to obtain

ρ̇ISðtÞ ¼
X∞
n¼1

Z
t

0

du1 � � �
Z

un−1

0

dun
X
⃗l;k⃗

Ynþ1

j¼1

ð−iÞljχ ⃗l;k⃗nþ1ðu1; u2;…; un; 0Þ

× Sk1l1 ðtÞS
k2
l2
ðt − u1 þ u2Þ � � � Sknln ðt − u1 þ unÞSknþ1

lnþ1
ðt − u1ÞρISðt − u1Þ; ð3Þ

where χ
⃗l;k⃗
n ðt1;…; tnÞ defines the n-point bath correlation function with t1 ≥ � � � ≥ tn as

χ
⃗l;k⃗
n ðt1;…; tnÞ ¼ TrB

�
Bk1
l1
eLBðt1−t2ÞQBk2

l2
eLBðt2−t3ÞQBk3

l3
� � � eLBðtn−1−tnÞQBkn

ln
ρeqB

�
: ð4Þ
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The mathematical structures of Eqs. (3) and (4) serve as a
starting point to analyze and classify the influence of non-
Gaussian baths on the system. What should be noted here is
that the effect of general baths on the reduced dynamics of
the system is fully captured by the n-point bath correlation
functions, as shown in Eq. (3). Consequently, the systems
of two different system-bath models with the same n-point
bath correlation functions exhibit equivalent reduced
dynamics, although their bath properties LB and Bk may
differ.
Random telegraph noise bath model.—We construct an

explicit non-Gaussian bath model. In doing so, we view the
bath as a quantum noise source and use the properties of
random telegraph noise and Poisson white noise, which are
renowned examples of non-Gaussian noise. Random tele-
graph noise takes two values that randomly switch from
one to another based on the jump rates [54]. As discussed in
Ref. [55], the random telegraph noise converges to Poisson
white noise defined by ξðtÞ ¼ PnðtÞ

i biδðt − tiÞ in the
appropriate limit. The probability of having n random time
points ti is given by the Poisson distribution ðγtÞne−γt=n!,
the noise strength bi may take random values at each time
point following the distribution pðbÞ, and γ is the average
noise rate. Poisson white noise converges to Gaussian white
noise in the limit where the noise intensity is weak b → 0

and noise occurs continuously γ → ∞ at constant γb2.
Modeling the bath as a classical noise source that

fluctuates the system Hamiltonian parameters (e.g., the
system frequency) has been investigated [39–46]. On the
other hand, we describe dissipation associated with the
random telegraph noise by assuming that B is modeled by a
dissipative 2-qubit system,

LB• ¼ −i½HB; •� þ
X
i¼1;2

ðΓþ
i Dσþi

½•� þ Γ−
i Dσ−i

½•�Þ; ð5Þ

where HB ¼ P
i¼1;2ðωi=2Þσzi is the bath Hamiltonian, Γ�

i
are the jump rates, andDA½•� is the dissipator written as [51]

DA½•� ¼ A • A† −
1

2
fA†A; •g: ð6Þ

We assume the detailed balance condition Γ−
i =Γ

þ
i ¼ eβωi ,

which is a sufficient condition for LBρ
eq
B ¼ 0 to hold. We

choose S− ¼ L; Sþ ¼ L†, and B� ¼ λσ∓1 σ�2 , where λ is the
coupling strength and L is a general (non-Hermitian)
system operator. Therefore, the interaction Hamiltonian
reads as Hint ¼

P
k¼� SkBk ¼ λðLσþ1 σ−2 þ L†σ−1 σ

þ
2 Þ.

Multiple jump effects.—We first give intuitions on how
the bath affects the system in the case of Γ−

1 ¼ Γ−
2 ≫ Γþ

i
because this parameter regime is relevant in the Poisson
white noise limit. Because Γ−

1 is large, B mostly remains in
the ground state jg1; g2i, and the first spin gets excited
based on the rate Γþ

1 . The time-duration τ for B to stay in
the excited states jg1; e2i or je1; g2i follows the probability
pðτÞ ∝ e−Γ

−
1
τ, and the system experiences multiple jumps

L†
a¼hg1;e2je−iτHint je1;g2i¼

X∞
n¼0

ð−iaÞ2nþ1

ð2nþ1Þ! ðL
†LÞnL† ð7Þ

and

Na¼he1;g2je−iτHint je1;g2i−1¼
X∞
n¼1

ð−iaÞ2n
ð2nÞ! ðLL†Þn ð8Þ

before B returns to the ground state. In the above equations,
a dimensionless parameter, a ¼ λτ, is introduced.
We can interpret that Γþ

1 is the average rate of the Poisson
noise and its noise strength is given by a, which varies
according to the distribution pðaÞ ∝ e−ðΓ−

1
=λÞa of the time

duration when the bath is excited. The effect of Poisson
noise on the system is indicated by the jump operators L†

a

and Na.
Similarly, when the second spin gets excited according to

the rate Γþ
2 , the system experiences multiple jumps La and

Ma¼hg1;e2je−iτHint jg1;e2i−1¼
X∞
n¼1

ð−iaÞ2n
ð2nÞ! ðL†LÞn: ð9Þ

The above expressions indicate that infinite orders of the
system-bath coupling strength and all n-point bath corre-
lation functions should be considered.
n-point bath correlation function.—We now calculate

the n-point bath correlation functions. We introduce the
notation ρþB ¼ jg1; e2ihg1; e2j and ρ−B ¼ je1; g2ihe1; g2j.
The 2n-point correlation functions can be decomposed
into a product form

χ
⃗l;k⃗
2nðt1;…; t2nÞ ¼

Yn−1
j¼1

TrB½Bk2j−1
l2j−1

eLBðt2j−1−t2jÞBk2j
l2j
eLBðt2j−t2jþ1ÞQρ

l2jþ1k2jþ1

B �TrB½Bk2n−1
l2n−1

eLBðt2n−1−t2nÞBk2n
l2n
ρeqB �; ð10Þ

where all odd-point correlation functions vanish. In the
Supplemental Material [56], we give an explicit expression
for each term appearing in Eq. (10).
Poisson white noise limit and the master equation.—

Poisson white noise limit is obtained by considering Γ−
1 ¼

Γ−
2 → ∞ and λ → ∞ while fixing the effective coupling

strength μ ¼ λ=Γ−
1 . Consequently, the 2n-point bath corre-

lation functions take the following form:

χ l⃗;k⃗2n ¼
(

1
2
Γþ
1 ð2μÞ2n

Q
2n−1
j¼1 δðtj− tjþ1Þ if l2nk2n¼þ

1
2
Γþ
2 ð2μÞ2n

Q
2n−1
j¼1 δðtj− tjþ1Þ if l2nk2n¼−;

ð11Þ

PHYSICAL REVIEW LETTERS 132, 170402 (2024)

170402-3



where ⃗l and k⃗ satisfy the condition of k2i−1 ¼ −k2i ð1 ≤
i ≤ nÞ and l2jþ1k2jþ1 ¼ −l2jk2j ð1 ≤ j ≤ n − 1Þ; other-

wise, χ
⃗l;k⃗
2n vanishes.

Substituting Eq. (11) into Eq. (3) yields the following
master equation as the Poisson white noise limit of the bath:

∂tρS ¼ −i½HS; ρS� þ
Z

∞

0

dapðaÞ�Γþ
2 ðDLa

½ρS� þDMa
½ρS�Þ

þ Γþ
1 ðDL†

a
½ρS� þDNa

½ρS�Þ
�
; ð12Þ

where Γþ
1 and Γþ

2 are the noise rates; a is the noise strength
that varies according to the probability pðaÞ ¼ μ−1e−a=μ; μ
is the effective coupling strength; and L†

a; Na;Ma are the
jump operators defined by Eqs. (7)–(9), respectively. For
details, see Section Multiple jump effects for their physical
intuitions.
For a Hermitian system coupling operator, i.e., L¼L†¼

X, the obtained master equation (12) reads as ∂tρS ¼
−i½HS; ρS� þ ðΓþ

1 þ Γþ
2 Þ

R∞
0 da pðaÞðsin aXρS sin aXþ

cos aX ρS cos aX − ρSÞ, which is consistent with the
classical noise master equation [44].
The Gaussian noise limit considers the noise occurring

continuously but weakly, i.e., Γþ
i → ∞ and μ → 0, by

fixing μ2Γþ
i . In this limit, Eq. (12) reads as

∂tρS ¼ −i½HS; ρS� þ 2μ2Γþ
2 DL½ρS� þ 2μ2Γþ

1 DL† ½ρS�; ð13Þ

which is consistent with the conventional weak-coupling
GKSL master equation [51].
Note that the Markov approximation requires that the

bath correlation time τB is much smaller than the system
relaxation time τR [51]. For the Gaussian noise master
equation (13), we have τB ¼ 1=Γ−

1 ≪ τR ¼ 1=λ because
μ ≪ 1. For the Poisson noise master equation (12), τR is
given by the timescale in which the Poisson noise occurs.
Therefore, the condition τB ¼ 1=Γ−

1 ≪ τR ¼ 1=Γþ
i is valid

although λ and Γ−
1 are generically of the same order.

Example: Collective system-bath coupling.—Suppose
that the system is given by N two-level systems with the
Hamiltonian HS ¼ ðω=2ÞPi σ

z
i . When the system collec-

tively couples with the bath such that the system coupling
operator is L ¼ P

i σ
−
i , its effective decay rate is enhanced

by a factor N, which is termed as superradiance [47].
However, the Poisson noise master equation has a different
scaling for the effective decay rate.
We first calculate the time evolution of the system, which

is plotted in Fig. 1. This figure demonstrates that the
Poisson noise master equation (12) is valid when Γþ

i ≪
Γ−
1 ;Γ−

2 ; λ while fixing μ ¼ λ=Γ−
1 . By setting ω ¼ ω1 − ω2,

the rates satisfy Γþ
2 =Γ

þ
1 ¼ eβω, and the detailed balance

condition is satisfied. See Fig. 1 [57].
Next, we assume Γþ

1 ¼ 0 for simplicity and discuss the
spontaneous decay to the ground state. The effective decay

rate Γeff , or the transition rate, from the first excited Dicke
state [47] jDN;1i ¼ ðje; g;…; gi þ all permutationsÞ= ffiffiffiffi

N
p

to the ground state j0i ¼ jg;…; gi reads as

Γeff ¼ Γþ
2

Z
∞

0

dapðaÞjh0jLajDN;1ij2 ¼
2Γþ

2 μ
2N

1þ 4μ2N
: ð14Þ

In the Gaussian noise limit μ ≪ 1, the effective decay rate
is given by 2Γþ

2 μ
2N, which reproduces the conventional

OðNÞ enhancement of the decay rate. On the other hand,
when N or μ become sufficiently large, i.e., μ2N ≫ 1, the
effective decay rate converges to Γþ

2 =2, and the scaling is

FIG. 1. Plot of the ground state probability as a function of time
for the collective system-bath coupling model. The black dotted
curve is obtained from the Poisson noise master equation,
Eq. (12). Dashed gray line is calculated by using the Gibbs state
with inverse temperature β, i.e., ρeqS ¼ e−βHS=Tr½e−βHS �. The solid
curves are obtained by directly solving Eq. (1) for different values
of Γ−

1 ¼ Γ−
2 and λ ¼ μΓ−

1 . The figure shows that as Γ−
1 increases,

the condition Γþ
i ≪ Γ−

1 ; λ is better satisfied and converges to the
result calculated by Eq. (12). The initial state is given by the
ground state, and the parameters are N ¼ 6, μ ¼ 2.0, β ¼ 1.5,
ω ¼ ω1 − ω2 ¼ 1, Γþ

2 ¼ 1.

FIG. 2. Plot of the effective decay rate Γeff=Γþ
2 [Eq. (14)], as a

function of μ2N, where N is the number of two-level systems and
μ is the effective coupling strength. The red curve is obtained
using the Poisson noise master equation (12), which converges to
the rate Γeff ¼ Γþ

2 =2 ¼ Oð1Þ in large N, where Γþ
2 is the average

rate of the Poisson noise. Gaussian noise limit corresponds to
μ ≪ 1 and agrees with the OðNÞ scaling of the effective decay
rate for the conventional Gaussian noise master equation (13)
analysis, plotted as the black dashed line.
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Oð1Þ for the Poisson noise. These distinct scaling behaviors
are plotted in Fig. 2, and their physical origins can be
understood from the bath noise properties. The system
decay timescale cannot surpass the average rate Γþ

2 of
Poisson noise. On the other hand, Gaussian noise occurs
continuously, and its noise strength depends quadratically
on the enhanced system-bath coupling ð¼ μ2NÞ.
Conclusions.—We have derived a Markovian quantum

master equation in which the non-Gaussian bath exhibits
Poisson noise properties. We showed that the system
experiences multiple nonlinear jumps in terms of the
system-bath interaction Hamiltonian, whereas the jump
operators are linear in the conventional weak-coupling
master equation. For the application, we considered a
collective coupling between the bath and N two-level
systems. We revealed that the effective decay rate saturates
as Oð1Þ for the Poisson noise master equation, whereas it
scales as OðNÞ for the conventional case. This result
demonstrates that the difference in the bath statistics
drastically alters the dissipative properties of quantum
systems.
Our results not only develop a non-Gaussian bath theory

in the white noise regime, but also provide an essential step
toward establishing a general theory of open quantum
dynamics under the influence of generic baths beyond
Gaussian properties. Further elucidation and characteriza-
tion of the dissipation and decoherence induced by non-
Gaussian baths are crucial to develop a formalism that can
describe the effect of two-level defect baths on the system
in solid-state quantum devices [18–21], to design dissipa-
tive quantum state engineering [10,26], and to comprehend
the transport properties in high-performance photovoltaic
and optoelectronic devices. Understanding the role of non-
Gaussian bath statistics is anticipated to lead to remarkable
progress in such multidisciplinary research fields that span
from quantum science to materials science.
As one of the challenging but important future direc-

tions, we point out that developing a method to calculate n-
point bath correlation functions for various bath models
allows one to study the influence of non-Gaussian baths on
the system based on Eq. (3). Moreover, it is also challeng-
ing but worth further investigation to develop a numerical
technique to efficiently calculate Eq. (3) by extending the
techniques developed for Gaussian baths, for example, the
pseudomode method [58–61], reaction-coordinate mapping
method [62–64], and mesoscopic leads approach combined
with tensor-network techniques [65].

The numerical calculations were done by using the
QuTiP library [66,67]. We thank Kiyoshi Kanazawa for
useful discussions. K. F. acknowledges support from JSPS
KAKENHI (Grant No. 23K13036). This work was sup-
ported by the MEXT Quantum Leap Flagship Program
(Grant No. JPMXS0120330644) and JSPS KAKENHI
(Grant No. JP21H01052).
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