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We study theoretically the dynamical process of yielding in cyclically sheared amorphous materials,
within a thermal elastoplastic model and the soft glassy rheology model. Within both models we find an
initially slow accumulation, over many cycles after the inception of shear, of low levels of damage in the
form strain heterogeneity across the sample. This slow fatigue then suddenly gives way to catastrophic
yielding and material failure. Strong strain localization in the form of shear banding is key to the failure
mechanism. We characterize in detail the dependence of the number of cycles N� before failure on the
amplitude of imposed strain, the working temperature, and the degree to which the sample is annealed prior
to shear. We discuss our finding with reference to existing experiments and particle simulations, and
suggest new ones to test our predictions.
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Amorphous materials [1–3] include soft solids such
as emulsions, colloids, gels, and granular materials, and
harder metallic and molecular glasses. Unlike crystalline
solids, they lack order in the arrangement of their con-
stituent microstructures (droplets, grains, etc.). Under-
standing their rheological properties is thus a major
challenge. Typically, they behave elastically at low loads
then yield plastically at larger loads. Much effort has been
devoted to understanding the dynamics of yielding follow-
ing the imposition of a shear stress σ or strain rate γ̇, which
is held constant after switch-on. This often involves the
formation of shear bands [4], which can slowly heal away
to leave homogeneous flow in complex fluids [5–15],
or trigger catastrophic failure in solids [16,17]. In many
applications, however, materials are subject to a cyclically
repeating deformation or load. Cyclic shear is also impor-
tant fundamentally in revealing key fingerprints of a
material’s nonlinear rheology, with large amplitude oscil-
latory shear intensely studied [18–34].
The response of an amorphous material to an oscillatory

shear strain depends strongly on the strain amplitude γ0
relative to a threshold γc [35–55]. For γ0 < γc, a material
typically settles into deep regions of its energy landscape,
showing reversible response from cycle to cycle (after
many cycles), via an absorbing state transition. The number
of cycles to settle, however, diverges as γ0 → γ−c . For
γ0 > γc, a material instead yields into a state of higher

energy that is chaotically irreversible from cycle to cycle,
and often shear banded [32,33,55–57].
Indeed, the process of repeatedly straining or loading a

material over many cycles typically leads to the gradual
accumulation of microstructural damage. While the early
signatures of such fatigue are often difficult to detect, its
slow buildup can eventually undermine material stability
and precipitate catastrophic failure. Understanding the
accumulation of microstructural fatigue and identifying
the microscopic precursors that prefigure failure is thus
central to the prediction of material stability and lifetime,
and the development of strategies to improve them.
In hard materials, the buildup of microstructural damage

is often interpreted in terms of the formation of micro-
cracks. Far less well understood in soft materials, it remains
the topic of intense study, as recently reviewed [58].
Colloidal gels in oscillatory stress [59–61] display an
intricate, multistage yielding process in which the sample
remains solidlike for many cycles, before slipping at the
rheometer wall, then forming coexisting solid-fluid bulk
shear bands and finally fully fluidizing [61]. The number of
cycles before yielding increases dramatically at low stress
amplitudes [60,61]. Particle [62] and fiber bundle [63]
simulations likewise show increasing yielding delay with
decreasing cyclic load amplitude. Metallic glass simula-
tions show an increasing number of cycles to shear band
formation with decreasing γ0 [64]. Particle simulations
[36,38] and experiments on colloidal glass [47] show a
number of strain cycles to attain a yielded steady state
diverging as γ0 → γþc .
Despite this rapid experimental progress, the dynamics

of yielding in cyclic shear remains poorly understood
theoretically. An insightful recent study of athermal mate-
rials captured delayed yielding after a number of cycles that
increases at low strain amplitude [65]. In being mean field,
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however, this work necessarily neglects the development of
damage in the form of strain heterogeneity and shear bands
that are key to understanding yielding.
In this Letter, we study theoretically the yielding of

amorphous materials in oscillatory shear strain. Our con-
tributions are fourfold. First, we predict a slow accumu-
lation, over many cycles, of initially low levels of damage
in the form of strain heterogeneity across the sample.
Second, we show that this early fatigue later gives way to
catastrophic material failure, after a number of cycles N�.
Third, we show that the formation of shear bands is key to
the failure mechanism, as seen experimentally. Finally, we
characterize the dependence of N� on the strain amplitude
γ0, the working temperature T, and the degree of sample
annealing prior to shear.
Models.—To gain confidence that our predictions are

generic across a wide range of amorphous materials,
independent of specific constitutive modeling assumptions,
we study numerically two different widely used models of
elastoplastic rheology: the soft glassy rheology (SGR)
model [66] and a thermal elastoplastic (TEP) model [1].
The SGR model comprises an ensemble of elastoplastic

elements, each corresponding to a mesoscopic region of
material large enough to admit a local continuum shear
strain l and stress Gl, with modulus G. Under an imposed
shear rate γ̇, any element strains at rate l̇ ¼ γ̇. Elemental
stresses are, however, intermittently released via local
plastic yielding events, occurring stochastically at rate
r ¼ τ−10 minf1; exp ½−ðE − 1

2
Gl2Þ=T�g, with τ0 a micro-

scopic attempt time, E a local energy barrier, and T
temperature. Upon yielding, any element resets its strain,
l → 0, and selects a new yield energy from a distribution
ρðEÞ ¼ exp ð−E=TgÞ=Tg. The model captures a glass
transition at temperature T ¼ Tg and predicts rheological
aging at low loads in its glass phase, T < Tg. The macro-
scopic elastoplastic stress σ is the average of the elemental
stresses. The total stress Σ ¼ σ þ ηγ̇ includes a Newtonian
contribution of viscosity η.
The TEP model is defined likewise, except each element

has the same yield energy E, and after yielding selects its
new l from a Gaussian of width lh. Both models thus
combine the basic ingredients of elastic deformation
punctuated by plastic rearrangements and stress propaga-
tion. But whereas SGR incorporates disorder in the
material’s energy landscape via ρðEÞ to capture glassy
behavior, yet neglects frustrated local stresses, the TEP
model conversely neglects glassiness, but captures frus-
trated local stresses via the posthop l distribution.
To capture catastrophic yielding, it is crucial to allow for

strain localization and shear banding. Accordingly, in each
model the elastoplastic elements are arranged across S
streamlines stacked in the flow gradient direction y, withM
elements per streamline. The imposed shear rate, averaged
across streamlines, is ¯̇γðtÞ. The local shear rate can,
however, vary across streamlines: at uniform total stress

Σ in creeping flow we have ΣðtÞ ¼ σðy; tÞ þ ηγ̇ðy; tÞ ¼
σ̄ðtÞ þ η ¯̇γðtÞ, with y a streamline’s flow gradient coordi-
nate. After any local yielding event with stress drop
of magnitude Δl we furthermore pick three random
elements on each neighboring streamline and adjust their
l → lþ wΔlð−1;þ2;−1Þ. We thus implement 1D Eshelby
stress propagation [67] and stress diffusion [68], which are
key to shear banding.
Protocol.—We study oscillatory shear strain γ̄ðtÞ ¼

γ0 sinðωtÞ, imposed for all times t > 0. Prior to shear,
the sample is prepared via ageing or annealing. Within
SGR, we perform a sudden deep quench at time t ¼ −tw
from infinite temperature to a working temperature T < Tg

in the glass phase, then age the sample for a waiting time tw.
Within TEP, we first equilibrate the sample to a temperature
T0, then suddenly at time t ¼ 0 quench to a working
temperature T < T0. Larger tw (SGR) or smaller T0 (TEP)
corresponds to better annealing.
About an initially uniform state, tiny levels of hetero-

geneity are seeded naturally via M and S being finite. In
SGR we also test the effect of adding a small initial pertur-
bation to the well depths E → Eð1þ δ cos 2πyÞ. That we
observe the same physics in both cases shows that our
results are robust to small initial randomicity.
In response to the imposed strain, we measure the shear

stress ΣðtÞ and report its root mean square Σrms over each
cycle vs cycle numberN. We also define the degree of shear
banding Δγ̇ðtÞ via the standard deviation of the strain rate
across streamlines, normalized by γ̇0 ¼ γ0ω, and report its
mean over each cycle, hΔγ̇iðNÞ. When this quantity is high,
the strain rate profile is significantly shear banded across
the flow gradient direction.
Parameters.—Both models have as parameters the mean

local yield energy hEi, attempt time τ0, temperature T,
number of streamlines S, elements per streamline M,
Newtonian viscosity η, and stress diffusion w. The degree
of annealing is prescribed by the waiting time tw (SGR)
or prequench temperature T0 (TEP). The imposed shear
has amplitude γ0 and frequency ω. We choose units
τ0 ¼ 1, G ¼ 1, hEi ¼ 1. We set η ¼ 0.05, w ¼ 0.05,
lh ¼ 0.05, δ ¼ 0.01, suited to the Newtonian viscosity,
stress diffusivity, and initial heterogeneity being small. We
set the numerical parameters S ¼ 25, M ¼ 10 000, having
checked for robustness to variations in these. For computa-
tional efficiency, we set ω ¼ 0.1 in SGR, but checked
that our findings also hold for ω ¼ 0.01. In TEP we set
ω ¼ 0.01. We then explore yielding as a function of strain
amplitude γ0, working temperature T, and degree of
annealing before shear.
SGR results.—The key physics that we report is exem-

plified by Figs. 1(a) and 1(b). These show that yielding
comprises two distinct stages as a function of cycle
number N. In the first stage, the sample remains nearly
homogeneous, with only low level material fatigue (small
strain heterogeneity hΔγ̇i) slowly accumulating from cycle
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to cycle, and the stress remaining high. After a delay that
increases dramatically with decreasing imposed strain
amplitude γ0 in curve sets left to right, a second stage
ensues: the stress drops quickly, the strain becomes highly
localized into shear bands, and the sample fails cata-
strophically.
To quantify the delay during which fatigue slowly

accumulates before the sample catastrophically fails, we
define the cycle at failure N� as that in which Σrms first falls
below 1

2
ðΣmax − ΣminÞ, where Σmax and Σmin are the global

maximum and minimum of Σrms versus N [69]. We further
define the magnitude of yielding via the normalized stress
drop ΔΣ ¼ ðΣmax − ΣminÞ=ΣSS, where ΣSS is the steady
state stress as N → ∞, and the extent to which strain
becomes localized via the final degree of shear banding
hΔγ̇if ¼ limN→∞hΔγ̇iðNÞ. These three quantities are plot-
ted vs γ0 in Figs. 1(c)–1(e).
Clearly apparent is a transition at strain amplitude

γ0 ¼ γc ≈ 1.4, below which the stress drop ΔΣ and degree
of strain localization hΔγ̇if become negligible: for γ0 < γc,
no appreciable yielding occurs. For γ0 > γc, we see a range
of γ0, increasing with increasing tw, over which yielding is
both strongly apparent and heavily delayed. The delay
increases dramatically with decreasing γ0, although N�
shows no apparent divergence over the window of strains
for which yielding is appreciable.
The dependence of yielding on the degree of ageing prior

to shear, tw, is further explored in Fig. 2. Panels (a) and (b)
again reveal the two stage yielding just described, with
curve sets left to right showing a longer delay with

increasing tw, with N� ∼ tαw (panel c). Importantly, there-
fore, ultra annealed samples tw → ∞ are predicted to show
an indefinite delay before suddenly failing.
So far, we have characterized the dependence of yielding

on the strain amplitude γ0 and waiting time tw separately.
Its dependence on both parameters is summarized in Fig. 3.
Importantly, these color maps suggest the possibility of
long delayed (large N�) and catastrophic (large ΔΣ)
yielding even at large strain amplitudes, provided the
sample age prior to shear is large enough. The strain γ0
at yielding onset in panel (b) roughly coincides with the end
of the linear regime, in which the viscoelastic spectra G0
and G00 are constant functions of γ0 [33].

(a)

rms

(c)

(b)
(d)
(e)

FIG. 1. SGR model. (a) Root mean square stress and (b) mean
degree of shear banding over each cycle versus cycle number N
for strain amplitudes γ0 ¼ 1.00; 1.25;…; 2.75 in curve sets with
drops in (a) and rises in (b) right to left. Each curve within a set
corresponds to a different random initial condition. tw ¼ 107,
T ¼ 0.3. (c) Cycle number at failure N�, (d) magnitude of stress
drop ΔΣ, and (e) final degree of shear banding hγ̇if vs strain
amplitude γ0 for waiting times tw ¼ 102; 103;…; 107 in curves
bottom to top. Panel (c) only shows samples with ΔΣ > 0.1. N�,
ΔΣ, hγ̇if averaged over initial condition.

(a)

(b)

rms

(c)

(d)

(e)

FIG. 2. SGR model. (a) Root mean square stress and (b) mean
degree of shear banding over each cycle as a function of cycle
number N for waiting time tw ¼ 101; 102;…; 107 in curve sets
with drops in (a) and rises in (b) left to right. γ0 ¼ 1.5, T ¼ 0.3.
(c) Cycle number at failure N�, (d) magnitude of stress drop ΔΣ,
and (e) final degree of shear banding hγ̇if vs waiting time, tw.
Strain amplitude γ0 ¼ 1.125; 1.250; 1.375;…; 2.250 in curves
blue to orange, i.e., top to bottom in (c), bottom to top at right of
(d), and with γ0 ¼ 1.125; 1.25…1.375 bottom up and 1.5,...2.25
top down in (e). Panel (c) only shows cases for which ΔΣ > 0.1.

(a) (b)

FIG. 3. SGRmodel. (a) cycle number at failureN� and (b) stress
drop ΔΣ as a function of waiting time tw and strain amplitude γ0.
In the white region, no yielding occurs.
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TEP results.—We now show the same physics to obtain
in the TEP model, thereby increasing confidence that it will
be generic across many amorphous materials. Figures 4(a),
4(b), and 5(a)–5(d) again show a two-stage yielding
process, with strain heterogeneity slowly accumulating
and the stress barely declining, before catastrophic failure
in which the stress suddenly drops and shear bands form.
The number of cycles N� before failure again increases
dramatically with decreasing imposed strain γ0, as seen for
several prequench temperatures T0 in Fig. 4(c) and working
temperatures T in (d). An interesting difference between
TEP and SGR is also apparent. In SGR, recall that N�
increases rapidly with decreasing γ0, but with no apparent
divergence before the magnitude of yielding becomes
negligible [Figs. 1(c)–1(e)]. In TEP, N� diverges at a
nonzero γ0 for which yielding is still strongly apparent
[Figs. 4(c)–4(d)]. Whether this constitutes a fundamental
difference between the models or is simply due to our TEP
results being for lower T and stronger annealing than are
computationally accessible in SGR is unclear.
We now consider the way in which yielding depends in

TEP on the degree to which the sample is annealed prior to
shear. In Fig. 5(a) and 5(b), a collection of yielding curves
for decreasing annealing temperature T0 in curves left to
right demonstrates a dramatically increasing delay before
yielding with increasing sample annealing (lower T0). The
number of cycles before yielding is fit to the Boltzmann
form N� ¼ A expðB=T0Þ in Fig. 5(e). Ultra annealed

samples (T0 → 0) are thus predicted in TEP to show
indefinitely delayed yielding N� → ∞, in close analogy
with the corresponding limit tw → ∞ in SGR.
We explore finally the dependence of yielding on

working temperature T in TEP. A collection of yielding
curves left to right in Figs. 5(c) and 5(d) shows a
dramatically increasing delay before yielding with decreas-
ing T. The number of cycles before yielding is fit to the
Boltzmann form N� ¼ A expðB=TÞ in Fig. 5(f). Accor-
dingly, then, TEP predicts infinitely delayed yielding in the
athermal limit of zero working temperature T → 0 at fixed
strain amplitude γ0 and prequench temperature T0.
Conclusions.—We have shown the yielding of amor-

phous materials in oscillatory shear to comprise a two-stage
process. The first is one of slow fatigue, in which low levels
of strain heterogeneity gradually accumulate from cycle to
cycle. In the second, the stress drops precipitously and the
strain strongly localizes into shear bands, leading to cata-
strophic material failure. The number of cycles N� before
failure increases dramatically with decreasing imposed
strain amplitude and increasing annealing. Finally, N�
diverges in the limit of zero working temperature T → 0,
showing that a small nonzero temperature is indispensable
to ultra-delayed yielding.
In future, it would be interesting to consider how the slow

fatigue and catastrophic failure studied here (“intercycle

(a)

rms

(b) (d)

(c)

FIG. 4. TEP model. (a) Root mean square stress and (b) mean
degree of shear banding over each cycle as a function of cycle
number N for strain amplitudes γ0 ¼ 0.90; 0.95;…; 1.50 in curve
sets with drops in (a) and rises in (b) right to left. T0 ¼ 0.01,
T ¼ 0.007. Cycle number at yielding N� vs strain amplitude γ0
for (c) prequench temperatures T0 ¼ 0.001; 0.002;…; 0.010 in
curves right to left at working temperature T ¼ 0.001 and
(d) working temperatures T ¼ 0.001; 0.002;…; 0.010 in curves
right to left at prequench temperature T0 ¼ 0.01. Solid lines in
(c)+(d) are fits to N� ¼ A=ðγ0 − γcÞ. Insets show γc (symbols) fit
(lines) to (c) γc ¼ B − C

ffiffiffiffiffi

T0

p
and (d) γc ¼ DT − E.

(a)

rms

(b)

(c)

(d)

(e)

(f)

FIG. 5. TEP model. (a) Root mean square stress and (b) mean
degree of shear banding over each cycle as a function of cycle
number N for prequench temperatures T0 ¼ 0.001; 0.002;…;
0.010 in curves with drops in (a),(c) and rises in (b),(d) right to
left. γ0 ¼ 1.15, T ¼ 0.001. (c)+(d) Counterpart curves for work-
ing temperatures T ¼ 0.001; 0.002;…; 0.010 in curves turquoise
to magenta. γ0 ¼ 1.05, T0 ¼ 0.01. (e) Cycle number at yielding
N� vs prequench temperature T0 for strain amplitudes γ0 ¼ 1.10,
1.15, 1.17, 1.20, 1.22 in curves downward. T ¼ 0.001. Solid
lines: fits to N� ¼ AeB=T0 . (f) N� vs working temperature T for
γ0 ¼ 1.00, 1.05, 1.07, 1.10, 1.15 in curves downward. T0 ¼ 0.01.
Solid lines: fits to N� ¼ CeD=T .
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yielding,” over many cycles) relates to the alternating
“intracycle” yielding (with shear banding formation) and
resolidification (with rehealing to homogeneous shear) that
arises in yield stress fluids once a state has been attained that
is invariant from cycle to cycle [28,29,32,33]. Another
important challenge is to reconcile our divergent N� in
the athermal limit T → 0 with a finite N� at T ¼ 0 in the
mean field study of Ref. [65], which neglects banding. It
would also be interesting to model yielding in oscillatory
shear stress, as studied experimentally [59–61]. Indeed, any
fundamental similarities and differences between delayed
yielding in oscillatory shear and other protocols such as
creep should also be considered. A fuller exploration of the
distinction between ductile and brittle yielding is also
warranted [70].
Our predictions are directly testable experimentally.

Bulk rheological measurements of the cycle-to-cycle stress
can be compared with Figs. 1(a), 1(d), 2(a), 2(d), 3(b), 4(a),
5(a), and 5(c). From these stress measurements, the number
of cycles to failure N� can be extracted and compared with
Figs. 1(c), 2(c), 3(a), 4(c), 4(d), 5(e), and 5(f). Ultrasound
imaging can be used to measure the velocity field [71],
from which the cycle-to-cycle degree of shear banding Δγ̇
can be extracted as prescribed on p2 and compared with our
Figs. 1(b), 1(f), 2(b), 2(f), 4(b), 5(b), and 5(d). All these
quantities can also be accessed directly in direct particle
simulations.
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