PHYSICAL REVIEW LETTERS 132, 167301 (2024)

Generating Minimal Training Sets for Machine Learned Potentials
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This Letter presents a novel approach for identifying uncorrelated atomic configurations from extensive
datasets with a nonstandard neural network workflow known as random network distillation (RND) for
training machine-learned interatomic potentials (MLPs). This method is coupled with a DFT workflow
wherein initial data are generated with cheaper classical methods before only the minimal subset is passed
to a more computationally expensive ab initio calculation. This benefits training not only by reducing the
number of expensive DFT calculations required but also by providing a pathway to the use of more accurate
quantum mechanical calculations. The method’s efficacy is demonstrated by constructing machine-learned
interatomic potentials for the molten salts KCI and NaCl. Our RND method allows accurate models to be fit
on minimal datasets, as small as 32 configurations, reducing the required structures by at least 1 order of
magnitude compared to alternative methods. This reduction in dataset sizes not only substantially reduces
computational overhead for training data generation but also provides a more comprehensive starting point

for active-learning procedures.
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Data-driven approaches for reconstructing potential
energy surfaces have provided scientists with a unique
environment for combining two thriving research areas:
machine learning and molecular dynamics. These machine
learning approaches aim to use data from expensive
ab initio calculations such as density functional theory
(DFT) to fit a model, which may then be used to perform
molecular dynamics (MD) simulations at roughly the speed
and on scales of a classical approach while retaining the
accuracy of the ab initio computations. The last decade has
seen significant advances in the use of machine learning
algorithms for the development of these potentials (MLPs)
[1,2], be it Gaussian process regression [3], neural networks
[4-8], or other kernel methods [9-12]. A fundamental
component to fitting these potentials that has recently
become an active area of research is how to select data
from these ab initio computations so that one minimizes the
size of training datasets while maximally representing the
underlying potential energy surface (PES). Typically, this
data selection is made uniformly in time, energy, or local
energies if a classical potential is used at the initial data
selection stages [13—16]. In more recent studies, active
learning approaches have been implemented to iteratively
correct a potential as it ventures into poorly defined areas of
configurations space [11,12,17]. In some cases, configura-
tions are deliberately constructed, such as in the case of
randomized atomic-system generator (RAG) sampling
[18] or kernel functions applied to identify unique struc-
tures in descriptor space [19]. While we oftentimes
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focus predominantly on identifying relevant configurations
through physical properties such as energy or forces, the
problem of data selection for data-driven model training is
present in all fields of machine learning and therefore, it can
be instructive to look into methods adopted by the broader
community. One such approach developed in reinforcement
learning is random network distillation (RND) [20]. This
approach has been used previously to identify unseen regions
of target space for a reinforcement learner and ignore those
regions the machine learning algorithm is believed to have
explored [20]. However, the design of the problem closely
mirrors that of selecting data for the development of
machine-learned inter-atomic potentials and, therefore, is
of interest to the community. RND is a method that utilizes
the intrinsic bias of a neural network architecture to identify
regions of the underlying data manifold that will result in a
better model after training [21]. When used for data selection,
the goal of RND is to take a large set of data and reduce it to a
much smaller but still representative subset on which a model
can be trained. The method is built upon two neural networks,
the target network: f: RM™ — R which acts as an embed-
ding operation for data of dimension M to a space of
dimension N, and the predictor network: g: RM — RN
which is trained to predict the output of the target network
iteratively. Before the data selection occurs, the RND
mechanism must be seeded. To do so, all points in the large
dataset are passed through each neural network, and a
distance metric is used to compute the distance between
the representations generated by f and g for each point. The
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FIG. 1.
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Use of random network distillation to fill a training set 7. In the initial stage, classical MD simulations are used to sample

configuration space and build the data pool P before the RND architecture is used to select unique configurations and add these to the
training data. This method involves passing a representation of the configuration into the two neural networks, f, and g. These
representations are then compared using a selected distance metric, d, and based on their distance, are either added to the training data, or
thrown away as they have already been seen. These training data are then passed through a DFT calculation to label the configurations
with a corrected energy, Aepgr, and forces before training a machine-learned potential.

point with the greatest distance, p;, is selected and added to
the training set, 7 . The predictor network, g, is then trained
on the representation generated by f(p;). This process is
continued until a dataset of a desired size has been selected.

Our Letter applies RND to selecting a representative
subset of atomistic configurations on which a machine-
learned potential will be trained. In building the initial data
pool from which the subset is selected, large amounts of
configuration space must be covered so that the chosen
training set is informative. One approach is to use classical
MD simulations to quickly span the configuration space at
a lower accuracy. In this Letter, MD simulations are
performed in systems made up of 100 atoms in a Nose-
Hoover chain [22,23] enforced NPT ensemble using the
LAMMPS simulation software [24]. Interactions between
the constituent atoms are defined using the Born-Meyer-
Huggins-Tosi-Fumi potential [25-29] parametrized based
on literature values [30] and accompanied by P3M electro-
static corrections [31]. The simulations are run under a
temperature ramp from 1100 and 1700 K to cover the liquid
phase of the salts. From this data pool, RND selects
representative subsets of varying sizes. For the application
of RND, atomic configurations are mapped into a descrip-
tor space using untrained SchNet graph-based representa-
tions [5,32]. These representations are then passed through
the target and predictor network to perform the dataset
selection. Once a subset is selected, single-point density
functional theory (DFT) calculations are performed on the
smaller datasets. These DFT simulations are performed
with the CP2K simulation software [33], using the PBE-
GGA [34] functionals, double-zeta MOLOPT basis sets
optimized for dense liquids [35], GTH pseudopotentials [36],
and RVV10 nonlocal integral corrections [37]. The workflow

from classical MD to DFT single-point calculations is
outlined in Fig. 1. While this classical to ab initio transfer
method appears to work in the case of simple liquids, it relies
on the similarity of the configuration spaces across these
levels of accuracy. Therefore, it is not a priori valid for more
complex systems, and further investigation should be per-
formed in this direction. A benefit of RND as a data-selection
method is that it scales only with NV data points desired in the
final dataset, as the use of two neural networks introduces,
through the training procedure, memory of what has been
seen before, thus avoiding the expensive nature of other
descriptor-based selection methods, for example, farthest-
distance approaches, which, in their vanilla implementation,
scale like O(N?) [19,38]. Furthermore, it separates itself
from other descriptor-based methods in that it requires no
training in the SchNet representation beforehand nor the
existence of a well-defined distance metric on the descriptor
space. Therefore, it is agnostic to the descriptor and imposes
little to no bias on the problem.

After selecting the subsets, machine learning models
are trained on the ab initio data. This Letter uses the
machine learning framework SchNet [5,32]. SchNet is a
graph neural network (GNN) based architecture that
builds representations from atomic coordinates while res-
pecting the symmetries inherent to the system. Models are
trained on subsets of varying sizes and compared with more
commonly used training data selection methods. Figure 2
outlines the results of the investigation. The figure displays
both the RMSE and L4 error calculations for the force
predictions of the machine learning models on previously
unseen validation data as a function of dataset size for the
KCI model (see Supplemental Material [39] for NaCl
plots). In each plot, the color and shape of the lines
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FIG. 2. The RMSE and L4 loss compared to the number of training configurations for different data selection algorithms show the
convergence of the model loss. Circles correspond to those models that could be used to run a stable MD simulation, whereas a square
indicates that the potential leads to a breakdown of the MD simulation after some time. This labeling measures how well the training data

represent the configuration space.

correspond to a data-selection method, black circles
surrounding a point symbolize that a successful MD
simulation was performed using this model, and a black
square shows that the simulation failed before 100 ps.
Simulation failure is decided by either drift in energy and
temperature, artifacts in the radial distribution function
computations (e.g., peaks below atomic radii signifying
atoms collapsing on top of one another, see Supplemental
Material Fig. 5 [39]), or large forces experienced during the
run. In the RMSE plots, while it is clear that RND generates
models with lower loss values, the differences are not large
compared with the other techniques. What is clear is that far
more of the RND-trained models can perform MD simu-
lations, as seen in the number of circles along the line. This
trend is elucidated in the L4 error plot, where we can see
that the RND-trained datasets converge much faster than all
other methods to a minimum value. L4 error values have
the impact of penalising outliers to a greater extent than
their RMSE counterparts. The reduction in L4 error
suggests that RND can identify maximally separated
points, thus reducing the number of outliers in the vali-
dation data. This trend persists even when compared with
other data selection techniques, which explicitly consider
local atomic effects, e.g., force selection and atomic energy
selection. Interestingly, the L4 error coincides with the
successful running of a simulation. This relationship
suggests that using loss functions that penalize outliers
significantly is a good indicator of whether a potential will
succeed.

With successful model fits, the trained potentials can be
utilized in scaled-up MD simulations to measure all
relevant properties accessible in MD. As an example,
one such thermophysical observable of interest to the
community is the density of a liquid at different temper-
atures. To reproduce the density is typically a challenging
task for machine-learned potentials as it requires a good

representation of configuration space in the training data,
typically achieved through active learning and accurate
ab initio data [40] with correct dispersion interactions. NPT
simulations are performed using a custom-written SchNet
plugin for LAMMPS [24] on scaled-up system sizes of 400
atoms. Densities are computed from 1 ns simulations at
several temperatures and plotted against DFT and exper-
imental density values in Fig. 3. The DFT values are taken
from 10 ps DFT-MD simulations in an NPT ensemble with
400 atoms using the same DFT parameters as in the single-
point calculations. We can see that the MLPs accurately
reproduce the underlying DFT data with temperature,
suggesting that the RND-selected dataset of only 32
configurations adequately mapped the configuration space
of the salts.
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FIG. 3. Density of each salt at different temperatures computed
with the machine learned potentials trained on 32 configurations
(orange crosses), using pure DFT-MD (blue stars) and exper-
imental data (black dots) taken from Ref. [41]. The experimental
data are provided with 4 significant digits, making the error
smaller than the symbol size in this figure.
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FIG. 4. Comparison of radial distribution functions generated
from MD simulations performed in an NVT ensemble using the
machine learned potentials trained on 32 (short dashed blue) and
128 (long dashed orange) configurations, respectively, and the
underlying density functional theory data (solid black).

Another important observable in MD simulations is the
radial distribution function (RDF), which can be directly
related to the DFT data on which the ML model was
trained. To generate data for the RDF calculations, NVT
simulations are performed at densities fixed to those of
the compared experimental values. The MDSuite post-
processing software [42] is then used to compute the RDFs.
The MD simulations are run for 1 ns using a Nose-Hoover
chain [22,23] with a coupling constant of 100 fs. To create
reference data, 10 ps DFT-MD runs in an NVT ensemble
are also performed using the parameters described for the
single-point calculations. Figure 4 compares the anion-
cation RDF curves for the machine-learned potentials
against the reference DFT data. RDFs are shown for two
different models trained on different amounts of data. In all
cases, the ML potentials accurately reproduced the under-
lying DFT data.

Finally, the dynamic properties of the salts are assessed
in the form of self-diffusion coefficients and ionic con-
ductivity. The trajectories from 1 ns MD studies are used
along with the MDSuite software [42] in the computation
of the properties. Tables I and II compare the results
computed from the MD simulations with those of the
experiment.

TABLE 1. Self-diffusion coefficients computed from the ML
potential simulations compared with experimental fits from
Ref. [43].

Species Dgim Deyp
NaCl Na 1.118 +0.006 1.052 £ 0.210
& Cl 0.903 £+ 0.005 0.842 +0.168
KCl K 1.052 £ 0.005 1.005 + 0.201
Cl 1.069 £ 0.006 0.905 £ 0.181

We see that for both salts, the self-diffusion coefficients
match well with experimental values, suggesting an accu-
rate MLP trained on good ab initio data. Tonic conductivity
measurements are also in good agreement with experimen-
tal values.

We have demonstrated that random network distilla-
tion can be used to identify relevant atomic configu-
rations to train data-driven interatomic potentials. We
did so by fitting machine-learned potentials on sys-
tems of NaCl and KCI using the SchNet framework.
Furthermore, our data selection method outperformed
several other approaches, including global energy selec-
tion, local energy selection, and force-based selection
in model convergence. We have performed molecular
dynamics simulations on scaled systems of up to 500 ion
pairs and for more than 1 ns to validate the ML potentials
on more significant length and timescales. The structural
and dynamic properties computed from these simulations
were shown to reproduce pure ab initio investigations
and experimental data adequately. Finally, we showed
that RND is capable, without additional active learning,
of performing stable NPT simulations and converging to
the system density expected from DFT. These results
support several conclusions. Random network distillation
is an efficient method for identifying unique configura-
tions for training MLPs. Single-point DFT calculations
on classically generated configurations are sufficient for
producing accurate training data for machine learning
models. At least for chemically simple systems, the
number of configurations required for an NPT-capable
model yielding accurate structures, dynamics, and den-
sities is significantly smaller than previously reported in
the literature, resulting in improved training time and
reduced computational demand. This minimal training
set also provides an avenue for extending the potentials
to higher level ab initio calculations such as coupled
cluster [45] or configuration interaction [46] and there-
by producing MLPs beyond the accuracy of DFT.
Summarizing, our method shows the possibility of highly
accurate simulations at a drastically reduced computa-
tional budget. This substantially expands the possibilities
of simulation methods by enabling the study of systems
and structures previously prohibitively expensive to
compute. Future work should investigate the application

TABLE 1II. Ionic conductivity data from the ML potential
simulations compared with experimental values taken from
Ref. [44].

OSim OExp
NaCl 3.885£0.118 3.954 £0.032
KCl 2.779 £ 0.057 2.517 £0.044
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of RND to more complex systems and better understand
its limitations.

All data is made available through either direct request to
the authors or through the DarUS dataset available at [47].
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