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Quantum anisotropic exchange interactions in magnets can induce competitions between phases in a
different manner from those typically driven by geometrically frustrated interactions. We study a one-
dimensional spin-1=2 zigzag chain with such an interaction, Γ term, in conjunction with the Heisenberg
interactions. We find a ground state phase diagram featuring a multicritical point where five phases
converge: a uniform ferromagnet, two antiferromagnets, Tomonaga-Luttinger liquid, and a dimer-singlet
coexisting with nematic order. This multicritical point is simultaneously quantum tricritical and Lifshitz,
and most remarkably, it hosts multidegenerate ground state wave functions with the degeneracy increasing
in squares of system size. The exact ground states are obtained in the matrix product form opening wide
applications to frustration-free models.
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Introduction.—Traditionally, phase diagrams for quan-
tum magnetism in one dimension (1D) are quite simple,
predominantly characterized by the Tomonaga-Luttinger
liquid (TLL) which sometimes undergoes a transition to a
magnetic phase breaking discrete symmetries like Ising
Néel order. The introduction of geometrical frustrations can
lead to emergent quantum disordered phases such as dimer-
singlet phase on a zigzag chain [1–6] and the nematic phase
on frustrated ladders [7,8]. These states are sufficiently
trivial in the context of quantum topology, as they are
approximated by product-state wave functions. Still, a
realization of the Majumdar-Ghosh (MG) state [1,2] inside
the dimer-singlet phase may deserve particular emphasis,
because it stands as one of a handful of exact ground states
in realistic quantum many-body models.
Recently, quantum anisotropic exchange interactions

have been added as another ingredient to enrich quantum
magnetism. An iconic example is the Kitaev interaction that
serves as a source of spin liquid with long-range entangle-
ment and topological excitations [9–11]. In reality, the
Kitaev interaction cannot avoid coexistence with the Γ and
Heisenberg terms that largely restrict the phase space of
spin liquid [12,13]. However, a very rich phase diagram
with spiral, stripe, or other spatially modulated phases [14]
show that they provide strong frustration or competition in
a way not easily attained by the geometrical frustration
effect.
The anisotropic exchange interactions can naturally arise

in the Mott insulating state of 4d, 5d, and 4f electrons with
strong spin-orbit couplings like iridium oxides, iridates,
and rare-earth magnets [15,16]. When derived microscopi-
cally, they are classified into three categories; Kitaev-type
bond-oriented diagonal exchange, Γ term representing

bond-symmetric, off-diagonal (different spin component)
exchange, and the bond-antisymmetric Dzyaloshinskii-
Moriya exchange interactions. For rare-earth-based materi-
als with high crystal symmetric octahedral ligands, the
SU(2) symmetric Heisenberg interactions are dominant and
a small Γ term adds on top of that [17,18]. In this Letter, we
clarify the role of the Γ term by simplifying it to an
idealized form in a 1D zigzag Heisenberg chain with
geometrical frustration. Although the Γ term was previ-
ously a less important secondary term in the Kitaev
magnetism, our ground state phase diagram turns out to
be rich, as it includes the multicritical point showing both
the Lifshitz and tricritical nature [19–23].
The Lifshitz point is a finely adjusted point in a phase

diagram at which a uniform phase and a spatially modu-
lated ordered phase meet the disordered phase [20,24]. In
the early days, it was discussed in the ANNNI model [25].
Similarly, the multicritical point in metamagnets is
explained by the competing antiferromagnetic and spin
flopped states in a magnetic field [21,26–28] or in liquid
4He [29]. These examples are governed by two competing
Ising order parameters that originate from the explicit
magnetic anisotropies of the Hamiltonian. By contrast,
in our case, the compatibility of the Γ term and the discrete
symmetry of the crystal lattice spontaneously select the
magnetic easy axis, generating three Ising order parame-
ters. The three are decoupled in the Landau theory and will
form a Gaussian fixed point similar to the bicritical or
tetracritical point of the metamagnets [26,27]. Our tricrit-
ical Lifshitz point stands out because it occurs at zero
temperature and meets the quantum disordered phase. It
falls exactly on the MG line with exact singlet states, and
most intriguingly, its multidegenerate ground states turn out
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to be exactly described by a matrix product state (MPS)
representation.
Model and phase diagram.—We consider a quantum

spin-1=2 Hamiltonian on a zigzag chain given as

H ¼
X
j

X
η¼1;2

JηSj · Sjþη þ ΓηðSxjSyjþη þ SyjS
x
jþηÞ; ð1Þ

where Jη and Γη are the Heisenberg and anisotropic
exchange interactions between nearest (η ¼ 1) and
next nearest (η ¼ 2) spins for which we take site
indices alternatively between legs. For later convenience,
we parametrize them as Γ1=J1 ¼ Γ2=J2 ¼ tan θ and
J2=J1 ¼ Γ2=Γ1 ¼ tanϕ, where the range 0 ≤ ϕ, θ ≤ π=2
corresponds to antiferromagnetic J1 and J2 [30–32]. The
sign of Γη does not matter as it is erased by the local unitary
transformation. We take the spin quantization axis as the
one shown in Fig. 1; the z axis is taken parallel to the chain
and we set the y axis perpendicular to the triangular plane.
We show in Fig. 1(a) the ground state phase diagram of

Eq. (1) obtained by the density matrix renormalization
group (DMRG) calculation [33]. Here, we take typically
N ¼ 100 lattice sites and adopt two cases—open boundary
condition (OBC) and a sine-square deformation (SSD)—
where the latter can accurately evaluate incommensurate
ordering and suppresses finite-size effects [34–36]. The
Γη ¼ 0 (θ ¼ 0) limit is the zigzag J1-J2 model where the
transition from a TLL phase to the dimer-singlet phase

occurs at J2=J1 ∼ 0.241 [2–6]. At Γη ≠ 0, the two phases
extend and undergo a second order transition to the
antiferromagnetically ordered (AFM) phases which we
call UD and UUDD for J2=J1 ≤ 0.5 and ≥ 0.5, respec-
tively. The AFM phases experience first-order transitions to
the ferromagnetic (FM) phase. The magnetic moments of
the two AFM phases are locked parallel to ðx; y; zÞ ¼
ð1; 1; 0Þ and that of FM phase to ð1;−1; 0Þ. Similar spin
orientation is observed in the 1D Heisenberg chain with a
bond alternating Γ term [37].
The phase diagram has a few remarkable features.

First, the three second-order transition lines separating
UD, TLL, dimer-singlet, and UUDD meet at the single
point, ðJ2=J1;Γη=JηÞ ¼ ð1=2; ffiffiffi

3
p Þ. It is the end point of the

two first-order transition lines separating the FM and UD,
UUDD phases. This point is tricritical because the three
order parameters are adjusted as we see shortly.
Second, we find that J2=J1 ¼ Γ2=Γ1 ¼ 1=2 is a MG

line; the singlet product state, jΨMGi ¼
QN=2

j¼1 jsji with

jsji ¼ ðj↑↓i − j↓↑iÞ= ffiffiffi
2

p
on ½2j − 1; 2j� sites continues to

be the exact eigenstate of Eq. (1).
Finally, at Γη ≠ 0 and off the MG line, the nematic order

emerges inside the dimer-singlet phase at all finite values of
Γη [38]. Figure 2 shows two-point correlation functions of
magnetic and nonmagnetic operators obtained by DMRG.
At Γη ¼ 0, all the magnetic correlations decay exponen-
tially with distances, and the singlet-singlet correlation
function dominates. When Γη > 0, a nematic-nematic
correlation starts to sustain at ji − jj → ∞, whose value
continuously increases from a zero at Γη ¼ 0.
Multicriticality.—We first clarify the underlying

competition of phases near the multicritical point. To

FIG. 1. (a) Ground state phase diagram of Eq. (1) obtained by
DMRG. Solid line J2=J1 ¼ 1=2 ¼ arctanðϕÞ is the Majumdar-
Ghosh line where the singlet product state is the exact eigenstate.
The multicritical point is located on that line at Γη=Jη ¼

ffiffiffi
3

p
. The

right panels show the zigzag chain and the global xyz coordinate,
where UD and UUDD have (1,1,0) and the Ferro phase has
ð1;−1; 0Þ as a spontaneously emergent easy axis of magnetic
moment, respectively. (b) Mean-field phase diagram where the
multicritical point appears at ðΓη=Jη; J2=J1Þ ¼ ð2; 1=2Þ. The data
points are the mean-field solution from the bond operator
approach based on the dimer.

FIG. 2. (a) Two-point correlation functions hOiOji of spins
Oi ¼ Sαii of ðαiαjÞ ¼ xx; zz, and xy; dimer Oi ¼ Si · Siþ1; and
nematic operators Oi ¼ Sxi S

y
iþ1 þ Syi S

x
iþ1 obtained by DMRG

with N ¼ 100. (a) θ ¼ 0 and (b) θ ¼ 0.1π with ϕ ¼ 0.2π. Inset
shows the evolution of nematic correlation at ði; jÞ ¼ ð10; 90Þ
with Γη=Jη.
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illustrate it, we prepare the basis set of site j using the up
and down spin states about the global xyz coordinate,
j↑i; j↓i, as juij ¼ j↑ij þ eiπ=4j↓ij, jdij ¼ j↑ij − eiπ=4j↓ij,
jfij ¼ j↑ij þ ei3π=4j↓ij, and its conjugate jf�ij. Their
magnetic moment points in the ð�1;�1; 0Þ direction for
jui and jdi, and ð�1;∓ 1; 0Þ for jfi. The variational
scheme considering a maximally four-site-period naturally
provides a product state

Q
N
j¼1 jψ ji where jψ ji is expanded

as a linear combination of the above-mentioned four sites.
The lowest energy state gives the following mean-
field solutions: jΨUUDDi¼

QN=4
j¼1 jui4j−3jui4j−2jdi4j−1jdi4j,

jΨUDi¼
QN=2

j¼1 jui2j−1jdi2j, and jΨFMi ¼
Q

N
j¼1 jfij, whose

energies are EUUDD¼−ðJ2þΓ2ÞN=4, EUD ¼ ð−J1 − Γ1 þ
J2 þ Γ2ÞN=4, and EFM ¼ ðJ1 − Γ1 þ J2 − Γ2ÞN=4, res-
pectively. These three states are exclusive to each
other and meet at Γ=J ¼ 2 in the mean-field phase diagram
in Fig. 1(b); it is slightly off the exact multicritical point,
while successfully capturing the essence of the numerical
phase diagram. Here, we have added the data points derived
from the bond-operator mean field approach [39,40] based
on dimers, which will be discussed elsewhere.
The implications of the mean-field results become

distinct when we rotate the spin coordinate by π=4 about
the z axis; The Hamiltonian in the new coordinate x0y0z0 is
given as Hπ=4 ¼ Hx0y0 þHz0 , and by dropping off Hz0 , we
obtain Hπ=4 ∼Hx0y0 with

Hx0y0 ¼
XN
j¼1

X
η¼1;2

ðJη − ΓηÞSx0j Sx0jþη;þðJη þ ΓηÞSy
0
j S

y0
jþη;

ð2Þ
whereHz0 ¼

P
N
j¼1

P
η¼1;2 JηS

z0
j S

z0
jþη is irrelevant [26]. The

U and D in the mean-field solutions are the Ising type
solution of Eq. (2) in the y0 directions, and FM is the one in
the x0 direction, whose energies cross at the multicritical
point. Indeed, in examining the simplest long wavelength
excitations of Eq. (2) from the multidegenerate ground
state, the Ising types of a ferromagnetic mode pointing
toward x0 and the two other magnetic modes in the y0
direction are observed (see Supplemental Material [41]).
As another way of understanding this spontaneous

selection of magnetic easy axes, one may go back to
Eq. (1), finding that it is invariant under the π rotation about
both the (1,1,0) and ð−1; 1; 0Þ axes, which transforms the
spins as ðSx; Sy; SzÞ → ðSy; Sx;−SzÞ and ð−Sy;−Sx;−SzÞ,
respectively. These two directions are thus robust against
the quantum fluctuation and hence are encoded in Eq. (1) as
invisible easy axes.
The two or more competing Ising states remind us of a

bicritical or tetracritical point of the ANNNI model [25]
and metamagnets [21,26–28]. Their origin, the competing
ferromagnetic and antiferromagnetic Ising exchanges in the
former, and the magnetic easy axis and the transverse

magnetic field in the latter are visible in their Hamiltonian.
Their multicritical phase transition at finite temperature
occurs due to the thermal entropic effect. In contrast, our
Ising anisotropy comes from the interplay of quantum
anisotropic exchange and the lattice symmetry, and the
quantum disorder due to quantum fluctuation drives the
multicriticality at zero temperature.
Exact solutions.—When J1 ¼ 2J2 ≡ 2J and Γ1 ¼

2Γ2 ¼ 2Γ, the couplings of diagonal rungs are doubled
from those of legs, and the Hamiltonian Eq. (1) can
be rewritten as the sum of local Hamiltonians, hl, of
the lth triangular unit based on ½lþ 1; l; l − 1�-th spins
as H ¼ P

l ĥl with

ĥl ¼
X
i;j∈ l

JSi · Sj þ
X
i;j∈ l

ΓðSxi Syj þ Syi S
x
jÞ; ð3Þ

which is shown schematically in Fig. 3(a). At Γ ¼ 0, the
lowest energy of ĥl ¼ JðSl−1 þ Sl þ Slþ1Þ2=2 − 9J=8 is
ϵ0 ¼ −3J=4, attained by a total S ¼ 1=2 for all triangle
which is the MG state. When Γ > 0, J and Γ terms in
Eq. (3) commute and the MG singlet state remains as the
exact eigenstate of Eq. (1), which is equivalent to the MG
state known in the XYZ model [42], i.e., Hπ=4. Notice that
the J and Γ terms of Eq. (1) do not commute.
At the multicritical point, Γ=J ¼ ffiffiffi

3
p

, the ground state is
highly degenerate including a doubly degenerate MG state.
This is already unusual because conventional critical
ground states typically lack such degeneracy. Even more
exceptional is that the degrees of degeneracy and a full set
of exact solutions are accessible. To prove this, we present
two methodologies: the first involves solving a set of linear
equations satisfying conditions to have the energy
E ¼ −Nϵ0, while the second entails iteratively constructing
a matrix product state. In these methods, we employ a
triangular open boundary condition (T-OBC) shown in
Fig. 3(a); suppose that we have a set of degenerate ground
states ofH ¼ P

N
l¼1 ĥl under a periodic boundary condition

(PBC). Even if we eliminate the two triangles, h1 and hN , as
illustrated in Fig. 3(a), all the degenerate ground states
persist as those of H ¼ P

N−1
l¼2 ĥl with energy −ðN − 2Þϵ0.

Solving linear equations.—There are eight eigenstates of
a triangular unit in Eq. (3). Using 0=1 representing up or
down spins on ½lþ 1; l; l − 1� sites in the descending order,
they read

jψ�
n⇑i ¼

ffiffiffi
3

p
j000i � iðj011i þ j101i þ j110iÞ; ð4Þ

jψm⇓i ¼ j011i þ ωj101i þ ω2j110i; ð5Þ

with ω ¼ ei2π=3, where ⇑ states are obtained from the ⇓
ones by converting the spins as0 ↔ 1. Four “nematic” states
with S ¼ 3=2, jψ�

n⇑i, jψ∓
n⇓i, have energy 3J=4� ffiffiffi

3
p

Γ=2
and four magnetic states, jψm⇑i, jψ�

m⇑i, jψm⇓i, jψ�
m⇓i with
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S ¼ 1=2 have energy −3J=4 along the MG line. Among
them, six are the constituents of theground state atΓ ¼ ffiffiffi

3
p

J,
fjψgs

l ig ≡ fjψ−
n⇑i; jψþ

n⇓i; jψm⇑i; jψ�
m⇑i; jψm⇓i; jψ�

m⇓ig.
Because triangles share edges, the entire ground states need
to entangle these six bases in a nontrivial manner. Most
straightforwardly, we can project out the two excited states
on each triangle. Let the subspace of the Hilbert space be
given as Vl ¼ ffjψgs

l ig ⊗ jjij¼1;…;2N−3g, where fjjig is the
subspace spanned by theN − 3 sites that do not belong to the
lth triangle.All the states on∩N

l¼1 Vl are theground state jΨi;
they satisfy two conditions per triangle as QjΨi ¼ 0 with

Q¼ ⊕N
l¼1Ql; Ql¼

� ffiffiffi
3

p
0 0 −i 0 −i −i 0

0 i i 0 i 0 0
ffiffiffi
3

p
�
; ð6Þ

where the ði ¼ 1;…; 23Þ-th columns of Ql operate on the
states of the lth triangle in the bit representation of i, namely,
j000i; j001i;…; j111i, we applied in Eq. (5). The number of
linear equations is ðN − 2Þ × 2N−2. We numerically con-
firmed that solving them gives a full set of ground states by
comparing with the full exact diagonalization (ED) of the
original Hamiltonian, while the practically available size is
limited to N ≲ 20. However, the number of degeneracy of
the ground states is DN ¼ dimð∩N

l¼1 VlÞ ¼ 2N − rankQ,
which is obtained iteratively by dimð∩n

i¼1 ViÞ= dimð∩n−1
i¼1

ViÞ ¼ ½ðnþ 4Þ=2ðnþ 2Þ� (even n) and ½ðnþ 5Þ=2ðnþ 3Þ�
(odd n) and we find,

DN ¼
� ðN þ 2Þ2=4 ðevenNÞ
ðN þ 1ÞðN þ 3Þ=4 ðoddNÞ: ð7Þ

The actual values of DN are presented in Fig. 3(a).
Exact MPS solutions.—Using MPS [43] is practically

important for accurately representing quantum states with
large N [44]. Usually, the MPS of the critical state is only
approximately available, whereas ours provides a full set
and the exact description, and can be generally applied to
other frustration-free models [45–47] (for details see
Supplemental Material B [41]). The protocol to obtain
the MPS is shown schematically in Fig. 3(b). Suppose that
we have an n set of matrices that starts from the left edge

matrix as B½l� ¼ B½l�il
αβ with l ¼ 1;…; n; the lth matrix has

dimension Dl−1 ×Dl × 2 with il ¼ 0=1 spin degrees of
freedom. For small n, we can obtain fB½l�g by a Schmidt
decomposition of the exact wave function of ED. In
increasing sites from n to nþ 1, we consider a vector v
whose m ¼ iþ 2jþ 4k element is ðB½n−1�iB½n�jB½nþ1�kÞ,
that includes 2Dn unknowns of βnþ1-th column of
B½nþ1�k. We have Dn−2 such vector for each choice of
the row of B½n−1�i. Therefore, v needs to fulfill 2Dn−2
different pairs of linear equations Qnv ¼ 0 using Eq. (6).
Solving 2Dn−2 simultaneous equations, we are able to
construct at most 2Dn different solutions for 2Dn

unknowns, which altogether form B½nþ1�k. At n ¼ N, we
are left with DN free bonds on the rhs. By separating them
into connected elements, we obtainDN different MPSs; We

FIG. 3. (a) Illustration of the model at J1 ¼ 2J2 ¼ 2J, Γ1 ¼ 2Γ2 ¼ 2Γ as a sum of hl with l ¼ 2;…; N − 1 (T-OBC), in comparison
with the 1D description, and the degeneracy of the ground stateDN up to N ¼ 14 for PBC and T-OBC. (b) Protocol to construct an exact
MPS with T-OBC. Matrix B½nþ1� is successively generated from the nth and (n − 1)-th matrix elements by solving linear equations
represented byQn. The matrix elements of B½l� (l ¼ 1;…; N) are separated into a set ofDN independent degenerate MPS fA½l�g. (c) Bond
dimensions χn of exact MPS A½l� for N ¼ 36, 45, 54, 63, 72. (d) Entanglement entropy Sn of the exact MPS with N ¼ 36, 63 and T-OBC
about the bipartition to n and (N − n)-site subsystems as a function of n. Data are averaged over complete orthogonal degenerate ground
states (Supplemental Material C [41]). Right panel gives the entanglement scaling: Solid line is Sn ∼ ðc=3Þ ln nwith c ¼ 3. Solid lines in
panels (c) and (d) are the corresponding DMRG results with numerically accurate energy Nϵ0. (e) Energy gap ΔE between the ground
state Ne0 and the first excited state obtained by ED for T-OBC and PBC. Solid-broken line shows the guide for finite-size scaling
behavior ΔE ∝ N−2 (PBC) and N−2.60 (T-OBC).
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left-normalize each MPS to make them orthogonal with
each other, and perform a Schmidt decomposition to reduce
the bond dimension to discard the zero-weight ones. The
final form fA½n�gNn¼1 of χn−1 × χn × 2, serves as a full set of
ground states. These operations are done by implementing
the routines of iTensor [48].
Figure 3(c) shows the bond dimension χN of fA½n�gNn¼1

for choices ofN with T-OBC. The n ≤ N=2 ones follow the
exact values for all choices of N and are symmetric about
the center. The entanglement entropy (EE) Sn about the
bipartition to n and N − n obtained by averaging over DN
ground states is shown in Fig. 3(d). They apparently
extrapolate to Sn ∼ logn. The natural interpretation is that
the three exclusive lowest energy modes at the multicritical
point (see Supplemental Material [41]) give the three
bosonic excitations, and yield Sn ¼ c logðnÞ=3 [49,50]
with central charge c ¼ 3 similarly to spin Bose metal
[51], although there can be other possibilities. In parallel,
we performed the DMRG calculation for T-OBC and
compared it with the exact MPS. Because DMRG can
only capture one of the degenerate ground states and favor
minimally entangled states, the product MG state likely
dominates over others, resulting in a plateau of χn and
much smaller EE. Our exact MPS does not lose any
essential information and has an advantage over it.
We finally show in Fig. 3(e) that the excitation energy

ΔE above the ground state obtained by ED vanishes at
N → ∞ in power of 1=N, with z ∼ 2 for PBC, consistent
with the long wavelength bosonic excitations, confirming
the gapless nature of the multicritical point.
Conclusions.—We discovered a Lifshitz tricritical point

in a ground state phase diagram of the spin-1=2 zigzag
ladder, and its exact MPS representation in a system of
substantially large size N. Over the last fifty years, multi-
critical points have been revisited several times. Recent
ones are reported in materials. In NbFe2, there exists a
competition between ferromagnet and spin-density waves,
and a magnetic field drives the transition down to low
temperature toward the tricritical point [52]. In Cu2OSeO3

that hosts skyrmions, magnetic phases compete and exhibit
both the tricritical point and the Lifshitz point separately in
the magnetic phase diagram [23]. Our case adds an
anomalous simultaneous multicritical and Lifshitz point,
where five phases meet and have intriguing multidegener-
acy. Our study is motivated by a 4f magnet of spin-1=2
zigzag chain, YbCuS2 [18,53–55]. The neutron diffraction
measurement reports an incommensurate magnetic struc-
ture at T < TO ∼ 1 K and a NMR suggests a gapless
nonmagnetic excitation. Still, their Γ=J < 0.1 remains
too small to reach a multicritical point in a laboratory.
From the theory point of view, there had been only a few

examples of exact MPS states, e.g., AKLT [43,44,56],
W state [57,58], Greengerger-Horne-Zeilinger state [59,60],
Motzkin chain [45,61], Fredkinmodel [46,62], and PXP like
model for quantum scars [47,63]. These models were so far

often artificial or mostly too idealized for quantum compu-
tation. The present multicritical MPS adds a rich and useful
playground in a physically meaningful model in condensed
matter, as its construction is systematically applied to a wide
family of frustration-free models.
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