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In multivalley systems, the valley pseudospin offers rich physics going from encoding of information by
its polarization (valleytronics), to exploring novel phases of matter when its degeneracy is changed. Here,
by strain engineering, we reveal fully valley-polarized quantum Hall phases in the Pb1−xSnxSe Dirac
system. Remarkably, when the valley energy splitting exceeds the fundamental band gap, we observe a
“bipolar quantum Hall phase,” heralded by the coexistence of hole and electron chiral edge states at distinct
valleys in the same quantum well. This suggests that spatially overlaid counterpropagating chiral edge
states emerging at different valleys do not interfere with each other.
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Quantum Hall (QH) phases have been inspiring and
generating a large amount of original physics for more than
40 years [1,2]. In particular, multivalley systems have
attracted major interest for the discovery of novel phases
of matter [3–6]. The valley degree of freedom accounts for
a pseudospin that considerably enriches the QH phase, like
the SU(2) or SU(4) QH ferromagnetisms observed in
graphene [7–10] or AlAs [11–13]; or the QH nematic
phases recently discovered in the AlAs=AlGaAs system
[14] and at the Bi (111) surface [15]. In the Pb1−xSnxSe=Te
QH system, the valley degeneracy is predicted to yield a
rare SU(3) QH ferromagnetism analogous to the quark
model, and a nematic phase [4,5]. Such exotic phases are
the setting for intriguing physical phenomena involving
many-body interactions [4,5,7] and can host topological
excitations like anyons [16–18], skyrmions [5,19], or
charge density waves [20,21].
The valley degree of freedom has also created a new

paradigm for (quantum) information processing [22–25].
Valleytronics thereby refers to the use and manipulation of
the valley pseudospin to carry and store the information,
which is actively studied for AlAs [12,26,27], diamond
[28], the Si and Si=Ge systems [25,29–31], graphene
[24,32,33], and 2D materials like WSe2 or MoS2
[23,34,35]. These materials have shown valley-selective
interactions with applied optical, electric, or mechanical
fields that renders them potential candidates for device
applications [34]. The key for efficient valleytronic effects
relies on finding robust and switchable valley-polarized

states in wafer-scale materials that can be controlled by
external knobs in order to drive carriers selectively at
different momenta [36].
By revealing an extremely large valley energy splitting

induced by strain, we show that the multivalley Pb1−xSnxSe
system presents indisputable qualities for monitoring the
valley degree of freedom and is a serious candidate for
both the discovery of spontaneous valley-symmetry break-
ing as well as valleytronic applications. Pb1−xSnxSe (111)-
oriented quantumwells (QWs) host four Fermi pockets [see
Fig. 1(a)]: one isotropic longitudinal valley (l) located
at the Γ̄ point, and three equivalent oblique valleys (o)
at the M̄ points [4,37,38] that are anisotropic and related
by a C3 rotational symmetry. This system exhibits a
fundamental band gap with electron-hole symmetry in
all valleys [39,40]. Controlling the population of the
different valleys is crucial for accessing novel phases of
matter through spontaneous valley-symmetry breaking and
for the development of valley-polarized transport for
valleytronics technologies.
In this Letter, by measuring the integer QH effect on

QWs grown along the [111] direction [Fig. 1(b)], we reveal
a strong dependence of the valley splitting Δl−o on the in-
plane biaxial strain. By controlling strain and doping levels,
the PbSnSe QH system shows the emergence of several
distinct transport regimes summarized by the QH phase
diagram plotted in Fig. 1(c). When the strain, and thus the
valley splitting Δl−o are small, quantum transport occurs in
both types of valleys with the same type of carriers [41–43].
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For small but nonzero strain values, the valley splitting is
such that, depending on the Fermi level, a fully valley-
polarized state emerges. In this regime, we demonstrate that
strain can monitor the valley-pseudospin of Dirac fermions.
Last but not least, a bipolar regime is observed when Δl−o
becomes larger than the band gap 2δ of the QW, yielding
hole and electron edge channels to coexist in the same QW
layer but within different valleys.
Control of strain and doping levels.—The key parameter

in our Letter is the in-plane biaxial strain, which we control
by adjusting the lattice mismatch between the buffer and
QW layers. Samples are grown by molecular beam epitaxy
on BaF2 substrates and consist of 25 nm thick (111)-
oriented Pb1−xSnxSe QWs with different compositions and

doping levels embedded between undoped and relaxed
Pb0.91Eu0.09Se buffer and capping layers [see Fig. 1(b) and
Supplemental Material [44] ]. The pseudomorphic growth
is demonstrated by x-ray diffraction shown in [44]. As a
result, the QWs are under biaxial tensile strain, whose
magnitude is governed by the Sn concentration [44] (see
Table I). The second varied parameter is the doping level. It
is controlled in situ during the growth by Bi doping, which
acts as a donor and compensates the native hole concen-
tration naturally present in Pb1−xSnxSe [45]. The existence
of the different QH phases [see Fig. 1(c)] is demonstrated
by means of three samples A, B, and C exhibiting different
strains, band gaps and doping levels listed in Table I.
All samples were patterned in 1 × 0.3 mm2 Hall bars [43].
The contacts were made by indium soldering and the
Hall measurements were carried out at T ¼ 1.6 K up to
B ¼ 17 T.
Valley-polarized QH regimes.—Figure 2 shows the QH

effect measured in samples A and Bwhich host Pb1−xSnxSe
QWs with x ∼ 9%. Both QWs are under tensile strain with
εk ∼ 0.44% and their carrier densities lie below 1012 cm−2
(see Table I). Both samples present precisely quantized Hall
plateaus with vanishing longitudinal resistances, depicting
a clear QH phase. For the p-type sample A [Fig. 2(a)], the
observed QH plateaus exhibit plateaus at −h=νe2 with
filling factors ν ¼ 3 and 9, as well as a small feature at
ν ¼ 15 (see the derivative in [44]). For n-type sample B
[Fig. 2(b)] the most pronounced plateaus are seen for ν ¼ 1
and 3, with small additional features at ν ¼ 2 and 4.
Figure 2 demonstrates the fully valley-polarized trans-

port regimes that Pb1−xSnxSe can provide. The different
degeneracy of the Landau levels below the Fermi energy is
responsible for the observed filling factors. In sample A, a
transition from filling factor 9 to 3 means that the Landau
levels are sixfold degenerate. Considering the two spins,
this yields a threefold valley degeneracy, meaning that only
the three oblique valleys are populated and contribute to the
quantum transport. In sample B, despite having the same
strain status and Sn content (see Table I), the situation is
completely different due to the different carrier type
stemming from the distinct Bi doping during the growth.
For this reason, only the single longitudinal valley is

TABLE I. Characteristics at T ¼ 1.6 K of the investigated samples. All QWs are 25 nm thick.

Samples A B C

xSn (%) 8.5� 1 9� 1 15� 1
εk (%) 0.46� 0.04 0.42� 0.04 0.62� 0.04
2δ (meV) 92� 2.5 83� 2.5 50� 2.5
Δl−o (meV) 74a 67a 92� 5

Doping (cm−2) p° ¼ 7.45 × 1011 nl ¼ 3.54 × 1011 nl ¼ 1.81 × 1011 p° ¼ 5.42 × 1011

Filling factor series νo ¼ 6ðN þ 1=2Þ νl ¼ 2ðN þ 1=2Þ νo − νl ¼ 4ðN þ 1=2Þ
Mobility (cm2=V:s) μh ¼ 37 800� 2000 μe ¼ 37 000� 2000 μe ¼ 150 000� 20 000 μh ¼ 55 000� 5000

aDeduced from Eq. (1).

FIG. 1. (a) Brillouin zone of Pb1−xSnxSe projected onto the
(111) surface. The Γ̄ and M̄ valleys are shown in black and red.
(b) Structure of the investigated QW samples. (c) Valleytronic
phase diagram as a function of Fermi level and in-plane biaxial
strain. Valley-polarized (red and black) and bipolar (purple) QH
phases manifest themselves by different plateau filling factors. N
denotes the Landau level index. The investigated samples A, B,
and C are placed according to their properties.
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populated, which is witnessed by the features observed for
ν ¼ 3 and ν ¼ 1. The valley alignment and Fermi levels of
the two samples are schematically depicted in the insets of
Fig. 2 and illustrate the fully valley-polarized QH regime.
Interestingly, the QH plateaus observed in samples A and

B display Dirac-like Landau levels: the Zeeman splitting is
equal to the cyclotron energy and thus, the N ¼ 0↑
Landau level is degenerate with N ¼ 1↓, leaving a spin-
polarized N ¼ 0↓ ground Landau level. This gives the
well-known Dirac filling factor series ν ¼ gsgvðN þ 1=2Þ,
with gs and gv being the spin and valley degeneracies,
respectively [46,47]. Here, gv ¼ 1 ðgv ¼ 3Þ corresponds to
the valley-polarized regime where only the Γ̄ valley
(threefold degenerated M̄ valleys) is populated. In both
cases, this promotes plateaus with odd filling factors as we
experimentally observe. For sample A, the observed pla-
teaus appear at νo ¼ 6ðN þ 1=2Þ, that is reminiscent of
graphene’s, however, with a different valley degeneracy.

Sample B shows a single-valley Dirac behavior with
νl ¼ 2ðN þ 1=2Þ. This clearly characterizes the PbSnSe
system as a Dirac material with a strain tunable multivalley
character.
The bipolar QH effect.—The third investigated QH phase

occurs when the valley splitting exceeds the QW gap, i.e.,
Δl−oðεkÞ > 2δ. This requires a relatively high strain and/or
a small gap value. Here, we have quantified the valley
splitting as a function of strain Δl−oðεkÞ using angle-
resolved photoemission spectroscopy (ARPES). For this
purpose, additional samples were grown with a much
higher doping level and without capping layer, leaving a
20 nm Pb1−xSnxSe QW layer exposed at the surface.
Different strains were realized by changing the Sn content
from 0% to 25%, which changes the lattice mismatch with
respect to their underlying PbSe buffer and yields εk from
0% to 0.5%, respectively. Band maps in the vicinity of the Γ̄
and M̄ points were measured for each sample [Figs. 3(a)

FIG. 2. QH effect measured in sample A (holes) (a) and B (electrons) (b) at T ¼ 1.6 K. The dashed red lines indicate the calculated
plateau values. The insets illustrate the strained multivalley band structures with the corresponding Fermi level.

FIG. 3. (a),(b) ARPES bandmaps of the confined subbands in strained 20 nm Pb1−xSnxSe QWs at the Γ̄ and M̄ points for different strain
values. The valley splittingΔl−o is indicated by the horizontal black and red lines. (c) Valley splitting as a function of in-plane biaxial strain
deduced from ARPES and transport. The linear fit with Eq. (1) and error bars onDu are represented by the solid line and the shaded area.
(d) QW gaps versus Sn content determined by magneto-optics. Blue dashed line is a guide for the eye. The black line corresponds to the
calculated valley splitting. The crossing between blue and black lines delimits the bipolar regime (purple shaded area).
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and 3(b) and [44] ]. In each case, a large number of sharp
quantum confined states is observed both in the conduction
and valence bands.
The ARPES measurements allow us to accurately

determine Δl−oðεkÞ. This is achieved by measuring the
energy difference between the neutral points (middle of
the gap) at Γ̄ and M̄ as indicated in Figs. 3(a) and 3(b). The
results are summarized in Fig. 3(c). The dependence of
Δl−oðεkÞ can be computed [48,49] using the relation

Δl−o ¼
8

9
ð1þ λÞDuεk; ð1Þ

where λ is the Poisson ratio and Du the uniaxial deforma-
tion potential. Taking the value of λ ¼ 1.162 of PbSe [50],
we deduce Du ¼ 8.3� 1 eV [see Fig. 3(c)], in fair
agreement with literature [51–53]. Overall, this yields
Δl−o ¼ 16εk in eV, evidencing a valley splitting that is
highly strain sensitive. Note that the gap is found to be
essentially equal at the Γ̄ and M̄ points.
The QW band gaps 2δðxÞ of samples A, B, and C have

been measured by magnetoinfrared spectroscopy following
the procedure detailed in Refs. [38,39,44]. This determi-
nation includes the strain, composition, and quantum
confinement contributions to the gap. The results are
plotted in Fig. 3(d) and show the decrease of the gap with
increasing Sn content due to the emergent topological
crystalline phase in Pb1−xSnxSe for x > 16% [54,55]. The
outstanding tuning range of the valley splitting and gap of
Pb1−xSnxSe allows us to realize the condition Δl−oðεkÞ >
2δðxÞ and to reach the bipolar QH regime [see Fig. 3(d)].
Indeed, sample C fulfills this criterium as its magneto-
optics gives 2δ ¼ 50 meV, with a relatively large strain
value (εk ¼ þ0.62%) corresponding to Δl−o ¼ 99 meV
using Eq. (1). Its transport curves are shown in Fig. 4(a)
and its calculated Landau levels in Fig. 4(b) using the

parameters determined in magneto-optics. The band struc-
ture is also depicted in the inset of Fig. 4(a), where one
electron pocket lies at Γ̄, and three hole pockets at M̄. Using
a two-carrier model [44,56], the hole concentration is found
three times higher than that of the electrons, meaning that
each valley hosts about the same number of carriers (see
Table I). Therefore, the Landau levels associated with
electrons (at Γ̄) and those with holes (at M̄) cross the
Fermi level simultaneously. This special configuration
allows us to observe clear QH plateaus at filling factors
10, 6, and 2 as Rxx goes to 0 for both valleys at the same
time. These observed plateaus can be explained if one
considers that different types of carriers are present in the
two types of valleys, resulting in

ν ¼ νo − νl ¼ gsðgv;o − gv;lÞðN þ 1=2Þ ¼ 4ðN þ 1=2Þ:

The contributions of all valleys add up to lead to the
observed QH plateaus with ν ¼ νo − νl ¼ 3 − 1 ¼ 2;
ν ¼ 9 − 3 ¼ 6 and then for ν ¼ 15 − 5 ¼ 10. The
Landau level calculations together with the measured
carrier concentrations allow us to conclude that Δl−o ¼
92 meV for this sample, in perfect agreement with our
ARPES study [see Fig. 3(c) and Eq. (1)].
At high magnetic field, this configuration yields a ν ¼ 2

plateau that would be formed by three hole chiral edge
states (one per oblique valley) coexisting with the single
electron chiral edge state of the longitudinal valley, as
illustrated in Figs. 4(c) and 4(d). Remarkably, our obser-
vation shows that a dissipationless QH effect still persists.
This would evidence that the counterpropagating hole
and electron chiral states from different valleys do not
interfere with each other but rather add up in their
contribution. This observation is puzzling and asks for
further study.

FIG. 4. (a) QH measurements of sample C at T ¼ 1.6 K. The inset illustrates the multivalley band alignment and the Fermi level.
(b) Corresponding calculated Landau levels emerging at M̄ (red at the front) and Γ̄ (black at the back). The Fermi level as well as the
observed filling factor series are indicated. (c) Schematic illustration of the 2D Brillouin zone with the counterpropagating edge channels
in different valleys giving ν ¼ −2. (d) Scheme of the N ¼ 0 Landau levels in real space at M̄ (red at the front) and Γ̄ (black at the back)
and the Fermi level leading to ν ¼ −2. The right-handed (left-handed) chiral edge states are indicated by filled (empty) circles.

PHYSICAL REVIEW LETTERS 132, 166601 (2024)

166601-4



Wewant to emphasize that the counterpropagating chiral
edge states probed here are well separated in the reciprocal
space but coincide in real space as represented in Figs. 4(c)
and 4(d). This is unique and differs fromany previousworks,
in particular from the QH effect observed in InAs=GaSb
heterostructures where electron and hole chiral states are
both localized at the center of the Brillouin zone and occur in
spatially separated layers [57]. This situation creates hybrid-
izations between electron and hole 2D states [58], as well as
interactions between electron and hole 1D edge states [59].
A related situation occurs also in graphenewhere, at ν ¼ 0, a
dissipative QH effect is measured [10,60]. However, the
gaps between the four N ¼ 0 Landau levels are rather small
(∼meV) [10] compared to the ∼45 meV found here in
sample C. Moreover, the ν ¼ 0 plateau of graphene cannot
possibly exhibit the usual QH hallmarks as it would
theoretically lead to ρxx ¼ ρxy ¼ 0, which would denote a
superconducting state [60–62].
In summary, our Letter has revealed the rich QH phases

accessible in Pb1−xSnxSe. By demonstrating Dirac-like
plateaus at νo ¼ 6ðN þ 1=2Þ and νl ¼ 2ðN þ 1=2Þ, we
show fully polarized valley pseudospin of Dirac fermions.
This is made possible by a strain-control of the valley
splitting (Δl−o ¼ 16εk eV) and is promising for PbSnSe-
based valleytronics devices like valley filter or valve [24,37],
and quantum information storage [22,23,25,28]. To go
further, one can grow or transfer the PbSnSe QW layers
on a piezoelectric substrate. In this way, the strain induced
valley-splitting would be simply driven by an external
electric field.
The valley-polarized regime is also of primary interest for

the exploration of new exotic phases of matter like nematics,
QH ferroelectricity, and SU(3) QH ferromagnetism [4,5].
Indeed, the possibility to drive the QH effect independently
in one type of valley or the others allows for varying the
Landau levels degeneracy. In this way, sampleA stands as an
ideal platform to access an SU(3) QH ferromagnetism, since
only the threefold degenerate oblique valleys are populated
[4]. As proposed in Ref. [4], one can also use an additional
in-plane magnetic field to lift the valley degeneracy and
access the SU(3) QH ferromagnetic phase.
Finally, the QH effect has been measured when both

types of valleys are populated with different types of
carriers, introducing an intriguing bipolar QH phase. In
this regime, electron and hole chiral states emerging within
different valleys coexist in a single QWand give plateaus at
filling factors that are the sum of involved electron and hole
chiral edge states. This would mean that no interactions
occur between counterpropagating chiral states located at
different momenta of the Brillouin zone but coinciding in
real space, an observation that should certainly deserve
theoretical attention.
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