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We report numerical simulations of surface gravity waves forced at small scale and the subsequent
inverse cascade of wave action. We combine the spectral approach to simulating weakly nonlinear waves
with the capabilities of modern graphics processing units to reach unprecedented scale separation between
the forcing and domain scales. The resulting broad inertial range allows for an unambiguous confirmation
of the theoretical prediction for the spectrum in the inverse cascade regime, both in terms of spectral index
and dependence of the spectral level on the action flux.
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Introduction.—Wave turbulence shares many similarities
with standard hydrodynamic turbulence, including the
transfer of conserved quantities in spectral space through
self-similar cascades. As compared to hydrodynamic tur-
bulence, however, an appealing aspect of wave turbulence
theory (also known as weak turbulence theory, WTT in
the following) is that it comes with a natural closure based
on the dispersive nature of the waves and the timescale
separation between linear and nonlinear processes,
allowing for precise predictions for the energy spectrum
[1–3]. To wit, WTT begins with a weak-nonlinearity
expansion, from which one derives a wave kinetic equation
(WKE) describing the slow evolution of the wave spectrum.
In the inertial range of a turbulent cascade—that is, over the
range of scales on which forcing and dissipative processes
do not directly act—Zakharov first showed how one can
derive exact self-similar solutions to the WKE. WTT has
since been applied to many wave systems encountered in
physics, providing a common framework for the descrip-
tion of out-of-equilibrium nonlinear dispersive wave sys-
tems: deep-water surface gravity and capillary waves [4–9],
elastic waves on thin plates [10–14], inertial waves in
rotating tanks [15–17], internal waves in density-stratified
fluids [18,19], Bose-Einstein condensates [20–22], particle
interactions [23], and gravitational waves [24], to name
a few.
Recently, there has been growing interest in under-

standing under which conditions the theoretically predicted
turbulent states are realized in laboratory experiments and
numerical simulations. The majority of these investigations
are concerned with forward (direct) cascades, where the
invariant—often the energy—is transferred from the injec-
tion scale through smaller scales, all the way down to
dissipation. For systems that possess multiple quadratic
invariants, however, wave turbulence predicts that some
invariants may be transferred upscale through an inverse
cascade mechanism. Deep-water surface gravity waves
constitute one such system, conserving both energy and

wave action. As for standard slowly evolving waves (see
e.g. waves in inhomogeneous media [25,26]), wave action
density is defined as wave energy density over the wave
frequency. That is, with wave number k and energy spectrum
EðkÞ, the wave action spectral density is EðkÞ=Ωk where
Ωk ¼

ffiffiffiffiffi
gk

p
is the angular frequency of surface gravity waves,

with g the acceleration due to gravity. In the absence of
forcing and dissipation, the weakly nonlinear system con-
serves both the total wave energy,

R∞
0 EðkÞdk, and total

wave action,
R
∞
0 EðkÞ=Ωkdk. When some forcing mecha-

nism provides a source of energy and action, WTT applied
to deep-water surface gravity waves predicts both a
direct cascade of energy and an inverse cascade of wave
action [1,2], the latter being characterized by the one-
dimensional energy spectrum [27]:

EðkÞ ¼ CKZg2=3ζ1=3k−7=3; ð1Þ

where ζ denotes the wave action flux and the dimensionless
prefactor CKZ is the Kolmogorov-Zakharov (KZ) constant.
Deep-water surface gravity waves can be considered the
archetypal wave system for which an inverse cascade has
been predicted. Additionally, the inverse cascade is thought
to play a crucial role in the observed frequency downshift of
wind-wave spectra, and in the formation of swell [28].
Equally, a clear numerical or experimental validation of (1)
would have consequences extending beyond surface gravity
waves, to other systems for which inverse cascades have
been predicted based on WTT: Bose-Einstein condensates
and “optical turbulence” as described by the Gross-Pitaevskii
equation [20–22,29], Kelvin waves on thin vortex filaments
[30–32], spin waves [33,34], and most recently gravitational
waves [24].
Based on the literature, however, it appears that this

inverse cascade is more difficult to observe than the
forward cascade of surface gravity wave energy. Early
experiments have shown reasonable agreement over a
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narrow inertial range [35], while more recent experiments
in a much larger basin exhibit inverse transfers over
approximately a factor of 2 in scale only [36]. While
numerical simulations based on consistent truncations of
the nonlinear surface wave equations are very successful at
producing the expected direct cascade [9,37], numerical
investigations of the inverse cascade again appear to be
more challenging, such that the produced inertial range is
either very narrow [38], or the observed spectral index
departs from the theoretical prediction over a more
extended inertial range [39]. That the inverse cascade is
more challenging to observe is perhaps unsurprising: first, a
broad inertial range requires forcing small-scale waves,
while ensuring that these are unaffected by dissipation at
yet-smaller scales. If the intuition gathered from idealized
1D systems holds for 2D, then the frequency inertial range
must be broad, a particularly stringent criterion for the
concave dispersion relation of deep-water surface gravity
waves, as discussed in Ref. [40]. Secondly, the inverse
cascade is very prone to finite-size effects, and in practice the
first decade in k-space seems to exhibit features of discrete
wave turbulence [41]. Such finite-size effects can lead to
formation of a “condensate,” inducing nonlocal transfers of
action in spectral space and a spectrum that ultimately differs
from the KZ prediction (1) [42]. Thirdly, while the direct
energy cascade has finite capacity and equilibrates over finite
time, the inverse action cascade has infinite capacity: in an
infinite domain, it would take an infinite amount of time to
populate wave numbers down to k ¼ 0 [43]. The practical
consequence is that numerical simulations of the inverse
cascade can take a very long wall-clock time (up to a year in
the recent study reported in [44]), with an inertial range that
extends in an ever-slower fashion.
In this Letter, we combine a higher-order spectral

approach to simulating weakly nonlinear surface gravity
waves [45] with the capabilities of modern graphics
processing units to investigate the inverse cascade of wave
action. This approach allows us to cope with the long
integration times mentioned previously and to simulate
waves over up to three decades in wave number (after de-
aliasing). Such a broad range of scales makes it possible to
force waves at sufficient distance from the small-scale
dissipation, while simultaneously ensuring the existence of
an inertial domain that does not involve the lowest decade
of wave numbers where discrete interactions dominate.
Numerical setup.—We consider the evolution of gravity

waves on the surface of an infinitely deep body of fluid.
The problem domain is ðx; yÞ∈ ½0; 2πL�2 with periodic
boundary conditions. While the equations governing sur-
face waves of arbitrary amplitude are remarkably challeng-
ing, restricting attention to the weakly nonlinear regime
arising for weak wave slope allows for crucial simplifica-
tions. Specifically, retaining nonlinearities up to cubic
order, the evolution of the wave field is governed by the
following coupled PDEs for the free surface elevation

ηðx; y; tÞ and the velocity potential evaluated on the free
surface, ψðx; y; tÞ:
∂tη ¼ Dψ − ∇ · ðη∇ψÞ −DðηDψÞ þD½ηDðηDψÞ�

þ 1

2
Dðη2∇2ψÞ þ 1

2
∇2ðη2DψÞ; ð2Þ

∂tψ ¼ −gη −
1

2
½j∇ψ j2 − ðDψÞ2� − ðDψÞDðηDψÞ

− ðηDψÞ∇2ψ ; ð3Þ
where ∇ ¼ ð∂x; ∂yÞ and the operator D is defined in
terms of the two-dimensional Fourier transform F as
Dψ ¼ F−1fkFfψgg, with k the norm of the wave vector
k. To some extent, (2) and (3) make up the simplest set of
equations describing the weakly nonlinear evolution of
deep-water surface gravity waves in the 2D horizontal
plane. The wavy motion is described as a potential flow
and the nonlinearities stem from the standard kinematic
and dynamic boundary conditions at the moving fluid
surface [25]. Crucially, this set of equations captures the
spectral energy and action transfers between waves with
different frequencies and wave vectors. Simpler models have
been derived for the study of weakly nonlinear (quasi-)
unidirectional waves, albeit in the shallow-water limit, such
as the Korteweg-de Vries equation (1D) or the Kadomtsev-
Petviashvili equation (weakly 2D). However, these models
are based on drastic approximations, rendering them “inte-
grable systems.” This rules out any resonant interaction
between waves of different frequencies and wave vectors
which are essential for wave turbulence to occur, and
therefore also the associated spectral transfers of energy
and action which are the focus of the present study [2,46].
In the followingwe nondimensionalize the equations using

the length scale L and timescale
ffiffiffiffiffiffiffiffi
L=g

p
, keeping the same

notations for the dimensionless variables. Decomposing
ηðx; y; tÞ and ψðx; y; tÞ in terms of their Fourier amplitudes
as ½ηðx; y; tÞ;ψðx; y; tÞ� ¼Pk∈Z2 ½η̂kðtÞ; ψ̂kðtÞ�eik·x, we
introduce the so-called “interaction variables”:

bkðtÞ ¼ eiΩkt

 ffiffiffiffiffiffi
Ωk

2k

r
η̂k þ i

ffiffiffiffiffiffiffiffi
k

2Ωk

s
ψ̂k

!
: ð4Þ

The governing equations are recast in terms of bk as

∂tbk ¼ N k þ Fk þDkbk; ð5Þ
whereN k denotes the nonlinear terms and we have included
a forcing term Fk and a damping termDkbk. In the absence
of forcing and dissipation, Eqs. (2) and (3)—and thus
Eq. (5)—possess an exact energy invariant [37]:

H ¼ 1

2

Z Z
½0;2πL�2

fgη2 þ ψDψ þ η½j∇ψ j2 − ðDψÞ2�

þ ηðDψÞ½DðηDψÞ þ ηΔψ �gdxdy: ð6Þ
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Additionally, in the weakly nonlinear regime of interest here
the wave action is an adiabatic invariant, conserved at the
order of validity of theWKE (but not at the next order, see e.g.
Eq. (5.2) of [47]). The wave action contained in scales larger
than the forcing is defined as A←ðtÞ ¼

R k1
0 hjbkj2iθ2πkdk,

where h·iθ represents an average over the direction of the
wave vector k. The forcing term we choose is restricted to
wave numbers k ¼ ðkx; kyÞ satisfying the two conditions
(i) kx > jkyj and (ii) k1 ≤ k ≤ k2, with the following complex
amplitude:

Fk ¼ f0
ðk2 − kÞðk1 − kÞ

ðk2 − k1Þ2
eiχk : ð7Þ

In this expression f0 denotes the overall forcing amplitude,
while χk are time-independent random phases specified at
the outset of a simulation. Directional localization of the
forcing—condition (i) above—has been observed to stabilize
the numerical method and is therefore routinely used for
long simulations with relatively strong forcing amplitudes
[9,28,48]. More fundamentally, the relative spectral width of
the forcing—the ratio ðk2 − k1Þ=ðk1 þ k2Þ in condition
(ii) above—has recently been shown to have a crucial impact
on the emergence of the turbulent cascade: a forcing which is
too narrowbanded in wave number restricts the number of
resonances partaking in the inverse cascade [41], ultimately
leading to a frozen form of discrete turbulence that halts the
transfer of wave action to larger scales (see discussion
section).
Finally, following Refs. [9,48,49] the standard viscous

dissipative operator is replaced by a high power of the
Laplacian, Dk ¼ −νk30. Such hyperdiffusion behaves like a
sharp low-pass filter [50] ensuring that only waves near the
highest wave number allowed by the computational grid are
directly subjected to damping. We have tested lower powers
of the Laplacian and confirmed that the sharp dissipative
operator does not result in an artificial bottleneck.
We solve Eq. (5) using a pseudospectral solver with

fourth-order Runge-Kutta time-stepping and de-aliasing
following the 1=2 rule. Graphical processing units are
particularly well suited for such low-memory simulations
and lead to a significant speed-up, allowing us to perform
long numerical simulations at high resolution.
Results.—We first report a conservative numerical sim-

ulation where forcing is distant from the high-k dissipative
range and the broad inertial range does not include the first
decade in spectral space where discrete turbulence may
arise. To wit, we employ 40962 resolution, which corre-
sponds to kx and ky ranging from −1024 to 1024 after
de-aliasing, offering three decades in spectral space. The
forcing ranges from k1 ¼ 220 to k2 ¼ 292, which proves
broad enough to trigger an inverse action cascade. The
waves remain weakly nonlinear throughout the entire
simulation, the root-mean-square (rms) slope reaching

approximately
ffiffiffiffiffiffiffiffiffiffiffi
j∇ηj2

q
¼ 0.14 at the end time of the

simulation, where the overbar denotes the spatial mean.
In Fig. 1, we plot the energy spectrum EðkÞ ¼
2πkΩkhjbkj2iθ at successive times. EðkÞ is normalized
such that its integral equals the quadratic part of the wave
energy per unit surface,

R∞
0 EðkÞdk ¼ hη2=2þ ψDψ=2i,

where angle brackets denote an average over several
periods of the slowest waves and over the spatial directions.
One can clearly see upscale transfers in Fig. 1, with a
power-law spectrum developing over an increasingly broad
inertial range as time goes on. To investigate compatibility
with the KZ prediction (1), we provide an eyeguide with
exponent −7=3 in the main figure and compensate the
spectra by this prediction in the inset. The agreement is
excellent over the inertial range, indicating that we have
successfully circumvented any early-time frozen-cascade
and condensate behavior at finite k.
It turns out that the inverse cascade can be reasonably

observed with more modest resolution, and in Fig. 2 we
show spectra obtained at 10242 resolution for a maximum
wave number of 256 (after de-aliasing) and three different
forcing amplitudes. Although the power laws are perhaps
slightly less clean than in Fig. 1, they remain in excellent
agreement with the spectral index of the theoretical
spectrum (1). A crucial ingredient explaining this success
may be the forcing function (7), which contributes to
circumventing—or delaying—discrete turbulence proc-
esses in at least two ways. First, the relatively large spectral
width ðk2 − k1Þ=ðk2 þ k1Þ ≈ 0.14 allows for the activation
of many resonances, and secondly the angular restriction
permits stronger forcing amplitudes, thus inducing more
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FIG. 1. Energy spectrum at successive times in a high-
resolution simulation. The forcing ranges from k1 ¼ 220 to
k2 ¼ 292. The dashed line indicates the theoretical value −7=3
for the spectral index. The rms surface slope is 0.14. Inset: spectra
compensated by the theoretical power-law k−7=3.
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nonlinear waves with broader frequency resonances.
For each of the simulations in Fig. 2 we track the wave
action A←ðtÞ ¼

R k1
0 hjbkj2iθ2πkdk ¼ R k10 EðkÞ=Ωkdk con-

tained in scales larger than the forcing scales, k < k1.
A time derivative leads to the instantaneous action flux
ζðtÞ ¼ dA←=dt.
We average ζðtÞ over the last 104 time units and use the

resulting value to compensate the spectra in the inset of
Fig. 2. The collapse of the spectra onto a single constant
curve validates the theoretical values for the exponents both
in ζ and in k.
Large-scale damping.—One possible objection to both

the present work and previous attempts reported in the
literature is that the spectral index sometimes differs
between the statistically steady state of a forced-dissipative
turbulent cascade on the one hand, and the spectra observed
during the transient phase where the forcing gradually
populates the inertial range on the other hand [51–54].
To investigate this issue, we have performed an addi-

tional run with forcing similar to the upper curve in Fig. 2,
but with additional artificial large-scale damping in the
form of an inverse Laplacian: Dk ¼ −μk−2 − νk30. Such
large-scale damping efficiently removes wave action at the
end of the inverse cascade, leading to a stationary state.
We plot the statistically steady spectrum in Fig. 3. The
spectrum is similar to those in previous figures and the
spectral index agrees equally well with the KZ prediction,
as shown by the eyeguide in the main figure and the
compensated plot in the inset.

Discussion.—The present numerical simulations unam-
biguously validate the theoretical spectrum for the inverse
action cascade of surface gravity waves, in terms of spectral
index for both the wave number and the energy flux. A key
ingredient of this success seems to be the choice of forcing
function, which must be broad enough and strong enough
to mitigate any freezing of the cascade at finite k. In this
respect the present results strongly depart from previous
attempts at observing the inverse cascade over an extended
inertial range [44,55], where freezing of the cascade causes
condensation at finite k. The resulting strong condensate
then triggers nonlocal forward transfers of wave action
associated with a distinct theoretical prediction for the
spectral exponent [42].
Our observation of an extended inverse action cascade

provides a unique opportunity to discuss the value of the
associated KZ constant, estimated to be CKZ ¼ 0.9� 0.1
based on the inset in Fig. 2 (our 40962 run also agrees
with this estimate). While the exact theoretical value is
unknown, the estimate CKZ ¼ 2π × 0.227 ≈ 1.43 has been
proposed based on a nonlocal approximation in Ref. [28],
although a factor 1=2 may be missing [56]. The corrected
theoretical estimate for CKZ lies close to the numerical
value obtained in this work. Beyond this approximate value
it would be desirable to obtain the exact theoretical
prediction for the action cascade KZ constant.
In the meantime, the careful study by Falcon et al. [36]

affords a comparison of the present results to experimental
data. While their inertial range is arguably narrow, suffi-
cient information is provided to extract an estimate of the
KZ constant. The (dimensional) action flux is estimated as
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FIG. 2. Energy spectra at late time for various forcing ampli-
tudes; see legend for corresponding values of the action flux ζ.
The rms slope of the fluid surface is 0.075, 0.1, and 0.15 (bottom
to top, respectively). The dashed line indicates the theoretical
value −7=3 for the spectral index. Inset: spectra compensated by
the theoretical power-law ζ1=3k−7=3. The collapse of the curves
onto a plateau validates the theoretical prediction (1), the height
of the plateau giving the value of the KZ constant CKZ.
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FIG. 3. Energy spectrum in statistically steady state for a run
with the same forcing as the upper curve in Fig. 2, with the
addition of large-scale damping. The rms slope of the fluid
surface is 0.13. Once again, the spectral index agrees well with
the theoretical prediction (1) as shown by the eyeguide in the
main figure and the compensated spectrum in the inset.
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ζ ¼ 4 × 10−7 m3 s−2 and the elevation frequency spectrum
takes the value SηðfÞ ≃ 2 × 10−4 m2 s for f ¼ 1.5 Hz.
Recasting formula (1) into the corresponding prediction
for SηðfÞ and inserting the above quantities leads to
CKZ ¼ 25=3π8=3SηðfÞf11=3=ðζ1=3gÞ ≃ 0.8. This rough esti-
mate turns out to agree closely with our numerically
determined value, and provides further evidence that
Falcon et al. are in the right regime for development of
an extended inverse cascade. That the cascade appears to
saturate in their experiment may again be a consequence of
the forcing mechanism, which is likely crucial at the
experimental level too. It could be that a more spatially
homogeneous and broadbanded forcing mechanism—as
opposed to boundary forcing—would lead to a fully
developed inverse cascade in such large-basin experiments.
Beyond surface gravity waves, it would be interesting to

investigate to what degree the conclusions of the present
study hold for other systems that have been predicted to
sustain an inverse cascade based on WTT (as listed at the
outset): Is a broad enough forcing key to unfreezing the
inverse cascade in these systems as well? Does this depend
on whether the inverse cascade has finite or infinite capacity?
How might this change with the number of waves involved
in the dominant interaction mechanism? Careful experimen-
tal and numerical studies spanning a large variety of physical
systems will be crucial to assess the extent to which WTT
indeed provides a universal characterisation of out-of-equi-
librium weakly nonlinear systems.
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