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We study fluctuations of the local energy cascade rate Φl in turbulent flows at scales (l) in the inertial
range. According to the Kolmogorov refined similarity hypothesis (KRSH), relevant statistical properties of
Φl should depend on ϵl, the viscous dissipation rate locally averaged over a sphere of size l, rather than on
the global average dissipation. However, the validity of KRSH applied to Φl has not yet been tested from
data. Conditional averages such as hΦljϵli as well as of higher-order moments are measured from direct
numerical simulations data, and results clearly adhere to the predictions from KRSH. Remarkably, the same
is true when considering forward (Φl > 0) and inverse (Φl < 0) cascade events separately. Measured
ratios of forward and inverse cascade probability densities conditioned on ϵl also confirm the applicability
of the KRSH to analysis of the fluctuation relation from nonequilibrium thermodynamics.

DOI: 10.1103/PhysRevLett.132.164001

The classic description of the energy cascade in
turbulent flows states that the turbulent kinetic energy is
extracted from large-scale eddies, transferred to smaller
scale eddies, and finally dissipated into heat due to viscous
friction [1]. What is known from the Navier-Stokes
equations is the celebrated −4=5 law [2,3], hδu3llðrÞi≡
hð½uðxþ rÞ − uðxÞ� · r=rÞ3i ¼ −ð4=5Þrhϵi. Here, h::i
denotes statistical averaging, δullðrÞ is the longitudinal
velocity increment over distance r, ϵ is the viscous
dissipation rate, and r ¼ jrj is assumed to be inside the
inertial range. The 4=5 law means that in the inertial range,
−ð5=4Þhδu3lli=r can be interpreted as the energy cascade
rate and that the average direction of the cascade is from
large to small scales. However, it is well known that δull
and ϵ display strong intermittency [3–5]. To describe
intermittency and anomalous scaling, Kolmogorov’s sec-
ond refined similarity hypothesis (KRSH) [4] connects the
statistics of δullðrÞ to the local dissipation ϵr, defined as the
pointwise dissipation averaged in a ball of diameter r.
KRSH has received strong support from early experimental
measurements in which the dissipation ϵr had to be
approximated by lower-dimensional data (e.g., [6,7]) and
also from later analyses based on 3D data, in which ϵr could
be evaluated fully, from simulations [8–10] or recent 3D
experimental data [11].

Most prior studies have started out with the KRSH
formulated as a hypothesis inspired by dimensional analy-
sis, but direct connections between KRSH and first
principles Navier-Stokes equations have often been lack-
ing. In this Letter, we revisit the equation of Hill [12], from
which a quantitative definition of the local cascade rate is
possible. In this context we test the validity of the KRSH
using conditional averaging based on local dissipation. We
extend the analysis and show new results concerning the
probabilities of forward and inverse cascade rates.
The equation derived by Hill [12], for scales at which

forcing can be neglected, and before averaging, is of the
form ∂tjδuj2¼−∇r ·ðδujδuj2Þ−4ϵ�þ���, where δuðx; rÞ
is the velocity increment vector δuiðx; rÞ ¼ uþi − u−i
and the superscripts þ and − represent two points
xþ r=2 and x − r=2 in the physical domain that have a
separation vector ri ¼ xþi − x−i and middle point
xi ¼ ðxþi þ x−i Þ=2. ϵ� ¼ ðϵþ þ ϵ−Þ=2 is the average dis-
sipation, where ϵ denotes the “pseudo-dissipation,” defined
as ϵ ¼ νð∂ui=∂xjÞ2. Many variants of this equation (also
called Karman-Howarth-Monin-Hill (KHMH) equation
in [13]) have been studied [14,15]. To make connection
to the RKSH and ϵl at some scale r ¼ l, the Hill equation
at any point x can be integrated over a sphere in scale r
space up to a diameter r ¼ l. The resulting equation
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describes the evolution of local kinetic energy up to scale l
defined as kl ¼ ð1=2ΩlÞ

R
Ωl

1
2
δu2i d

3rs with the radius
vector rs ¼ r=2 integrated up to l=2. When divided by
the volume of the sphere ½Ωl ¼ 4

3
πðl=2Þ3� and a factor of 4,

the locally integrated form of the Hill equation becomes

d̃kl
dt

¼ Φl þ Pl þDl − ϵl; ð1Þ

where ϵlðxÞ≡ ð1=ΩlÞ
R
Ωl

ϵ�ðx; rÞd3rs is the l-averaged
dissipation envisioned in the RKSH, and

ΦlðxÞ≡ −
3

4l
1

Sl

I

Sl

δu2i δujn̂jdS ð2Þ

is interpreted as the local energy cascade rate where n̂ ¼
r=jrj and Sl ¼ 4πðl=2Þ2. Equation (1) also includes
d̃kl=dt, the advective rate of change of kinetic energy
kl, a surface averaged pressure work term Pl at scale l, as
well as a scale and spatial viscous diffusion term Dl
(definitions are provided in Supplemental Material [16]).
We consider l to be in the inertial range, therefore Dl is
negligible. Equation (1), the “scale-integrated local KH”
(Kolmogorov-Hill) equation is local, valid at any ðx; tÞ (see
also [17–19]).
A reformulation of the KRSH is that the statistics of Φl

only depend on the statistics of ϵl (i.e., that Φl ¼ VΦϵl
with random variable VΦ independent of l and ϵl) in the
inertial range. In particular, the conditional average of the
cascade rate should obey hΦljϵli ¼ ϵl and hVΦi ¼ 1. In
fact, referring back to Eq. (1), we may take its conditional
average and write (neglecting Dl, and using hϵljϵli ¼ ϵl)

hd̃kl=dtjϵli ¼ hΦljϵli þ hPljϵli − ϵl: ð3Þ

Hence, a consequence of the KRSH with Eq. (1) is that the
conditional average ofWl ≡ d̃kl=dt − Pl must vanish, i.e.,
hWljϵri ¼ 0 (or both hd̃kl=dtjϵli ¼ 0 and hPljϵli ¼ 0).
Prior measurements of Φl [20,21] show that it can be

both positive and negative locally, and moreover [21]
suggests that the ratio Ψl ¼ Φl=kl can be understood as
an entropy generation (or phase-space contraction) rate
where, drawing an analogy between turbulent eddies and
particle systems, kl is interpreted as the temperature of
turbulence. The definition of Ψl was inspired by the Gibbs
equation in which the net entropy generation rate is related
to the ratio of energy transfer rate divided by temperature
(see [21] for more details). There is growing interest
in connecting turbulence with thermodynamics concepts,
e.g., focusing on model systems [22,23], and on possible
definitions of entropy [24] and temperature [25]. A
prediction about entropy generation rates in nonequilibrium
thermodynamics is the “fluctuation relation” (FR) [26,27].
Prior authors have examined the FR, most often focusing

on stochastic models [28] but also on fluctuations in global
power input [29] and spectral energy transfer [30]. When
written for the turbulence entropy generation rate as defined
in [21] the FR states that the ratio of probability densities of
positive and negative Ψl follows the exponential behavior
PðΨlÞ=Pð−ΨlÞ ¼ expðΨlτlÞ, where τl is a characteristic
timescale. The recent results of [21] provide direct
empirical evidence for the applicability of the FR relation-
ship for isotropic turbulence, i.e., they observed that
ln½PðΨlÞ=Pð−ΨlÞ� followed a mostly linear behavior with
Ψl. Interestingly, they found that division by “temperature”
kl was necessary to observe behavior consistent with the
FR. Without such division, the ratio of probabilities
deviated far more significantly from linear behavior.
However, in the prior analysis [21], the timescale used
to normalize Ψl was defined using the average dissipation
rate, i.e., τ̄l ¼ hϵi−1=3l2=3. In other words, it did not take
into account effects of intermittency in which different
regions of the flow with different ϵl values could (accord-
ing to KRSH) behave differently.
The specific aims in this Letter are to investigate whether

data support the KRSH in the context of the dynamics
of turbulent kinetic energy at scale l as described by
Eq. (1), i.e., whether predictions from KRSH hold for
(i) conditional moments of Φl, (ii) for the combined
unsteady and pressure terms Wl, (iii) for positive and
negative cascade rates, and (iv) for cascade rate probability
ratios motivated by the fluctuation relation from non-
equilibrium thermodynamics.
We evaluate terms in Eq. (1) using data from direct

numerical simulation of isotropic turbulence at Rλ ≈ 1; 250
(data obtained from the Johns Hopkins Turbulence
Database (JHTDB) [31,32]). Surface averages of Φl are
measured by discretizing the outer surface of diameter l
into 500 point pairs (þ and− points) that are approximately
uniformly distributed on the sphere. Velocities for δui are
downloaded from JHTDB. Volume integrals ϵl and kl are
evaluated similarly by integrating over five concentric
spheres. The accuracy of this method of integration has
been tested by increasing the number of points used in the
discretization and confirming indistinguishable results are
obtained. For ϵ we use JHTDB’s GetVelocityGradient
method with 4th-order centered finite differencing. Taking
dissipation as an example, panel (a) in Fig. 1 shows
pointwise normalized dissipation ϵðxÞ=hϵi computed on
a planar cut across the data (the plane shown corresponds to
500 × 500 grid points). Panel (b) of Fig. 1 shows a sphere
with diameter l.
Figure 2 shows the conditional average hΦljϵli as

function of ϵl. Statistics are computed using 2 000 000
randomly distributed spheres across the entire 81923

isotropic turbulence dataset (isotropic8192) [32]. The
analysis considers two length scales in the inertial range
and one approaching the viscous range, namely l¼
0.024L¼60η, l¼0.018L¼45η, and l ¼ 0.012L ¼ 30η,
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respectively, where L ¼ 1.24 is the integral scale and the
Kolmogorov scale is η ¼ ðν3=hϵiÞ1=4 ¼ 4.98 × 10−4. It is
apparent that the dominant terms are hΦljϵli (black
symbols and lines) and ϵl itself (red dash line with unit
slope). These are equal for most of the range of ϵl for which
reliable statistics can be collected. The good collapse
hΦljϵli ≈ ϵl provides clear support for the KRSH in the
context of terms appearing in Eq. (1). Also plotted in Fig. 2
are the conditional averages of the pressure term hPljϵli
and the viscous term hDljϵli. We can see that the
contribution of the pressure term (yellow symbols and
lines) is negligible at all three length scales over most of the
range. The viscous term (blue symbols and lines) is also
negligibly small as expected. Approaching the largest
values of ϵl=hϵi we observe saturation of Φl that is
compensated by a small rise of the pressure term [same

results are obtained when using the full viscous dissipation
ν∂ui=∂xjð∂ui=∂xj þ ∂uj=∂xiÞ instead of the pseudo-dissi-
pation νð∂ui=∂xjÞ2].
Moreover, based on Eq. (3), we can conclude that

hd̃kl=dtjϵli ≈ 0, given that hPljϵli ≈ 0, hDljϵli ≈ 0,
and hΦljϵli ≈ ϵl. To verify this result via explicit meas-
urement, we computed the terms in Eq. (3) using the
isotropic1024 [31] dataset. It has a smaller size of 10243

grid points and a lower Reynolds number Rλ ¼ 430, but
includes temporally consecutive snapshots allowing us to
calculate time derivatives. Figure 2 (open symbols) shows
that hΦljϵli ≈ ϵl still holds very well at this lower
Reynolds number, that the pressure and viscous terms
are again close to zero, and that hd̃kl=dtjϵli ≈ 0. We
conclude that the data provide strong direct support to
the KRSH relating Φl and ϵl and that the pressure and
unsteadiness terms vanish in the inertial range.
A further implication of KRSH relates to higher order

moments. It implies that hΦq
ljϵli ¼ hVq

Φiϵql. In the inertial
range, since Φl ¼ ϵl þWl locally and instantaneously,
raising to the q power, expanding, and taking the condi-
tional average yields hΦq

ljϵli ¼
Pq

n¼0ðqnÞϵq−nl hWn
ljϵli.

Thus, for KRSH to hold (i.e., for hΦq
ljϵli ∝ ϵql) the

conditional moments ofWl must follow the same behavior,
i.e., hWn

ljϵli ∝ ϵnl. Both the KRSH prediction for hΦq
ljϵli

and hWn
ljϵli can be tested by measuring and plotting

hΦq
ljϵli1=q and hWn

ljϵli1=n as function of ϵl and testing for
linear behavior. Results are shown in Fig. 3 for q ¼ 2, 3 and
n ¼ 2, 3. Clearly, the proportionality holds, with linear
trends visible for these moment orders over the range of
dissipation values.
We now turn to further consequences of the KRSH that

are directly related to the direction of the energy cascade,
i.e., we examine if KRSH may be applicable even to those
regions of the flow where Φl < 0, i.e., those displaying
only inverse cascading, or Φl > 0, i.e., those displaying
only forward cascading. An implication of KRSH is that
the conditional average of only positive and only negative
values of Φl should also be proportional to ϵl. To
investigate this prediction, we split the samples of Φl by

FIG. 2. Conditional averages of terms in the scale-integrated
local KH equation based on ϵl, i.e., Z ¼ Φl (black symbols and
lines), Z ¼ Pl (yellow symbols and lines), Z ¼ Dl (blue
symbols and lines). The red dashed line indicates ϵl. Different
symbols denote different scales l=L ¼ 0.012 [triangles, ð30ηÞ],
0.018 [circles, ð45ηÞ], and 0.024 [squares, ð60ηÞ]. Data is from
DNS at Rλ ¼ 1; 250 (solid symbols) and Rλ ¼ 430 at l=L ¼
0.092ð45ηÞ (open circles), for which Z ¼ d̃kl=dt (purple dia-
monds) is included.

FIG. 1. (a) Spatial distribution of local dissipation rate nor-
malized by hϵi on a plane in a small subset of isotropic turbulence
at Rλ ¼ 1250. The left portion shows ϵl distribution obtained
from spherical filtering. (b) Close-up portion of panel (a) also
showing a sphere with a diameter l ¼ 45η marked as the black
circle. The black dash arrow represents r separating the two
points þ and −.

FIG. 3. Conditional averaged Z ¼ Φq
l (symbols) for the iso-

tropic8192 (a) and isotropic1024 (b) datasets, and Z ¼ Wn
l

(dashed lines for the isotropic1024 dataset), for l ¼ 45η, plotted
as function of ϵl. Results for q, n ¼ 1, 2, 3 are shown in black,
blue, and green, respectively. All terms display linear trends with
ϵl, consistent with the KRSH.
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its sign and perform conditional averaging based on ϵl. We
first observe that there are about twice as many samples
with Φl > 0 than with Φl < 0, specifically, if PrðΦl >
0jϵlÞ and PrðΦl < 0jϵlÞ are the conditional total proba-
bilities associated with signs of Φl in any ϵl bin, we
measure PrðΦl > 0jϵlÞ=PrðΦl < 0jϵlÞ ≈ 2.0 (see blue
line in Fig. 4). In the inertial range, the ratio is approx-
imately 2.0 (consistent with results from Ref. [33],
who defined the energy cascade rate by detailed evaluations
of the intersection of eddies and lifetimes). From normali-
zation we conclude that PrðΦl > 0jϵlÞ ≈ 2=3 and
PrðΦl < 0jϵlÞ ≈ 1=3. And since hΦljϵli ¼ hΦljϵl;Φl >
0i PrðΦl > 0jϵlÞ þ hΦljϵl;Φl < 0i PrðΦl < 0jϵlÞ and
the data already showed hΦljϵli ≈ ϵl, the KRSH further
implies that hΦljϵl;Φl < 0i ≈ 3ϵl − 2hΦljϵl;Φl > 0i.
These predictions from RKSH are tested in Fig. 4, showing
that hΦljϵl;Φl > 0i ≈ 2ϵl and hΦljϵl;Φl < 0i ≈ −1ϵl.
Clearly, KRSH holds even for the positive and negative
regions separately. For completeness, we also show the
conditional average of the traditional third-order longi-
tudinal structure function, which under the assumption of
isotropy and KRSH follows −ð5=4lÞhðδujn̂jÞ3jϵli ¼ ϵl.
Next, following Ref. [21] we examine the fluctuation

relation from nonequilibrium thermodynamics for the

normalized entropy generation rate Ψlτl, but instead of
using the overall dissipation rate to define the characteristic
eddy turnover timescale, we here use conditioning on
various values of local dissipation ϵl. Figure 5(a) shows
the conditional probability density function (PDF)
PðΨljϵlÞ of the entropy generation rate Ψl ¼ Φl=kl for
l=η ¼ 45, conditioned for various values of ϵl ranging
from ϵl=hϵi ¼ 0.15 to 4.2. As in [21], exponential tails
are found, with steeper slopes on the negative side than on
the positive one, and approximately twice as steep.
Remarkably, when multiplying Ψl by the corresponding
local turnover timescale τl ¼ ϵ−1=3l l2=3 where ϵl is the
value used to bin the data, excellent collapse is observed,
see Fig. 5(b). If the PDFs are approximated as pure
exponentials, with slope magnitudes α− for Ψl < 0
and αþ for Ψl > 0, it is evident from Fig. 5(b) that αþ ≈
1 and α− ≈ 2. For such two-sided exponential PDFs, it is
easy to show that PrðΨl < 0Þ= PrðΨl > 0Þ ¼ αþ=α−,
consistent with the 1∶2 ratio discussed above, independent
of ϵl. Finally, the FR can be tested by plotting
log½PðΨljϵlÞ=Pð−ΨljϵlÞ� versus Ψlτl (see Fig. 6). The
result shows good collapse and an approximately linear
trend (especially at Ψlτl > 1), thus providing empirical
and approximate support for the fluctuation relation for
turbulence even when conditioning on different values of
ϵl, and using ϵl to establish the relevant turnover timescale.
For the exponential approximation of the conditional PDFs,
the slope in the FR plot is simply α− − αþ, which is nearly
unity (as observed originally in [21]), and quite consistent
with α− ≈ 2 while αþ ≈ 1.
In summary, we examined the KRSH involving the local

dissipation ϵl in the context of an equation [Eq. (1)] derived
exactly from the Navier-Stokes equations. Results from two
DNS of forced isotropic turbulence provided strong support
for the validity of KRSH for the cascade rate Φl, its
moments, and also for moments of other terms appearing in
the dynamical equation. Furthermore the data support a
strong version of the KRSH when positive and negative
cascade rates are considered separately, each of which scale
proportional to ϵl. Finally, ratios of probabilities of forward
and inverse cascade rates are shown to collapse well when
invoking the KRSH [Fig. 5(b)]. The so collapsed PDFs

FIG. 4. Conditionally averaged positive (forward cascade, full
symbols, Z ¼ Φl, cond: Φl > 0) and negative (inverse cascade,
empty symbols, Z ¼ Φl, cond: Φl < 0) for the isotropic8192
dataset, and for three scales l (symbols are the same as in Fig. 2).
The green stars show the standard 4=5-law quantity based on
longitudinal structure function, i.e., for Z ¼ ð−5=4lÞðδujn̂jÞ3,
and no additional condition beyond ϵl. Blue symbols is PrðΦl >
0jϵlÞ= PrðΦl < 0jϵlÞ (≈2.0).

FIG. 5. Conditional PDFs of Ψl, for l ¼ 45η conditioned on
ranges in bins centered at ϵl=hϵi ¼ 0.15 (black), 0.45, 0.75, 1.05,
1.8, 3.0, 4.2, and 5.4 (yellow). The gray dashed lines have
slopes ¼ 2 (left) and −1 (right). A natural logarithm is used.

FIG. 6. Test of conditional FR for different values of ϵl=hϵi
(same line colors as in Fig. 5). The gray line has slope ¼ 1.
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display exponential tails that yield results consistent with
the FR from nonequilibrium thermodynamics. Present
findings connecting KRSH directly to a dynamical equa-
tion derived from the Navier-Stokes equations could help in
developing improved theories and models of the turbulence
cascade process and establish new links between turbulence
and nonequilibrium thermodynamics.
Additional questions arise, such as what occurs when l

approaches limits of the inertial range, what are possible
effects of Reynolds number (recall that present results in
Figs. 2 and 3 are for two Reynolds numbers only), and, do
the results hold for flows with mean shear and walls?
Regarding the analysis of entropy generation rate, we have
tested the FR only as far as the fluctuations in Ψl are
concerned, setting t ¼ τl, which raises the question of
what are the effects of time averaging? It also bears
recalling that while the FR was originally derived for
the entropy generation rate in systems in which the
microscopic dynamics are time reversible [26,27], more
general versions have been developed since [34,35].
Nonetheless, as in [21] we here regard the microscopic
degrees of freedom to be the inertial-range eddies smaller
than l whose evolution is governed by nearly inviscid, thus
time-reversible, dynamics at least for some small finite
time. While the actual turbulent state we are analyzing is
already far from equilibrium so that the overall statistics of
velocity increments (and Φl, Ψl) display the established
asymmetry, the actual dynamics in the inertial range can be
time reversed for some time [24]. Still, significant questions
remain about connections between nonequilibrium thermo-
dynamics and 3D turbulence in the inertial range.
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