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One-dimensional confinement in waveguide quantum electrodynamics (QED) plays a crucial role to
enhance light-matter interactions and to induce a strong quantum nonlinear optical response. In two or
higher-dimensional settings, this response is reduced since photons can be emitted within a larger phase
space, opening the question whether strong photon-photon interaction can be still achieved. In this study,
we positively answer this question for the case of a 2D square array of atoms coupled to the light confined
into a two-dimensional waveguide. More specifically, we demonstrate the occurrence of long-lived two-
photon repulsive and bound states with genuine 2D features. Furthermore, we observe signatures of these
effects also in free-space atomic arrays in the form of weakly subradiant in-band scattering resonances. Our
findings provide a paradigmatic signature of the presence of strong photon-photon interactions in 2D
waveguide QED.

DOI: 10.1103/PhysRevLett.132.163602

The capability of engineering effective photon-photon
interactions is a compelling requirement in many quantum
technology applications for the generation and manipula-
tion of complex states of light [1]. This task has been
successfully achieved in light-matter interfaces, such as
cavity QED [2], Rydberg atomic ensembles [3–5] and
waveguide QED [6,7], where nonlinear quantum optical
effects are strongly enhanced. In particular, waveguide
QED has recently emerged as a versatile and experimen-
tally implementable platform where the light confined in a
1D channel, either at optical [8–11] or microwave frequen-
cies [12–16], couples to one or multiple quantum emitters.
In this scenario, light confinement leads to strong photon
correlations, resulting in antibunched [17,18] or bunched
output photons [17,19–24]. Among the causes of the
bunching phenomena is the emergence of multiphoton
bound states [17,20,23,25] where two or more photonic
excitations propagate jointly in the system with spatially
correlated positions. Remarkably, the lifetime and the
dispersion properties of these states can be enhanced when
ordered atomic arrays are coupled to thewaveguide [26–30]
or to waveguide networks [31,32]. In this setting, the
realized bound state can be interpreted as a propagating
excitation, which acts as a moving defect in the otherwise
periodic medium, dragging other photons with it. The
recent progress in building scalable microwave resonator
arrays coupled to superconducting qubits [33–35], in
interfacing 2D photonic crystals with cold [36] or arti-
ficial atoms [8,37,38] and quantum emitters interacting
with atomic matter waves [39–41] have created new

experimentally viable opportunities for studying QED in
2D confined geometries. This scenario is particularly
fascinating when combined with the possibility to induce
photon-photon interactions and to build strongly correlated
many-body quantum phases of light [42,43].
In this Letter, we show that photonic states exhibiting

both spatial repulsion and binding can occur by coupling a
2D atomic array to light confined into a 2D photonic
structure (see Fig. 1). The emergence of such strong
interactions in this 2D environment represents a nontrivial
outcome. Indeed, unlike the 1D scenario, where photon-
mediated interactions among emitters are infinite-range, in
two dimensions, they decay as the square root of the

FIG. 1. (a) A square array of two level atoms is coupled to the
light confined into a 2D photonic waveguide. (b) Single photon
dispersion relation for k0d ¼ ðπ=2Þ. Upper right panel: first
Brillouin zone and Γ, X, M symmetry points. Lower right panel:
Band gap energy as a function of the interatomic distance k0d.
The gap closes at k0d > π. The dashed orange lines indicate the
dispersion’s divergences at jkj ¼ k0.
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emitters separation. We show that the interacting photonic
states occurring in the system possess a distinct 2D
structure, exhibiting binding and repulsion along different
directions. Their existence is made possible by an inter-
ference process originating from the 2D collective inter-
action of the emitters and does not rely on the engineering
of the photonic bath [44–47]. Furthermore, we identify
metastable in-band localized scattering resonances.
Notably, these states also manifest in free-space atomic
arrays, expanding the range of platforms where our find-
ings can be explored [48–50]. Finally, we demonstrate how
to excite the photon bound states via a dynamical relaxation
process. Our results provide a realistic pathway for real-
izing strongly correlated states of light in 2D confined
geometries in the subwavelength regime.
Model.—We consider a two-dimensional square array of

N two-level atoms with ground and excited states jgi, jei
and lattice constant d perfectly coupled [51] to the light
confined into a 2D waveguide, as shown in Fig. 1. To
simplify the description of this complex light-matter
interacting system we integrate out the photonic degrees
of freedom employing a Born-Markov approximation. This
procedure is valid as long as the atom-photon dynamics,
which is set by the atomic decay rate γ, occurs on a
timescale slower than a photon freely propagating through
the whole array. We obtain an effective spin model for the
atoms described by the non-Hermitian Hamiltonian
(ℏ ¼ 1) [6,52–54]

Ĥeff ¼
X
ij

Gðk0jxi − xjjÞσ̂iþσ̂j−; ð1Þ

where k0 ¼ 2π=λ is the photon wave vector whose corre-
sponding frequency is resonant with the atomic transition
frequency ωa and σ̂iþ ¼ jeihgj and σ̂i− ¼ ðσ̂iþÞ† are the
pseudospin operators for the ith atom located at the position
xi. The dissipative and coherent long-range photon-mediated
interactions among the atoms are encoded in the function
Gðk0jxi − xjjÞ, related to 2D electromagnetic Green’s func-
tion of the nanophotonic structure [54]. For confined photons
with a quadratic isotropic dispersion relation, it readsGðzÞ ¼
ðγ=2Þ½Y0ðzÞ − iJ 0ðzÞ� [51,55–58]. Here J 0ðzÞ and Y0ðzÞ
are, respectively, the zeroth order Bessel functions of the first
and second kind, which decay as z−1=2. The Hamiltonian in
Eq. (1) provides a complete descriptionof the systemwithin a
fixed excitation sector in the absence of an external pumping
field. For a single excitation, theHamiltonian is diagonalized
by Bloch waves, labeled by the wave vector k, having
eigenvalues Eð1ÞðkÞ ¼ ϵð1ÞðkÞ − iγð1ÞðkÞ=2, where ϵð1ÞðkÞ
and γð1ÞðkÞ provide the single-excitation dispersion relation
and collective decay rates, respectively [51]. The dispersion
relation (Fig. 1) exhibits two distinct polaritonic branches,
along with a band gap near the atomic resonance frequency,
where propagation of excitations is forbidden. Differently
from 1D wQED [6,29], the band gap closes for interatomic

distances above the subwavelength regime (see Fig. 1),
k0d > π, namely, for d > λ=2, due to the occurrence
of higher diffraction orders. Note that, similar to 1D
wQED [29,59], the divergences in the dispersion relation
at the resonant wave vector, jkj ¼ k0, are associated with
superradiant modes [59–61].
Interacting photons.—To demonstrate that strong photon-

photon interactions occur in this 2D setting, we consider the
two-body problem described by Eq. (1) restricted to the two
excitations subspace. We focus on the thermodynamic limit
of an infinite array, where there are no channels of
dissipation and the spectra is real and determined by the
coherent part of Hamiltonian (1). By reparametrizing the
arrangement of the atoms in terms of center-of-mass (R) and
relative (r) coordinates, we reduce the two-body problem to
a single-particle one for the relative coordinate space and
described by the basis set jK; ri, where the parametric
dependence on the center-of-mass momentum K is explic-
itly indicated [51]. The corresponding Hamiltonian matrix
elements read

ðĤeffÞKr;r0 ¼
X
ϵ¼�

cos
�
K=2 ·ðrþϵr0Þ�RfGðk0jrþϵr0jÞg; ð2Þ

where R denotes the real part. Numerical diagonalization
returns the two-body spectrum, ϵð2ÞðKÞ, plotted in Fig. 2(a).
We observe a continuum of unbound two-particle states,
whose energies correspond to the sum of two single-particle
excitations, separated by a band gap hosting a dispersive
state. Most of the continuum states away from the high-
symmetry points of the Brillouin zone (BZ) are scattering
states made of a pair of particles with relatively high group
velocity (see Fig. 1), thus experiencing a weak mutual
interaction [6]. Instead, close to those high-symmetry
points, the relatively flat single-particle dispersion can
provide an enhancement of interactions. It is convenient
to map the matrix elements in Eq. (2) onto a single-particle
model for the relative coordinate r in the presence of an
impurity potential, described by the Hamiltonian:

ĤðimpÞ
K ¼

X
rr0

JKrr0 jK; rihK; r0j þ UjK; 0ihK; 0j; ð3Þ

where the first term describes free particle propagation,
while the second term implements the short-range impurity
potential with infinite strength, U → ∞, located at r ¼ 0.

Here the hopping coefficient is JKrr0 ¼ ð1=NÞPq ϵ
ð2Þ
scat ×

ðK;qÞeiðr−r0Þq, where q is the relative momentum and the
dispersion is given by the sumof individual photon energies,

ϵð2ÞscatðK;qÞ ¼ ϵð1ÞðqÞ þ ϵð1ÞðK − qÞ. The effective model of
Eq. (3) is obtained by reformulating the Hamiltonian (1) in
terms of hardcore bosons and then solving again the two-
body problem in the relative coordinate frame [51]. In this
way, the hardcore photon-photon interactions are mapped to
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the impurity term of Eq. (3), which reflects the saturation of
an atom after the absorption of one excitation.
The first consequence of strong photon interactions

originating from the hard-wall condition induced by the
impurity potential is the presence of two kinds of repulsive
scattering states indicated by the black dashed squares in
Fig. 2(a). Their population distribution in the relative
coordinate shows a smooth repulsion of the two excita-
tions either with respect to the rx ¼ 0 and ry ¼ 0 axis
(type I) or with respect to the rx ¼ ry diagonal (type II), as
shown in Fig. 2(b). The 1D analog of these states have
been recently discussed both in free space [54] and wQED
atomic arrays [59,60,62–66] and are commonly referred to
as “fermionic” states.
Besides repulsive states we also identify the presence of

photon-photon bound states (BSs) [17,20,23,25–29]. Here
the two excitations are spatially correlated and their occur-
rence can be understood, within the impurity model (3), in
terms of a defect bound state localized around r ¼ 0. The
BSs energy, EBSðKÞ, indicated by the red lines of Fig. 2(a),
can be computed by usingGreen’s functionmethods [51,67]

and it is given by the numerical solution of G0½0; EBSðKÞ� ¼
1=U for U → ∞, with

G0ðr; EÞ ¼
1

ð2πÞ2
Z
BZ

d2q
eiq·r

E − ϵð2ÞscatðK;qÞ
; ð4Þ

being the free particle Green’s function. The BSs solutions

need to respect the constraint EBSðKÞ ≠ ϵð2ÞscatðK;qÞ, mean-
ing that their occurrence is conditioned to the existence of a
band gap in the relative coordinate space. This requirement
is not matched for k0d > π due to the closing of the single-
excitation gap in two dimensions discussed before (see
Fig. 1), which prevents the gap formation also for the two-

particle spectrum. For k0d < π, a gap in ϵð2ÞscatðKÞ exists
for values of the center-of-mass momentum in the
range jKj > 2k0 within the BZ. This condition cannot be
satisfied within the BZ when 2k0 becomes equal to the M
point momentum, jKMj ¼

ffiffiffi
2

p
π=d, and the gap therefore

closes [51]. An additional gap occurs exactly at the Γ point
due to a perfect vanishing of the density of states [28,29] and
persists for all interatomic distances k0d < π.
Once we established the conditions of existence of the

BSs, we can use the impurity model to compute the bound
states population distribution, pðrÞ ¼ jG0½r; EBSðKÞ�j2, in
the relative coordinate space. An example is shown in
Fig. 2(c) for the Γ andM points at two different interatomic
distances. These plots clearly show a pronounced locali-
zation in the vicinity of r ¼ 0, meaning that the two
excitations are bound and spatially correlated. We quantify
this binding by the average distance between two excita-
tions, hri ¼ P

r pðrÞjrj, which strongly depends on the
inter-atomic distance, k0d, as shown in Fig. 2(d). The
plot shows how the bound states at Γ and M points are
largely extended at short interatomic distances and pro-
gressively become more localized. The Γ point BS expe-
riences minimal extension at the interatomic distance of
k0d ∼ 0.74π, where a destructive interference process
induced by the effective impurity is enhanced along the
nearest neighbor direction [26]. When such an interference
process is tailored along the next-nearest neighbor direc-
tion, the BS changes its relative coordinate distribution
accordingly [see the first row of Fig. 2(c)]. This occurs at
k0d ≈ 0.74=

ffiffiffi
2

p
π ≈ 0.52π. The behavior of the M point BS

can be inferred from the center-of-mass momentum
induced cosine modulation in Eq. (2). Such modulation
effectively creates a sublattice with spacing

ffiffiffi
2

p
d. The

minima of the two curves in the lower panel of Fig. 2(d) are
indeed displaced by such a factor, and the underlying
modulation is visible in the bound state wave function
shown in Fig. 2(c). At k0d ¼ π=

ffiffiffi
2

p
the M point gap

closes and the BS ceases to exist. Nevertheless, we can
still identify the presence of two localized states in the
band, which can be interpreted as scattering resonances,
states that contain both unbound and bound-state
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FIG. 2. (a) Two-excitation spectrum as a function of the center-
of-mass momentum for k0d ¼ ðπ=2Þ. Blue dots represent un-
bound states while the red lines and the orange dot represent the
bound states. The dashed black boxes indicate the regions where
the repulsive states lie. (b) Relative coordinate population
distribution, pðrx; ryÞ, of two kinds of repulsive states at the Γ
point for k0d ¼ 0.5. Similar distributions up to a phase modu-
lation are observed at the M point. (c) Zoom of the bound states
distribution at Γ and M point for k0d ¼ 0.5π; 0.7π. (d) Two-
excitation spectrum at the M point (upper panel) and average
relative distance between two excitations, hri, (lower panel) as a
function of k0d. The continuous lines indicate the BSs while the
dashed ones in the gray area indicate the scattering resonances
branches.
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contributions [28,51,68,69], whose energies and localiza-
tion are shown in Fig. 2(d). Interestingly, close to k0d ¼ π,
we observe the formation of a region with low density of
states [see Fig. 2(d)]. This mechanism depends on the shape
of the dispersion relation and plays the role of an effective
gap, for a finite size system, thus stabilizing them into
quasibound states.
Interacting states lifetime.—The states described so far,

being derived in the thermodynamic limit, have vanishing
decay rates. In realistic settings, where the atomic lattice
has a finite size, these states acquire a finite lifetime due to
leakage of the excitations at the array’s edges. The decay
rate of these states is provided by the imaginary part of the

two-excitation sector eigenvalues, γð2Þs , obtained via exact
diagonalization of Eq. (1) [36,59], where s labels the
different states. For both repulsive and bound states, the
decay rates are much smaller than the single atom emission
rate, γ, indicating a subradiant behavior. We find that, while
the Γ point BSs have a weak dependence with the
interatomic distance, the M point BSs, the associated
scattering resonance and the repulsive states strongly
depend on that. For both Γ and M point bound states
the largest lifetime is achieved around k0d ≈ 0.52π, resem-
bling the localization plot shown in Fig. 2(d). At this atomic
distance, the decay rates of the Γ and M point BSs scale
approximately as ∼N−1.5, as shown in Fig. 3. The different
amplitude of the two BSs decay rates depends from a larger
localization of the M photon bound state in the center-of-
mass coordinate induced by a quasi-flat dispersion [27,51].
The repulsive states exhibit an even stronger subradiant
behavior with a scaling of ∼N−3, which reflects the one of
two independent single-excitation states [51,54]. These
findings demonstrate that long-lived photon interacting
states can occur even for finite size arrays.
Free space array.—Some of the discussed interacting

states can be probed also in the absence of a photonic
structure by considering a 2D free space subwavelength
atomic array. [70–75]. By fixing for simplicity the atomic
polarization to be orthogonal to the array’s plane, the
projected dyadic Green’s function ruling the atomic
interactions in Eq. (1) reads [51,54,76–78]: GðxÞ¼ð3γ0Þ=
½4ðk0xÞ3�eik0x

�
1−ik0x−ðk0xÞ2

�
, where γ0¼d2egk30=ð3πℏϵ0Þ

is the free space spontaneous emission decay rate with deg
being the dipole moment strength. In this scenario there is
no band gap in the single-excitation subspace and therefore
neither in the two-excitations subspace. Thus, no BSs can
form in this setting. However, it is still possible to identify
two-excitation scattering resonances exhibiting a localized
wave function in their relative coordinate. For these states,
we pinpoint regions characterized by a low density of
states, where they become metastable within the subradiant
region k0d <

ffiffiffi
2

p
π [51]. This is illustrated in Fig. 3 by the

scaling of subradiant decay rates at the Γ and M points,
exhibiting dependencies of N−1.2 and N−0.7, respectively. It

is noteworthy that these states can endure in the system for
a timescale more than 10 times greater than that associated
with the decay of a single atom. In addition to these
localized states, we also identify the presence of repulsive
states presenting a similar decay rate scaling as the ones for
a 2D waveguide. Note that, without the challenges related
to the interfacing of the atoms to a photonic structure (see
Ref. [51]), these interacting excitations could potentially
already be observed in current experimental implementa-
tions of subwavelength-ordered atomic arrays [48–50].
Dynamical excitation.—To observe the manifestation of

BSs in the system dynamics, we consider a relaxation
scenario where two atoms are initially excited in a
configuration that has a large overlap with the target state.
Specifically, we consider the dynamical excitation of theM
point BS by exciting two atoms in the bulk of the system
separated by a distance xi−xj ¼l¼ðl;lÞ, jψðt ¼ 0Þi ¼
σ̂iþσ̂

iþl
þ j0i. For an interatomic distance of k0d ≈ 0.52π and

an excitation separation of l ¼ 1, this configuration has
indeed a large initial overlap with the population distribu-
tion of the M point BS [51]. In Fig. 4 we plot the two
excitation probability distribution in the relative and lab
space coordinates at different times for this initial configu-
ration. Since the dominant contribution comes from the M
point BSs, the two excitations remain localized in their
relative position during the evolution, while the BSs center
of mass can diffuse across the lattice. As a measurable
observable to detect the dynamical excitation of the BS
we define the two particle equal time correlator
ClðtÞ ¼

P
ihψðtÞjn̂in̂iþljψðtÞi=jhψðtÞjψðtÞij2, where the

vector index i ¼ ðix; iyÞ spans the whole array, n̂i ¼ σ̂iþσ̂i−
and the denominator normalizes this quantity with respect
to the probability of having two excitations in the system.
This correlator indicates how likely is to find two excita-
tions at a relative distance l ¼ ðl;lÞ in the entire array. Its

FIG. 3. (a) Decay rates γð2Þs of the interacting states as a function
of k0d for an array of N ¼ 10 × 10 atoms. (b) Finite size scaling
of the decay rates γs with the system size N in the 2D waveguide
case (filled symbols) compared to the free space scenario (empty
symbols). Here we fixed k0d ¼ 0.52π for the 2D waveguide
while k0d ¼ 1.09π and k0d ¼ 0.73π for the Γ and M point in the
free space case. In both plots, we considered as repulsive state the
type II one.
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time evolution is plotted in Fig. 4 for different initial
conditions. In particular, we consider the case l ¼ 1, the
one having a large overlap with the BS, and l ¼ 2. In the
first case, the two excitations stay bound together, as
signaled by a persistent correlation at long times, whereas
in the second case, the correlator quickly drops to zero. A
large dropping is also observed, for an interatomic distance
of k0d ≈ 1.2π, where BSs do not exist. Note that a
dynamical procedure similar to the one presented for the
BSs could be employed to excite scattering resonances
either in a 2D waveguide or in free space.
Conclusions and outlook.—We have discussed the emer-

gence of two-photon strongly correlated and long-lived
states in a 2D array of atoms coupled to a two-dimensional
waveguide. Using a spin model formulation, we have
characterized these states discussing their dispersion, bind-
ing and decay properties and we have demonstrated their
manifestation in the system dynamics. The occurrence of
these states crucially relies on interfacing an array of two-
level atoms with the light confined into a two-dimensional
photonic structure, but some of the discussed features could
persist also in free space atomic arrays. This work opens
interesting possibilities to study many-body physics with
photons in this open and dissipative system. In particular,
similarly as studied in 1DwaveguideQED[23,29],we could
expect the existence of multiphoton bound states and a
“quantum to classical” transition toward the formation of 2D
solitons [79,80]. Targets of ongoing investigation include
exploring few-body interacting topological states [81–89] in
atomic arrays [90–92] and emergent many-body phases in
frustrated lattices [93,94]. Another interesting perspective is
to investigate the occurrence of high-dimensional bound
states in 3D atomic arrays [95,96] where the atomic lattice
completely fills the electromagnetic environment.
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