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We report optical trapping of laser-cooled molecules at sufficient density to observe molecule-molecule
collisions for the first time in a bulk gas. SrF molecules from a red-detuned magneto-optical trap (MOT) are
compressed and cooled in a blue-detuned MOT. Roughly 30% of these molecules are loaded into an optical
dipole trap with peak number density ny ~ 3 x 10'© cm™ and temperature T ~ 40 pK. We observe two-
body loss with rate coefficient # = 2.77)3 x 107!% cm3 s7!. Achieving this density and temperature opens
a path to evaporative cooling towards quantum degeneracy of laser-cooled molecules.
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Ultracold polar molecules, with their long-range dipolar
interactions and rich internal structure, have emerged as a
powerful platform for quantum information science, quan-
tum simulation, and precision probes of fundamental
physics [1-6]. Techniques to directly laser cool molecules
have developed rapidly in the past decade, with molecular
magneto-optical traps (MOTs) demonstrated for several
diatomic [7-10] and polyatomic [11] species. Subsequent
sub-Doppler gray molasses cooling to temperatures
<50 pK [10,12-14] has enabled loading of molecules into
conservative optical dipole traps (ODTs) [ 14—18]. Bulk gases
of laser-cooled molecules in ODTs have been demonstrated
with peak number densities 1j ~ 10° cm™ and phase space
densities (PSDs) ® ~ 1077 [14—18]. However, higher n, and
@ are needed to implement collisional (evaporative and/or
sympathetic) cooling, which is likely needed to achieve
quantum degeneracy in such systems.

Collisional cooling requires a sufficiently high rate of
thermalizing (elastic) collisions [19,20]. However, experi-
ments with trapped ultracold molecules typically see rapid
loss due to inelastic molecule-molecule collisions. Loss
mechanisms include chemical reactions and “sticky colli-
sions,” where long-lived collision complexes are formed,
then lost from the trap by absorbing a trap light photon or
by colliding with a third body [21-33]. Recent experiments
with assembled bi-alkali molecules, at much lower temper-
atures (<900 nK), have demonstrated evaporative cooling
by suppressing inelastic collisions using microwaves
[20,34-38] or static electric fields [39,40], while also
enhancing the elastic collision rate.

For directly laser-cooled molecules, inelastic collisions
have been reported between molecules and atoms in a
magnetic trap [25,41], and between pairs of CaF molecules
in tweezers [26], where subsequent microwave shielding
was demonstrated [36]. These results indicate that evapo-
rative cooling of directly laser-cooled molecules could be
as effective as it is for bi-alkalis, if sufficient density for
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rethermalizing collisions is reached. Thus far, however,
bulk gases of directly laser-cooled molecules have been too
dilute for either elastic or inelastic molecule-molecule
collisions to be observed. There are two primary reasons
for this. First, standard red-detuned molecular MOTs (red
MOTs) have low molecule number (N < 10°), due to
inefficient slowing of the source molecular beam and
low capture velocity of the MOT. Second, transfer effi-
ciency from these red MOTs into ODTs is low (typically
<5%) [14,18]. This is due to sub-Doppler heating from the
type-II transitions (N, =1 - N, =0, where N, {N,} is
the rotational angular momentum of the ground {excited}
state) required to be driven for rotational closure of
molecular optical cycling [42—-44], limiting typical red-
MOT radii to ¢ 2 1 mm and temperatures to 7 2 1 mK
[7-9,11,16,45]. The temperature can be reduced to <50 pK
by blue-detuned molasses [10,12—14], but this does not
provide spatial compression.

This has led to interest in “blue-detuned” type-II MOTs
(blue MOTs), which can exhibit sub-Doppler cooling while
simultaneously maintaining strong confining forces. This
was first demonstrated in Rb atoms [46] and recently shown
to work for the specific case of YO (yttrium-monoxide)
molecules [47]. Recently published numerical simulations
[44] suggested a generic method to produce blue MOTs for a
large class of laser-coolable molecules, which should enable
efficient transfer of molecules from a MOT to an ODT.

In this Letter, we experimentally realize this novel,
generic scheme to produce a blue-MOT of StF molecules.
With it we achieve ~10? gain in n, and ~10* gain in ®
compared to our red MOT. We load an ODT from this blue
MOT with ~30% transfer efficiency, ~10x higher than
from ared MOT [14,18]. With this high density in the ODT,
we are able to observe inelastic molecule-molecule colli-
sions that result in two-body loss; to our knowledge this is
the first such observation in a bulk gas of directly laser-
cooled molecules.

© 2024 American Physical Society
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FIG. 1. Relevant StF level structure and laser-driven transitions
for different stages in the experiment, with hyperfine levels (|J, F))
and their magnetic g factors (g) listed. Solid (dashed) lines indicate
o (67) laser polarization, and color indicates red or blue detuning.
(a) Red MOT, which employs the dual frequency mechanism on
|3/2,1). (b) Blue MOT, where the laser addressing |3/2, 2) is now
blue, but also provides the red detuning needed for the dual
frequency mechanism on |3/2, 1) (purple arrow). (c) A cooling,
where only two lasers address |3/2, 1) and |1/2, 1).

Our apparatus is very similar to that used in our prior
work [18,48], but with several changes to improve the
number of molecules captured in our MOT. We start with a
cryogenic buffer gas beam source [48], where SrF mole-
cules are produced by chemical reactions between laser
ablated Sr and SFg gas. The molecules collide with cold
(4 K) He gas and exit the cell at forward velocity
~130 m/s, then are slowed using the white light slowing
technique [48,49] on the X — B transition for 14.5 ms.

Slowed molecules are captured in a direct current red
MQOT. Here, 3 hyperfine levels are addressed by solely red-
detuned light, while simultaneous red- and blue-detuned
light is applied on the |J = 3/2, F = 1) state [Fig. 1(a)] to
create a dual-frequency trapping force [50]. Initially, the
per-beam peak laser intensity is / ~ 100 mW /cm? (detailed
intensity distribution in [51]) and the axial B-field gradient
is b =16 G/cm. After capturing the molecules, we lin-
early increase b to 29 G/cm and lower I to 10 mW /cm?
over 30 ms. In this “compressed” MOT, the cloud radius
(Gaussian rms width) is o~ 1 mm, with 7~ 1 mK and
molecule number N ~ 2.5 x 10*. The value of N is deter-
mined by switching off the gradient and taking a fluores-
cence image (2 ms exposure) with I~ 170 mW/cm?,
where the scattering rate is measured using the procedure
from [7] and the detection efficiency is calibrated from off-
line measurements [53]. The fluorescence image is inte-
grated along the radial direction, then fit to a 1D Gaussian
plus constant offset; the fluorescence counts are extracted
from the Gaussian integral. The temperature is measured
using the time-of-flight (TOF) expansion method.

Next, we instantaneously jump to the blue-MOT con-
figuration. The laser frequencies are changed to those
in Fig. 1(b), and I is increased to ~170 mW/cm?,
corresponding to I/l ~ 60, where I is the saturation
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FIG. 2. Fluorescence images showing capture into the blue
MOT (2 ms exposure starting at ¢ after switching to the blue
MOT). The loading is quick and efficient, with ~80% of
molecules captured by ¢ = 30 ms.

intensity. As in the red MOT, a dual-frequency scheme is
applied to the |J =3/2,F = 1) state. However, blue-
detuned light is applied to the other F # O states, resulting
in simultaneous application of both sub-Doppler cooling
and spatial confinement [44,46,47].

We find that ~80% of the molecules from the compressed
red-MOT are captured by the blue MOT. Within 30 ms, the
cloudradiusisreduced toaslow asoy z =~ 150 pm (here X, Z
are the transverse and axial directions) and the temperature to
as low as T = 200 pK (see Fig. 2), corresponding to peak
density ny =~ 4 x 10 cm™. The temperature can be lowered
further to ~60 pK by reducing / to 34 mW /cm?, though this
results in a larger transverse radius oy ~ 230 pm. The blue-
MOT reaches a maximum PSD of ® ~ 1.6 x 1079, ~10*
larger than in the compressed red MOT.

We note that our trapping scheme is substantially differ-
ent from that used for YO in Ref. [47], where only blue-
detuned light was used. We were, by contrast, unable to
observe trapping without employing a dual-frequency
mechanism. We believe the difference lies in the fact that
YO, unlike StF, has a magnetically insensitive ground state
F =1 hyperfine manifold. This feature has been observed
to increase the robustness of sub-Doppler cooling in
magnetic fields [10]. The lack of this feature in SrF (and
most other laser-cooled molecules) may necessitate the
dual-frequency mechanism, which can provide stronger
confining forces [44] at the cost of some heating. Indeed,
we observe a stronger restoring force (~10x faster com-
pression) and smaller minimum cloud volume (by a factor
of 2) at the cost of higher minimum blue-MOT temperature
(60 vs 38 pK) compared to the pure-blue YO MOT [47].

Next, we load the ODT by switching the lasers to the A-
enhanced gray molasses [14,18] configuration in Fig. 1(c),
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and turning off the quadrupole field gradient. The ODT
details are described elsewhere [18]; briefly, the ODT is
formed from a 53 W, 1064 nm laser focused to a 1/e?
radius of 38 pm, with a trap depth Uy = 1.3 mK for SrF.
Loading is optimized for two-photon detuning &=
27 x0.11 MHz, one-photon detuning A = 2z x 22 MHz,
and I ~ 57 mW/cm?. Owing to the small size of the blue
MOT, the ODT is rapidly loaded, with up to 30% transfer
efficiency achieved within 20 ms. This is an order of
magnitude higher efficiency than achieved when loading
from type-II red MOTs [14,18]. Under optimal conditions,
we load an initial number N, =~ 4000 molecules in the
ODT, at T ~ 40 pK and ny ~ 3.4 x 10'° cm~. We note in
passing that here, different from our previous observations,
the optimal polarization of the ODT beam is linear and the
temperature is higher [18]. We have been unable to trace the
source of this change.

With these starting conditions, we look for evidence of
inelastic molecule-molecule collisions by measuring the
number of molecules remaining in the trap () as a function
of the hold time (¢;,). For all of these measurements, we load
the ODT for 20 ms, then let untrapped molecules fall away by
turning off the A-cooling light for 32 ms. This defines ¢, = 0
and N,. We then measure the remaining number at ¢, either
by imaging in situ with A-cooling light (for points 7, < 1 s)
[14], or by recapturing in the compressed red MOT and
imaging (for points #, > 1 s). The scattering rate for each
method is determined by comparing the fluorescence counts
to those from a free space image (2 ms exposure) at
I ~ 170 mW /cm?. We assign uncorrelated uncertainties to
each N(t,) data point by adding in quadrature contributions
from fit uncertainties, shot-to-shot fluctuations in the initial
number, and uncertainties in the ratio of the extracted number
between the two imaging methods [51].

First, we measure the loss rate in the maximally loaded
ODT, with average initial number N, ~ 4000. We observe a
fast initial loss, followed by a slow decay, as is character-
istic of two-body loss processes (Fig. 3). The dynamics are
modeled using the two-body loss rate equation, with
evolution of the number density n given by

n:—ln—ﬁnz, (1)
7

where 7 is the one-body loss time constant and /3 is the two-
body loss rate coefficient. To convert Eq. (1) to a number
evolution, we assume a Gaussian spatial distribution and
define an effective volume [V = (24/7)*0,0,0,] occu-
pied by the molecules [27]; here z is the direction of
propagation of the ODT beam, and x (y) is along the
transverse direction in (perpendicular to) the imaging plane.
This allows us to integrate over the volume to obtain
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FIG. 3. Number of molecules in the trap as a function of hold

time. Each point is an average of 15 images, and the error bars
account for uncertainties as described in the main text. Data for
t, < 1 sare A images (blue circles) and the rest are MOT recapture
images (red squares). The data show a clear deviation from an
exponential decay, a classic signature of two-body loss. By fitting
to a model where o, is increasing linearly with time, we extract a
two-body loss rate coefficient f = 2.7:;"% x 10719 cm?s~! and a
one-body loss time constant 7 = 1.3(1) s. The shaded area
indicates the uncertainty range.

If the spatial distribution is constant in time, Eq. (2) has an
analytical solution:

No
N(1) = :
0 (1 +ﬁ‘§No) otlt _ BNot

off Vet

(3)

Our imaging system cannot resolve ¢, and we cannot
observe properties in the y direction. We do directly measure
o,, as well as the temperatures 7', and 7,. We then infer o,
using the calculated trap depth, measured ODT beam profile,
and value of T, [51], and assume ¢, = 6, by symmetry.

We observe that o, increases from its initial value
linearly with hold time, and observe a corresponding
increase in 7',. We attribute this to nonadiabatic dragging
of the ODT trap center due to thermal lensing of the optics
along the beam path [51]. However, we observe no change
in T over time, so we assume that o, (and hence o,) does
not change. To model this behavior, we treat V. as a
function of time in Eq. (2), with o, increasing at the
measured rate. We numerically integrate Eq. (2) to find
values of £ and 7 that minimize the reduced chi squared

fed) of this model. With fixed Ny, = 4000, we find f =
2.7(5) x 10719 cm® s7t and 7 = 1.3(1) s (with ¥, = 0.99,
see Fig. 3), where we incorporate the uncertainty in V. by
adding it in quadrature to the uncertainty of the fit.

The final extracted value of f is strongly dependent on
the initial number, so we also consider systematic uncer-
tainties in determining N,. The scattering rate is affected
by uncertainty in the vibrational branching ratio |A%IT, /25

v =0) - |X’Z, v = 3) [7,51,54], and in the calibration of
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the imaging system. We estimate a combined uncertainty of
25%in Ny [51]. We emphasize that this is different from shot-
to-shot fluctuations, and instead is a correlated uncertainty
for all points, which in turn leads to an uncertainty in the
overall normalization of . To determine the effect of this
scale uncertainty, we use the same analysis method with
initial numbers N, = {3000, 5000}, and numerically inte-
grate Eq. (2) to find the optimal f for each N. The final
uncertainty for f is then assigned as the quadrature sum
of contributions from this systematic uncertainty and
from the fit error for Ny = 4000. Finally, we find f =
27502 x 1079 ecm’s™! and 7 = 1.3(1) s.

As a cross-check, we also fit the data to the analytical
solution [Eq. (3)] by following the prescription from
Ref. [37]. That is: we first extract 7 = 1.2(2) s by fitting
a pure exponential decay to only late-time (¢, > 1 s) data
points. Then, we extract f by fixing z and fitting only to
early-time data points (¢, < 250 ms) where the axial radius
change is small and Vg can be treated as a constant; we use
the average V.4 for 7, <250 ms. With the same error
analysis as before, we find g =2.71]¢ x 10719 cm3s~!

2 | = 1.20), consistent with results from the more com-
plete model.

To further verify the presence of density-dependent loss,
we load the ODT with lower initial number (by using a
shorter slowing pulse), Ny = 650, but the same temperature
and trap depth, thereby reducing the starting density by a
factor of 6. We see that the short-time loss rate is reduced
(Fig. 4). As expected, we find that the initial collision-
induced loss rate is proportional to the initial density [51].

There are numerous possible loss channels in our
experiment. The molecules are in the rotational N = 1
state, and rotational quenching to N = 0 can lead to large
inelastic losses [41]. They also occupy all sublevels in the
N =1 manifold of hyperfine and spin-rotation states,
opening up p- and f-wave collision channels that would
be absent if all the (bosonic) molecules were in the same
quantum state. In addition, colliding pairs of SrF molecules
can undergo a barrierless chemical reaction [55], and
“sticky collisions” between the molecules can also lead
to losses [21-28].

We compare our measurement to theoretical and exper-
imental benchmarks. The universal loss rate model [56],
which assumes that colliding molecules are lost if they
reach short range, i.e., if they do not reflect off the van der
Waals (vdW) + centrifugal potential, has proven consistent
with observed experimental loss rates [21-28,41]. We use
the generic solutions from [57], which are valid for systems
where the temperature (here, 40 pK) is above the p- and
d-wave barriers (x5 and =30 pK, respectively) determined
by the Cg¢ coefficients for interactions between SrF mole-
cules in an incoherent mixture of N = 1 sublevels. We find
a thermally and ensemble-averaged loss rate constant
Puniv = 2.6 x 10719 cm3s™!. We also calculate the maxi-
mum allowed loss rate constant by summing the maximum
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FIG. 4. Short-time evolution of trap population for different
starting conditions. Dashed lines are fits for the first 9 points to
the two body loss rate model with fixed 7 = 1.3 s and the average
Ve for t, < 250 ms. Data with initial ODT number N, = 650
(green triangles) have a slower initial loss than for N &~ 4000 (red
circles), clearly demonstrating the density dependent loss. The
presence of A-cooling light leads to additional two-body loss
(blue squares) due to light-assisted collisions. For all conditions,
the one-body loss rate remains the same (as seen in longer-time
data, not shown).

inelastic cross-sections for each partial wave [58] and find
Poax = 2.8 x 1071 cm? s7! [51,59]. The close match indi-
cates small reflection probabilities, as expected for
T = 40 pK. Our experimental measurement of # is con-
sistent with both calculations.

The experiment which most closely matches ours is [5], in
which pairs of CaF molecules in a mixture of N =1
sublevels were held in optical tweezers at T ~ 80 pK, above
(below) the p (d) wave barrier of 20 pK (100 pK). The
reported loss rate constant was fc,p = 40 x 10719 cm?® 571,
~10x larger than the predicted universal value, in contrast to
our results, which match the model.

We also explore light-assisted collisions due to A
cooling (Fig. 4). Here, we turn on the A-cooling light at
t, = 0. Though 7 is unaffected, f increases to f,, =
49717 % 1071% cm?s™! due to light-assisted collisions.
This is two orders of magnitude lower than previously
reported for CaF molecules held in optical tweezers [5].
Given the typical loading time (20 ms) from the blue-MOT,
Pro¢ Sets an upper bound, n™ ~ 10! cm™>, on the peak
density achievable by loading an ODT using A cooling.
While the peak densities we achieve are lower than nj®*,
it may be possible to reach it if larger numbers of molecules
[44], lower temperatures [15,18], and/or deeper traps can be
achieved.

In conclusion, we have demonstrated high efficiency
loading of a molecular gas into an ODT from a blue MOT
and observed inelastic collisions in a bulk gas of directly
laser-cooled molecules for the first time. Our results
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suggest the possibility of using a shielding mechanism to
enhance the elastic collision rate while suppressing two-body
losses, as already used for evaporative cooling in experiments
using assembled bi-alkali molecules [20,34-40]. Current
efforts are underway to prepare the molecules in a single
quantum state and to implement microwave shielding in our
system. This will open a clear path to collisional cooling of
directly laser-cooled molecules via evaporation or by sym-
pathetic cooling with co-trapped atoms.

We gratefully acknowledge support from AFOSR MURI
and the University of Chicago.
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