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Many-Body Dynamics in Monitored Atomic Gases without Postselection Barrier
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We study the properties of a monitored ensemble of atoms driven by a laser field and in the presence of
collective decay. The properties of the quantum trajectories describing the atomic cloud drastically depend
on the monitoring protocol and are distinct from those of the average density matrix. By varying the
strength of the external drive, a measurement-induced phase transition occurs separating two phases with
entanglement entropy scaling subextensively with the system size. Incidentally, the critical point coincides
with the superradiance transition of the trajectory-averaged dynamics. Our setup is implementable in
current light-matter interaction devices, and most notably, the monitored dynamics is free from the
postselection measurement problem, even in the case of imperfect monitoring.
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Introduction.—When a quantum system is externally
measured, its dynamic is strongly altered. The decay of an
atom, for example, will occur through a sudden quantum
jump from the excited to the ground state at a random time.
The evolution of quantum systems along chosen trajecto-
ries has been intensively investigated for almost forty years
[1-3]. Only very recently, however, monitored dynamics
entered the world of many-body systems. Two independent
works [4,5] showed that a quantum many-body system
subject to a mixed evolution composed of unitary intervals
interrupted by local measurements undergoes a transition in
its quantum correlation pattern which is invisible to the
properties of the average density matrix. Only by resolving
the dynamics along each trajectory is it possible to
construct nonlinear functions of quantum states, such as
entanglement measures or trajectory correlations, able to
reveal these so-called measurement-induced phase transi-
tions (MIPT). An extensive research activity followed these
initial works [6-8], analyzing salient aspects of measure-
ment-induced phases in monitored quantum circuits [9—
22], noninteracting [23-38] and interacting [39—44] moni-
tored Hamiltonian systems. Common to these frameworks
is the variety of entanglement patterns induced by mea-
surements, that are deeply tied to the encoding-decoding
properties of quantum channels [45-55].

Despite this large theoretical effort, the experimental
evidence of MIPTs is much more limited with only three
pioneering experimental works at present [56-58].
Following a first quantum simulation with trapped ions
[56] the scaling close to the critical point has been explored
with the IBM quantum processor [57]. A fundamental
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reason hinders the possibility of observing monitored
phases, known as the postselection problem. To perform
averages of observables along a given trajectory, one
should reproduce the same sequence of random jumps
with sufficient probability. This task is challenging as the
probability of reproducing the same trajectory scales to
zero exponentially with system size and timescale, explain-
ing why experiments were limited to a few sites and the
considerable efforts required to increase the lattice length.
The postselection barrier can be avoided by quantum-
classical approaches that combine measurement outcomes
to classical postprocessing [45,59-61]. These methods
however require a perfect detection and the ability to
efficiently simulate the quantum dynamics on a classical
computer. In certain quantum circuits, postselection over-
head can be mitigated by resorting to space-time duality
[58,62,63]. Another approach was proposed in adaptive
quantum circuits [64,65], where the measurement registry
conditions the evolution so as to render MIPTs visible in
the average dynamics (at density matrix level). However,
this route generally fails as feedback may alter the physics
of the system, and separate transitions may occur in the
monitored and average dynamics [66—69]. The postselec-
tion problem remains a formidable hurdle to overcome, and
the search for cases where it can be mitigated is necessary
for experimental progress in monitoring quantum many-
body systems.

Here we show that there is a class of infinite-range spin
systems where monitored many-body dynamics can be
efficiently realized with a postselection overhead growing,
at most, polynomially with the system size. These systems

© 2024 American Physical Society
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have a nontrivial monitored dynamics, which is yet
experimentally accessible in atomic ensembles driven by
a laser field and in the presence of a collective decay. Here,
the type of measurement is pivotal in determining the
entanglement behavior of the quantum trajectories describ-
ing the system. Different monitoring protocols lead to a
different scaling of entanglement measures throughout the
phase diagram, highlighting the measurement-induced
nature of the system. The quantum trajectories describing
the system undergo a MIPT separating two subvolume law
behaviors. Incidentally, this measurement-induced critical-
ity coincides with the dissipative (in this case, superradiant)
transition of the average dynamics, a possibility already
discussed in the literature [42,66—-69]. As in these cases,
critical and off-critical features of the dissipative and
monitoring-induced phases are generally inequivalent, as
the mechanism underpinning these phenomena is different.
(We have further discussed this fact in the Supplemental
Material [70] with a concrete example having a phase
transition at the average level, but lacking a MIPT.).

The system consists of a cloud of N atoms (each
behaving as a two-level system with associated Pauli
matrices 6%, a = x, y, z for the ith atom), driven by an
external laser with collective decay [78]. In the absence
of monitoring, its density matrix obeys the Lindblad
equation

where J, = >,6%/2, T, =J, + ijy, J = N/2 is the total
spin, and 7{ = w,J,. The steady state has a superradiant
phase transition separating a normal from a time-crystal
phase [79-81]. The dynamic governed by (1) was recently
realized experimentally [78]. Following the evolution along
aquantum trajectory, i.e., unraveling (1), requires specifying
a monitoring protocol [82,83]. As we detail below, although
the average dynamics is the same [cf. (1)], different types of
measurements generate inequivalent trajectory ensembles, a
factalready noted in, e.g., [32,33,35]. Their distinct traits are
showcased in any nonlinear function of the state, e.g., in
entanglement measures. We will separately discuss two,
experimentally motivated, monitoring protocols. The sys-
tem is either coupled to a photodetector, where measurement
acts as quantum jumps (QJ), or to a homodyne detector,
continuously probing the system and leading to a quantum
state diffusion (QSD). We quantify the entanglement in the
fluctuating steady state through entanglement entropy and
quantum Fisher information.

Quantum jumps.—In this case, the system evolves acco-
rding to an (smooth) effective non-Hermitian Hamiltonian
ﬂnj =H-i (k/2J )j +j _, interrupted, at random times, by
quantum jumps when the wave function |y (7)) changes
abruptly as

J_lw (1) .
()T -y (1)

(2)

() = \/

In a time interval ¢, jumps occur with a probability op =
k6t(J.J_)/J. Details of the numerics are given in the
Supplemental Material [70].

The QJ unraveling leads to a ensemble of stochastic
trajectories fixed by the occurrence (time) of the jumps. The
Lindblad evolution (1) describes the average features of this
ensemble [2], but does not capture its higher cumulants.
These features are probed by nonlinear functions of the
state, e.g., the entanglement measures considered in this
manuscript [84].

We first consider the entanglement entropy, defined for a
pure state [y(7)) and a bipartition of the system into two
sets A and B, by S, (lyw(7))) = =Tra(ps Inp,). Here, py =
Trgly(¢))(w(t)| is the partial trace over the degrees of
freedom of subsystem B. We will consider balanced
partitions with Ny = Ng = N/2, and the entanglement
entropy at long times is then averaged over the quantum
trajectories and over the time domain Sy ,.

In the evolution dictated by (2), quantum correlations are
built by collective jumps, and the external drive leads to
phase shifts between different components of the quantum
state. Their interplay leads to a nontrivial behavior of the
entanglement for quantum trajectories. In Fig. 1(a), we plot
the averaged entropy W/z as a function of @,/ for several
values of N. In the small w, regime, the entanglement
entropy is essentially independent of N: The system is in an
area-law phase. An anomaly develops near w,/x ~ 1. The
singularity is clearly visible in the inset of Fig. 1(a). The
derivative of Sy, has a logarithmic divergence of the peak
height with N. The MIPT coincides with the superradiant
transition of the average state, separating a normal from a
time-crystal phase [79]. This incidental fact [85], will not
be used in the following, as the average density matrix does
not reveal the entanglement properties of the trajectory. At
the critical point, the entanglement diverges logarithmically
as shown in Fig. 1(b). For wy/k > 1 the entropy grows
more slowly with N. From the numerics, a good fit is
obtained with Sy, ~In’N with a nonuniversal exponent
p < 1 that decreases moving away from the transition. In
the limit wy/k > 1, f tends to zero. A more careful
inspection based on of Figs. 1(c) and 1(d) suggests
m ~Inln N. The entropy grows as In ¢ up to a saturation
time that depends logarithmically on N. Subextensive
phases in long-range circuits have been discussed in
[86-91].

It is important to estimate the overhead that we should
expect from the unavoidable postselection in a brute-force
experiment. The system analyzed here is free from the
postselection problem. Because of the collective nature of
the jumps, a quantum trajectory can be represented as a
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FIG. 1. Results of QJ simulations. (a) Long-time average of the half-chain entanglement entropy m as a function of @, /k, for system
sizes N = 20, 40, 80, 160, 320, 640. Inset: the numerical derivative of the long-time averaged entanglement entropy highlights the
critical point; the peak height grows logarithmically with N. (b) Scaling of m as a function of N at fixed values of @, /. At the critical
point, the long-time averaged entanglement entropy grows logarithmically with N (gray triangles). In the phase w,/x < 1 the behavior is
area law (black circles). The scaling in the region w,/k > 1 is sublogarithmic (orange squares). Numerically, one can fit the curves as
W/z ~ In? N with a nonuniversal exponent 8 < 1 (8 ~ 0.2 at w,/x = 2). The exponent decreases when moving away from the critical
point. (¢) Long-time dynamics of the entanglement entropy for several system sizes and several values of x/w,. The entanglement
entropy grows as In¢ before saturating. (d) Dependence of the saturation time on the system size N (in all cases, 7 ~ In N).

binary string with a record of the sequence of jumps (once a
time bin has been fixed). The probability of generating the
same trajectory thus scales as 277 with 7 of the order of the
saturation time. For w,/k < 1, 7 is independent on N [70].
In the subextensive regime wy/x > 1 and at the critical
point wy/x = 1, the saturation time grows logarithmically
with the system size,

t~alogN + b; (3)
see Fig. 1(d) (a, b constants depending on wg/k). The
logarithmic scaling of the saturation time is a signature of
collective dissipation [71], and can be estimated from the
imaginary part of the non-Hermitian Hamiltonian [70].

Combining the behavior of 7z discussed above, it is
straightforward to conclude that the probability of occur-
rence of a given trajectory is, at most, decaying as power
law N77 (with y weakly dependent on the coupling
constants). The monitored dynamic of the system we
consider is thus free from the postselection problem.

This property holds for a class of long-range interacting
spin systems with collective decay. We added an all-to-all
term to the Hamiltonian of the form H, = w,JZ, and the
scaling of the saturation time, shown in Fig. 1(d) green
squares, is still logarithmic with the system size. We also
considered the case of power-law decay exchange inter-
action among the spins. In this case, due to the absence of
permutational invariance, we can consider much more
modest system sizes. The results are reported in the
Supplemental Material [70]: As long as the interaction
is sufficiently long range the dynamics remains post-
selection-free up to long times.

Quantum state diffusion.—After discussing the quantum
jump evolution induced in the atomic cloud by the
photodetector, we now consider the inequivalent quantum

state diffusion dynamics induced by a (nonideal) homo-
dyne detector [3,92]. The dynamics is given by [2]

A A /Kn oA A 5 5 \a
dpy = [’(pw) + 7dW(‘I—pW +pwly — 2<Jx>pw)’ (4)

where dW is a Gaussian ito noise with dW =0 and
dW? = dt. In Eq. (4) we have introduced the detector
efficiency n€[0,1] to treat the effect of noise: 7 =1
corresponds to a perfect detector, and 5 < 1 describe
imperfect detection, with the limit # =0 implying no
trajectory resolution. Equation (4) provides a different
unraveling of the Lindblad equation in Eq. (1) since
P = pw, and describes a system coupled to a homodyne
detector, a framework of experimental relevance in current
platforms [93]. Crucially, the homodyne current

(J) + \/szdw

is experimentally detectable, thus allowing for an efficient
monitoring (see below). When # = 1 the monitoring is
perfect; the purity of an initial state is preserved in the
dynamic. In this case, the entanglement entropy is a
sensitive measure of quantum correlations in the system.
In Fig. 2(a) we present the average entanglement entropy
varying w,/x and for various system sizes. For w, < « the
entanglement behaves qualitatively as for the quantum
jump evolution [cf. Fig. 1(a)]. Differently, for @, > « the
available system sizes show a saturation, hence an area-law
phase. This is not surprising: The quantum state diffusion is
a different unraveling of the Lindblad equation, Eq. (1), that
is more prone to destroy entanglement, i.e., the infinite
click limit of the quantum jump evolution. Remarkably, the

dl, = (5)

~Ix
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FIG. 2. Results of QSD simulations. (a) Long-time averaged entanglement entropy Sy, as a function of @/« for various system sizes
N. The entanglement develops a peak at the critical point w, = k. (b) Scaling of fo = F_Q/ N as a function of N at the fixed values of
wy/k. At the critical point, the long-time averaged Fisher density grows « /N (gray line). In the phase w, < «, ]TQ saturates to the

constant 1 (black line). For @y > «, the Fisher density scales logarithmically with the system size. Therefore, the system is multipartite
entangled at the critical point and in the nontrivial phase. As discussed in the text, we compare the Fisher density for (c) efficient (7 = 0)

and (d) inefficient detectors (7 = 0.7). The blue-dashed line is the constant value f_Q = 1. While quantitative changes are present, the

qualitative features of the phase diagram are preserved.

phase transition occurs still at wg = k, where W/z develops
a peak.

Realistic experiments have n < 1 due to decoherence to
the environment, and Eq. (4) leads to mixed states, poten-
tially altering the entanglement properties of the state [94—
98]. For instance, the von Neumann entropy is not an
entanglement measure in this situation, as it also embodies
classical correlations. Therefore, to compare perfect and
imperfect detectors, we study the quantum Fisher informa-
tion (QFI), a measure of multipartite entanglement valid for
pure and mixed states [99-105]. The quantum Fisher
information is F(p,,) = max eigval(M) where the matrix
M5 =23, Ari(k|T,|1)(1|T 4|k) is defined for the decom-
position py, = > Ak} (k| and Agy = (A = 4)*/ (4 + A1)
[106]. The QFI gives a bound to the multipartite entangle-
ment entropy: If the Fisher density f, = F/N is (strictly)
larger than some divider k of L, then the state contains
entanglement between (k + 1) parties. The QFI is nonlinear

in the density matrix; hence F(py,) # Fo(py). We first
discuss the average QFI density f_Q in the limit 7 = 1. In

Fig. 2(b) we show the system size scaling of f_Q in the normal
phase, critical point, and boundary time crystal phase. In the
former, the Fisher density saturates to the constant, signaling
that the system is close to a product state. For w, > « the
Fisher density presents a logarithmic scaling with N [70]. It
follows that this phase exhibits area-law entanglement and
logarithmic multipartite entanglement [107]. At the cri-
tical point, a polynomial fit shows that f, ~ N'/? [108]. In
Fig. 2(c) we summarize the behavior of the Fisher density for
a perfect detector (7 = 1). The salient points of the above
discussion are robust against noisy contribution. In Fig. 2(d)
we show that the phases and the peak of f_Q at the critical
point are qualitatively unaltered for efficiency rate n = 0.7.
Further decreasing n we would get close to the Lindblad

framework, Eq. (1), where the QFI has been computed in
[109,110]. The analysis presented above shows that exper-
imental detection is feasible in the atomic systems of
interest. In the next section, we discuss in more detail an
experimental implementation based on driven atomic gases
and one on homodyne detection.

Experimental implementation.—The model under study
here has been recently realized in trapped atomic gases
coupled to a mode of the free space electromagnetic
environment [78,111]. In the subwavelength regime, a
fraction of the atoms share the same diffraction mode
and experience a collective decay, as described by the jump
operator in Eq. (2). The effective atom number can be tuned
in the experiment by changing the geometry of the setup
[78]. In a single-shot experiment the number of emitted
photons in two orthogonal directions is measured, giving
access to the quantum jumps and their statistics. In
particular, by monitoring the intensity of the light emitted
in the direction perpendicular to the cloud it is possible to
access the population of the atomic excited states, <j Z), and
its statistics. The polynomial cost of postselection in this
system suggests that reconstructing the trajectory histo-
gram of this observable could be doable as in experiments
with single qubits [112,113]. In Fig. 3(a), we compute the
variance of the collective spin magnetization, showing a
sharp transition at w,/x = 1. An even more direct signature
of the transition can be obtained by performing homodyne
detection and measuring the variance of the homodyne

current dI? ~ (J,)%; cf. Eq. (5). Hence from the first two
moments of dI, we can reconstruct the variance of (J,); cf.
Fig. 3(b). En passant, we note that these variances con-
stitute a lower bound of the quantum Fisher information
[100]; thus they partially access multipartite entanglement
aspects [114]. Collective dissipative processes such as
those at play here can be engineered in other platforms
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FIG. 3. (a) Rescaled trajectory variance of (J,) for various
system sizes and along the phase diagram for the quantum jump
evolution. The trajectory histogram of (J.) is experimentally
observable; cf. Ref. [78]. (b) Rescaled trajectory variance of (L)
for the quantum state diffusion. This quantity is directly obtain-

able from the homodyne current [2].

such as atoms coupled to a cavity mode [115] or qubits
collectively coupled to a microwave resonator [116] or a
waveguide [117]. Similar phenomenology is expected also
in other dissipative time crystals models, e.g., in [118].
Conclusions.—In this Letter, we discussed a class of
many-body system where it is possible to follow the
dynamics along quantum trajectories without suffering
from the postselection problem. Specifically we discussed
a case, that can be observed in existing experimental
platforms [78,93], and studied its entanglement properties.
We expect this behavior is generic in semiclassical dynam-
ics. When the latter breaks down, we expect the post-
selection overhead to become again exponential.
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