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We study and extend the duality web unifying different decoupling limits of type II superstring theories
and M theory. We systematically build connections to different corners, such as matrix theories,
nonrelativistic string and M theory, tensionless (and ambitwistor) string theory, Carrollian string theory,
and spin matrix limits of AdS/CFT. We discuss target space, world sheet, and worldvolume aspects of these
limits in arbitrary curved backgrounds.
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Introduction.—Facedwith complicated physical theories,
we often seek simplifying limits that still capture key
behaviour or structure. This logic was reversed in the
introduction of M theory, which was conjecturally defined
by viewing ‘dual’ string theory scenarios as limits of an
underlying theory of quantum gravity [1,2]. These limits
include, as a starter, the perturbative superstring theories and
the 10Dand 11D supergravities. Armedwith this picture, we
can search for other accessible limits of string andM theory.
In this Letter, we consider a class of decoupling limits,

which offer significant simplifications by removing many
states from the spectrum, and sometimes allow us to have a
peek into various nonperturbative regimes. These limits can
be viewed as generalizations of the nonrelativistic point
particle limit. To motivate this, consider the action for a
charged point particle in d dimensions:

S ¼ −m
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ημνẋμẋν

p þ q
Z

dτAμẋμ; ð1Þ

where μ ¼ 0;…; d − 1. To take the nonrelativistic limit, we
(re)introduce the factor of c such that m → mc and ημν →
ð−c2; δijÞ with i; j ¼ 1;…; d − 1. When we let c → ∞ the
action is naively divergent due to the term involving the rest
mass. For the special class of BPS particles whose mass
equals their charge, m ¼ q, we can cancel this divergence
in a universal way by introducing a critical gauge field of
the form A ¼ cdx0. Then, expanding the action (1) gives
the nonrelativistic particle action:

S ¼ m
2

Z
dτ ẋiẋi; ð2Þ

where we let x0 ¼ τ. An important class of particles whose
mass equals their charge are those arising as Kaluza-Klein
excitations on reduction from an extra periodic dimension.
In this case, the nonrelativistic limit can be “baked in” to
the form of the higher-dimensional geometry, by taking the
metric of the latter to have the form

ds2 ¼ R2

c2

�
dyþ c2

R
dx0

�
2

− c2ðdx0Þ2 þ dxidxi; ð3Þ

where y ∼ yþ 2π. Dimensional reduction of the massless
particle in dþ 1 dimensions gives the action (1) with
m ¼ q ¼ ðNc=RÞ, with N the Kaluza-Klein (KK) number
and the KK vector providing the critical gauge field
A ¼ cdx0. In the (dþ 1)-dimensional geometry of
Eq. (3), the limit c → ∞ means that the extra circular
dimension becomes lightlike. This defines the discrete light
cone quantization (DLCQ) of the higher-dimensional theory.
M theory in the DLCQ can be defined using a closely

related limit, which is usually interpreted as an infinite
boost from a spatial compactification [3,4]. In this limit, all
the light excitations except the bound states of N non-
relativistic D0 particles decouple, and their dynamics is
described by Banks-Fischler-Shenker-Susskind (BFSS)
matrix theory that generalizes the simple action (2) [5,6].
In the large N limit, BFSS is conjectured to describe the
whole M theory in flat spacetime. The DLCQ of quantum
field theory can be problematic [7,8]. However, the DLCQ
of string or M theory is believed to be well defined since it
can be given a first principles definition using T (or U)
duality, where the dual side is a self-consistent theory with
a conventional spatial compactification [9–12].
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This Letter aims to systematically explore generaliza-
tions of the above classic example, and its DLCQ M
theory version. These generalizations involve nonrelativ-
istic decoupling limits associated not simply with BPS
particles but with strings and branes. We exploit string and
M theory dualities to map different such decoupling limits
into each other, and further combine these dualities with
additional DLCQ limits. In doing so, we consider the
curved background analogs of the nonrelativistic limits.
For instance, in the example above, this amounts to
covariantizing the flat spacetime limit via dx0 → τμdxμ,
dxi → Ei

μdxμ, where τ and Ei are orthogonal Vielbeine in
Newton-Cartan geometry, i.e., the covariant formalism of
Newtonian gravity [13].
Our results update and extend the known features of the

duality web surrounding DLCQ M theory [9,10,14–17],
taking into account recent developments in curved non-
Lorentzian geometries [11,18,19], which appear as the
background geometry after taking the limit. We will see
that this duality web encompasses not only all matrix
theories, but also different string theories that are non-
relativistic [9,10], tensionless [20], ambitwistor [21], and
Carrollian [22]. We will also reveal novel corners that arise
from a 2nd DLCQ, which are relevant for spin matrix
theories (SMT) from near-BPS limits of AdS/CFT [18]. The
11D uplifts of all these limits give rise to different corners of
M theory that are U dual to each other. See Fig. 1 for a road
map of this duality web.
Matrix theory from critical fields.—Having discussed

the nonrelativistic particle limit, we now proceed to
describe its stringy generalization that produces nonrela-
tivistic string theory (NRST) [9,10,23] (see [19] for a
review), a unitary and ultraviolet complete string theory. In
10D spacetime with coordinates xμ, μ ¼ 0;…; 9, we focus
on the bosonic sector and write the background (string
frame) metric Gμν, B field, dilaton Φ, and Ramond-
Ramond (RR) forms Cq [24] as

B¼−ω2τ0 ∧ τ1þb; τA ¼ τAμdxμ; ð4aÞ

Gμν¼ω2τμνþEμν; Φ¼φþ lnω; ð4bÞ
Cq ¼ ω2τ0 ∧ τ1 ∧ cq−2 þ cq: ð4cÞ

Here, the two-form B field becomes critical, and ω corre-
sponds to the ratio between the speed of light and string
velocity [25]. We will focus on type IIB with even q. We
define NRST as ω → ∞: just as in the particle case, the ω2

divergences cancel in the F1-string action due to the BPS
nature of the string. NRST has a Galilean invariant string
spectrum in flat background, hence the name “nonrelativ-
istic” [9]. The modern understanding [11,18,24,26–28] is
that the target space geometry is non-Lorentzian, described
by the longitudinal and transverse Vielbeine τAμ , A ¼ 0, 1
and EA0

μ , A0 ¼ 2;…; 9, respectively. In (4) we defined

τμν ¼ τAμ τ
B
ν ηAB; Eμν ¼ EA0

μ EB0
ν δA0B0 : ð5Þ

These Vielbeine are related by string Galilei boosts
δGτ

A ¼ 0 and δGEA0 ¼ λA
0

A τ
A that naturally generalizes

the Galilean boosts in Newton-Cartan geometry. NRST
also couples to the background B field b, dilaton φ, and
RR forms cq. The Galilean boosts can also act nontrivially
on background gauge potentials [27,28]. We emphasize
that when we write a background such as (4) and (5),
which should be viewed as the prescription for taking a
particular decoupling limit, the surviving fields (here τA,
EA0

, b, cq, and φ) are those that appear in the theory that
follows from the ω → ∞ limit.
S duality [29] maps IIB NRST to a different decoupling

limit of relativistic IIB, defined by the infinite ω limit of the
reparametrization [12,32],

C2 ¼ ω2e−φτ0 ∧ τ1 þ c2; ð6aÞ

Gμν ¼ωτμνþω−1Eμν; Φ¼φ− lnω; ð6bÞ

derived by S dualizing (4). The background fields B ¼ b
and Cq ¼ cq with q ≠ 2 are unchanged in this limit. Now,

FIG. 1. The duality web of decoupling limits. Here, DLCQ is short for the procedure of compactifying the theory over a lightlike circle
followed by a T duality. In the web, these lightlike circles become spacelike in their T-dual theories.
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the RR 2-form C2 instead of the B field is critical. We name
the theory obtained in the ω → ∞ limit matrix 1-brane
theory (M1T), which we justify around (8).
T dualizing M1T in spatial directions gives a tower of

critical RR (pþ 1)-form limits, where (6) becomes

Cpþ1¼ω2e−φτ0 ∧ � � �∧ τpþcpþ1; p≥ 0; ð7aÞ

Gμν ¼ωτμνþω−1Eμν; Φ¼φþp−3

2
lnω: ð7bÞ

In ω → ∞, we have matrix p-brane theory (MpT), where
the spacetime geometry has a codimension-(pþ 1) foli-
ation, described by the longitudinal τA with A ¼ 0;…; p
and transverse EA0

with A0 ¼ pþ 1;…; 9 that are related
via a p-brane Galilei boost. These Vielbein fields define the
non-Lorentzian p-brane Newton-Cartan geometry. Here,
T-duality maps between longitudinal and transverse direc-
tions as well as the critical RR fields. Such limits and their
dualities date back to the original studies of, e.g., [15–17]
focusing on “open string” decoupling limits in the presence
of particular branes and [9,10] highlighting the “closed
string” limits independent of the presence of branes. In
contrast, the ω → ∞ limit here is applied to the full type II
string theory containing all possible extended objects in
general backgrounds.
The light excitations in the critical RR (pþ 1)-form limit

are N Dp-brane bound states. Taking the limit at the level
of the non-Abelian Dp worldvolume action [33] (for
simplicity we omit fermions and take the target-space
q-form gauge fields to vanish) we get

SDp¼−
Tp

2

Z
dpþ1σe−φTr

� ffiffiffiffiffiffi
−τ

p �
ταβDαΦμDβΦνEμν

þ1

2
ταγτβδFαβFγδ−

1

2
½Φμ;Φν�½Φρ;Φσ�EμρEνσ

��
; ð8Þ

where ταβ is the pullback of τμν in (7b) to the worldvolume
(in static gauge) with ταβ the inverse and τ ¼ det ταβ. The
adjoint scalarΦμ describes the fluctuation of the Dp branes
in the transverse directions, Fαβ is the SUðNÞ field strength,
and Dα is the covariant derivative. The open string gauge
potential is never changed by the ω reparametrization. In
flat spacetime, the Dp-brane action (8) describes Matrix
theory compactified over a p torus, giving BFSS matrix
theory in M0T, matrix string theory [14] in M1T, and
general matrix gauge theories in MpT. The name MpT is
precisely justified as its light excitations are Dp branes
described by various matrix theories. The p ¼ 0 case
corresponds to the example of the Introduction.
Multicriticality and spin matrix theory.—T dualizing a

longitudinal spatial circle in type IIB NRST gives rise to the
DLCQ of type IIA string theory, where the latter contains a
lightlike circle that T dualizes to a well-defined spacelike

circle in IIB NRST. This allows one to use the self-
consistent NRST as a first principle definition of DLCQ
string theory, avoiding having to deal directly with the
lightlike circle. All the limits we have considered so far
have therefore been connected by (spacelike) T dualities
and S dualities to the DLCQ of IIA. We can now extend the
duality web by taking a DLCQ of any of these limits and
further dualizing.
T dualizing the lightlike circle in DLCQ IIB NRST gives

back DLCQ IIA NRST, where the dual circle is still
lightlike [11,24]. The situation changes, and becomes
much richer, with S duality in play which maps DLCQ
IIB NRST to DLCQM1T. In this case, the lightlike circle in
DLCQ M1T maps under T duality to a spacelike circle.
Hence, fascinatingly, DLCQM1T receives a first-principles
definition from its T-dual theory. T duality in a lightlike
isometry of (6) for M1T gives

B¼−ωτ0 ∧ τ1þb; C1¼ω2e−φτ0þc1; ð9aÞ

Φ¼φ− lnω; Cq ¼ωτ0 ∧ τ1 ∧ cq−2þcq; ð9bÞ

Gμν ¼ −ω2τ0μτ
0
ν þ τ1μτ

1
ν þ ω−1Eμν: ð9cÞ

In theω → ∞ limit, both B andC1 are critical. The lightlike
circle in DLCQ M1T maps to the spatial x1 isometry,
associated with the Vielbein τ1 of weight ω0. We refer to
this new theory defined by the ω → ∞ limit of (9) as
multicritical matrix 0-brane theory (MM0T). Similar to the
T-dual relations between MpTs, T-dualizing transverse
isometries in MM0T gives multicritical matrix p-brane
theory (MMpT) [32,34], where the light excitations are
F1-Dp bound states. Heuristically, this limit corresponds to
a critical F1-Dp background. T dualizing a longitudinal x1

isometry asscociated with the F1 direction in MMpT leads
to DLCQ MpT. MMpT can be viewed as the DLCQ of the
DLCQ of IIA/IIB, while MpT is the DLCQ of IIA=IIB.
The Polyakov action of the MM0T F1 string is [34]

SMM0T ¼ −
T
2

Z
d2σ

�
−λA∂σXμτAμ þ λ1∂τXμτ0μ

þ ∂σXμ
∂σXνEμν

�
− T

Z
b: ð10Þ

Here, λA with A ¼ 0, 1 are Lagrange multipliers. This
action is written in the conformal gauge with the world
sheet coordinates ðτ; σÞ. The MM0T string is invariant
under the world sheet Galilei boost δGτ ¼ 0, δGσ ¼ vτ and
proper transformations of λA. In this sense, MM0T has a
nonrelativistic world sheet. This is due to the backreaction
of uncancelled ω divergences, which we have rewritten
in (10) using Hubbard-Stratonovich transformations by
introducing Lagrange multipliers as in [9].
The world sheet action (10) generalizes the nonrelativ-

istic string that appears in the spin matrix theory (SMT)
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limits of AdS/CFT [18]. SMTs are integrable quantum
mechanical theories that arise from the near BPS limits of
N ¼ 4 SYM in the regime of almost zero ‘t Hooft
coupling. The SUð1; 2j3Þ SMT limit corresponds to the
M1T-type limit of the bulk AdS5 × S5 metric with a
lightlike isometry. T dualizing this lightlike isometry leads
to the ω → ∞ limit of the reparametrized metric (9c) in
MM0T. In particular, the MM0T string action (10) matches
the SMT string action (A.15) in [35] (see also [36] for the
latest developments on the SMT string).
D-instanton limit and tensionless string.—We have seen

that BFSS matrix theory lives on the D0 particles in IIA
M0T. The IIB Ishibashi-Kawai-Kitazawa-Tsuchiya (IKKT)
matrix theory [37] arises from the timelike T duality of
BFSS. Therefore, IKKT describes the light D(-1)-brane
(i.e., D instanton) dynamics in M(-1)T, which arises from a
critical RR 0-form limit of IIB� string theory (the timelike
T-dual of IIA [38]). The IIB� string theory is identical to the
IIB theory except the dilaton Φ in IIB� gains a shift iπ=2,
resulting in an imaginary string coupling. This shift in the
dilaton can be exchanged with making the RR charges
imaginary.
T-dual of M0T in a timelike isometry defines M(-1)T,

C0¼
ω2

eφ
þc0; Gμν ¼

τμν
ω

; Φ¼φþ iπ
2
−2 lnω: ð11Þ

Here τμν is defined as in (5) but with A ¼ 0;…; 9 [39]. It is
understood that other background fields are not rescaled.
Applying (11) to the action of a stack of D-instantons in IIB
reproduces IKKT for ω → ∞.
The F1-string action in M(-1)T describes a tensionless

string [20,40]. Plugging Gμν ¼ ω−1τμν into the (bosonic)
Nambu-Goto string action with B ¼ 0, we get

SF1 ¼ −
T
ω

Z
d2σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detð∂αXμ

∂βXντμνÞ
q

: ð12Þ

Its ω → ∞ limit is equivalent to the tensionless [20] (or
Gross-Mende [41]) limit. In [20], it is shown that this
tensionless limit results in a finite action with a non-
relativistic world sheet [42]. Note that such nonrelativistic
string world sheets also show up in MpTs, which are T-dual
to M(-1)T, as well as in MMpT [34–36].
We have seen that the D instantons and F1 strings in

M(-1)T are associated with IKKT and tensionless strings,
respectively. It is also interesting to note that there are three
known vacua in tensionless string theory that lead to
distinct quantum theories [43–45]. One such vacuum gives
the ambitwistor string, which is related to the Cachazo-He-
Yuan (CHY) formula of field-theory amplitudes [46]. It
would be interesting to revisit these relations in the broader
context of M(-1)T, whose dynamics is largely encoded by
IKKT on the D instantons.

Carrollian string theory.—The (-1)-brane limit is a
special case in a hierarchy of new decoupling limits of type
II string theories that exhibit spacetimeCarrollian behaviors.
These decoupling limits are generated by T dualizing q
spacelike directions in M(-1)T, which maps (11) to

Cq ¼ ω2e−φE1 ∧ � � � ∧ Eq þ cq; ð13aÞ

Gμν ¼ωEμνþω−1τμν; Φ¼φþ iπ
2
þq−4

2
lnω: ð13bÞ

Here, τμν and Eμν are given as in (5) but with A ¼ 0; qþ
1;…; 9 and A0 ¼ 1;…; q. The prescription (13) defines
MpT for p ¼ −q − 1 < −1 [47]. Relative to MpT for
p ≥ 0, we have swapped τ and E to keep the timelike index
in τ. Note that τμν is of rank 10 − q and Eμν is of rank q. In
ω → ∞, the metric description is invalid and τA and EA0

are
related via a (9 − q)-brane Carrollian boost δCτA ¼ λAA0EA0

and δCEA0 ¼ 0. This is the Carrollian boost for particles
when q ¼ 9: in flat spacetime, it acts on time t and
space xA

0
as δCt ¼ vA0xA

0
and δCxA

0 ¼ 0 [48–50]; the curved
Carrollian geometry arises from a zero speed-of-light limit
of relativity [51,52]. In general, the ω → ∞ limit of (13)
describes strings in generalized Carrollian geometry [53].
This framework provides a new perspective on Carrollian
theories in connection to matrix theories on branes
localized in time that are T dual to IKKT. It is tempting
to speculate that thismay shed light onCarrollian or celestial
holography [54].
Timelike T-duality maps MpT to M(-p-1)T for all p

and MMpT to DLCQ M(-p-1)T for p ≥ 0. The light
excitations of MpT for p < −1 are type II� Euclidean
branes (see also [55] for spacelike branes), which can be
viewed as tachyons [38]. This is natural in view of the
fact that tachyons give rise to zero energy particles in
Carrollian theories [56].
In M(-3)T, the RR 2-form becomes critical. S-dualizing

M(-3)T leads to the Carrollian analog of NRSTwhere the B
field becomes critical and it cancels the background
instantonic F1-string tension. The defining prescriptions
for this Carrollian string theory are

B ¼ −iω2E8 ∧ E9 þ b; ð14aÞ

Gμν ¼ω−1τμνþωEμν; Φ¼φ−
iπ
2
þ lnω: ð14bÞ

Here, A ¼ 0;…; 7 and A0 ¼ 8, 9. The ω → ∞ limit leads
to the analog of F1-string action in NRST [19], but now in
Carroll-like target space geometry.
M theory uplifts.—Finally, we can extend the duality web

to incorporate the decoupling limits of M theory uplifting
the string theories discussed above. Awell-knownM theory
corner in this duality web is DLCQ M theory, where
dimensionally reducing the lightlike circle gives M0T that
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contains BFSS. Via U duality [57], the lightlike circle in
DLCQ M theory maps to a spacelike circle in nonrelativ-
istic M theory (NRMT) [9] that uplifts NRST. NRMT
is defined by the ω → ∞ limit obtained by the following
parametrization of the background metric GMN, M ¼
0;…; 10 and gauge fields A3 and A6 [12,24,58]:

GMN ¼ ω2τMN þ ω−1EMN; ð15aÞ

A3¼−ω3τ0∧ τ1∧ τ2þa3; A6¼
1

2
a3∧A3þa6; ð15bÞ

where τMN and EMN are in form the same as in Eq. (5).
Moreover, the longitudinal sector is now 3D with A ¼ 0, 1,
2 while the transverse sector is 8D with A0 ¼ 3;…; 10. The
U duality which relates (15b) to DLCQ M theory acts on
two longitudinal spatial directions and one transverse
direction. Dimensionally reducing NRMT over a shrinking
two torus with one longitudinal cycle and one transverse
cycle gives the S-dual IIB NRST and M1T [12].
Dimensionally reducing NRMT over a transverse circle
gives M2T.
U duality acting on three longitudinal directions leads

from (15) to the magnetic dual limit:

GMN ¼ ωτMN þ ω−2EMN; ð16aÞ

A3 ¼ a3; A6¼−ω3τ0 ∧ � � �∧ τ5þa6: ð16bÞ

For ω → ∞, this gives the critical A6 limit of M theory. Via
appropriate circle or toroidal oxidations, it provides the M
theory uplift of MpT for p ¼ 3, 4, 5. See [9,10,15,59,60]
for related decoupling limits.
Finally, we consider the DLCQ of NRMT. M(-1)T arises

from dimensionally reducing DLCQ M theory on a two
torus with both cycles being lightlike, which connects to
the M theory uplifts of Carrollian strings. The DLCQ of
NRMT uplifts MM0T and is U dual (on a four torus) to
multicritical M theory (MMT) such that the lightlike circle
is mapped to a spacelike circle along x̃1. MMT uplifts
MM1T and MM2T and is defined via the ω → ∞ limit of

GMN ¼ −ω2τ0Mτ
0
N þ �

τ1Mτ
1
N þ τ2Mτ

2
N

�
þ ω

�
τ3Mτ

3
N þ τ4Mτ

4
N

�þ ω−1EMN; ð17aÞ

A3 ¼ −ωτ0 ∧ τ1 ∧ τ2 − ω2τ0 ∧ τ3 ∧ τ4 þ a3; ð17bÞ

with A6 as in (15b). This multicritical limit arises from a
critical background of two orthogonal M2-branes.
Outlook.—The decoupling limits we have presented lead

to corners of string andM theory where the light excitations
are (bound states of) branes, while other states decouple.
We will study the derivation of these limits, the duality
between them, and the physical description of these light
excitations, in more detail in [32]. We have also observed

that the fundamental string world sheet generically
becomes nonrelativistic in these limits (except in NRST).
The world sheet in fact acquires the topology of nodal
Riemann spheres, as in ambitwistor string theory [61].
World sheet aspects of the duality web are detailed in [34].
Further extensions of the duality web are expected.

Following the logic in this Letter, we could dualize
MMpT and consider the limits from applying a third
DLCQ and continuing to dualize. Alternatively, the duality
web of decoupling limits can be charted by using U duality
invariant BPS mass formulas [62]. Restricting to MpT
alone, there are subtleties to deal with in the MpT limit for
p > 3, which in the matrix theory literature required
incorporating strong coupling behavior [3,63,64]. For
p ≥ 6, this further involves confronting effects of low
codimension branes, e.g., M6T uplifts to a putative decou-
pling limit of M theory associated with a background
Kaluza-Klein monopole. Finally, the duality web of decou-
pling limits of half-maximal supersymmetric theories, e.g.,
heterotic string theory [65], requires elucidation.
The perspective of this Letter situates the matrix theory

description of M theory within a duality web of decoupling
limits. It would be interesting to revisit aspects of matrix
theory, such as the precise correspondence with super-
gravity (see recent revival [66–69]), as well as matrix
descriptions beyond flat space in light of our better
understanding of this picture. Crucially, the curved non-
Lorentzian target space geometries should be accompanied
with constraints for consistency [32]. This is motivated by
study of NRST, where quantum consistency of the world
sheet [70] led to the imposition of the vanishing of
components of the torsion dτA. Such constraints were also
required from a target space point of view in the N ¼ 1
supersymmetric version of the limit [71]. It remains to be
seen what constraints appear in the maximally supersym-
metric case.
Matrix theory also plays a role in the AdS/CFT corre-

spondence (for a recent reminder see [72]). For instance,
BFSS matrix theory over a shrinking three torus gives
N ¼ 4 super Yang-Mills in M3T, and is therefore expected
to be associated with AdS5=CFT4. However, as we have
argued above, M3T couples to a non-Lorentzian 3-brane
Newton-Cartan spacetime geometry, which potentially
points towards novel interplay between the boundary
BPS behavior and the bulk AdS5 geometry.
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