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We construct a large family of Euclidean supersymmetric wormhole solutions of type IIB supergravity
which are asymptotically AdS5 × S5. The solutions are constructed using consistent truncation to
maximally gauged supergravity in five dimensions which is further truncated to a four scalar model.
Within this model we perform a full analytic classification of supersymmetric domain wall solutions with
flat Euclidean domain wall slices. On each side of the wormhole, the solution asymptotes to AdS5 dual to
N ¼ 4 supersymmetric Yang-Mills deformed by a supersymmetric mass term.
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Introduction.—The Euclidean path integral for quantum
gravity is an important topic of research and for low-
dimensional theories such as JT gravity, has recently lead to
many fruitful results; see, for instance, Ref. [1]. It has
become clear that in low-dimensional theories it makes
sense to sum over saddle points with different topologies
[2]. Still, in higher dimensions for standard Einstein-Hilbert
gravity (coupled to matter) the rules remains somewhat
unclear. The story in higher dimensional gravity theories
can be different from low-dimensional ones without lead-
ing to obvious inconsistencies.
In this regard, the role of wormholes, as possible saddle

points of the path integral is still an important open problem
[3]. The processes that involve wormholes pose puzzles for
unitarity of the quantum system and nonfactorization of
correlation functions in the holographic dual [4]. Moreover,
the existence of wormholes indicates that probability
amplitudes to produce or absorb baby universes are non-
trivial which may lead to issues for the Swampland
program [5,6].
To improve our understanding it is necessary to provide

the embedding of higher dimensional Euclidean worm-
holes in string theory and AdS/CFT. In this way, various
ideas regarding the semiclassical formulation of gravity can
be put to a test. Research in this direction was initiated in
some earlier works [7,8].
In order to construct Euclidean wormhole geometries we

generally need a source of negative Euclidean energy. In
string theory there is a natural way to obtain the required
negative energy, which is to consider axion fields [9]. When
a Lorentzian theory containing axions is analytically

continued to Euclidean, the axion kinetic term may become
negative definite which gives rise to the required negative
energy-momentum tensor, see also [10–12].
In the present work [13] we will consider a consistent

truncation of type IIB supergravity on S5 down to five-
dimensional maximal supergravity coupled to SO(6) gauge
group [16–18]. The consistent truncation means that every
solution of the five-dimensional model can be “uplifted” to
a solution of full type IIB supergravity [15,19,20]. Our
model will be a further (consistent) truncation to a four
scalar theory coupled to AdS gravity originally introduced
in [21,22] to study the holographic duals to N ¼ 4
Supersymmetric Yang-Mills (SYM) deformed by a mass
parameter. As we will see, the model gives rise to singular
domain walls, as well as regular Euclidean wormholes that
have much in common with the original axionic wormholes
of [9].
The embedding of axionic wormholes as AdS compac-

tifications of 10D (or 11D) supergravity has been discussed
recently in the literature [23–27]. In short, the existence of
the wormhole solution relies on the existence of moduli
scalars, whose metric is not necessarily positive definite.
When we Wick rotate to Euclidean signature in space-time,
the axions get flipped signs [28], while the other scalar
fields remains untouched [12,29].
In the model studied in this paper, we will encounter a

similar feature when rotating to Euclidean signature. Only
one of the four scalars is a modulus that happens to be the
five-dimensional dilaton. The dilaton is related to the Yang-
Mills coupling constant in the dual N ¼ 4 SYM theory.
The other scalars in our model have a nontrivial potential
and play a crucial role in our construction of wormholes.
Their presence makes the equations of motion much more
complicated than for standard axionic wormholes.
However with the help of first order BPS (Bogomol'nyi,
Prasad, Sommerfield) equations that ensure supersymmetry
of the solutions, we will be able to find supersymmetric
Euclidean wormholes. In more detail, the solution we
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construct is a five-dimensional domain wall of the form

ds25 ¼ dr2 þ e2AðrÞds2R4 ; ð1Þ

where ds2R4 is the flat metric on R4 and the metric function
A only depends on r. The R4 can be compactified to T4

when considering the Euclidean gravity path integral. The
solution we find will be described by a metric function AðrÞ
that approaches the standard asymptotic AdS form AðrÞ ∼
�r=2L for both r → �∞ connected by a region of smooth
region of non-AdS space. Close to the asymptotic boundary
we find a pair of (Euclidean) AdS5 spaces dual to N ¼ 4
SYM. The scalar fields and the metric have asymptotic
form which is consistent with masses for the three chiral
fields in N ¼ 4 being turned on. Supersymmetry is there-
fore broken from N ¼ 4 to N ¼ 1. The two QFTs dual to
each side of the wormhole are both N ¼ 1�, but with
different Yang-Mills coupling constants and different vevs
turned on. A special line of solutions exists where the
configuration is slightly more symmetric and the two
boundary theories have the same vevs. On this line there
is a very special point where the neck of the wormhole
shrinks to zero size and the metric becomes singular and we
recover the well-known GPPZ (Girardello, Petrini, Porrati,
Zaffaroni) solution [30,31].
An important question when faced with wormhole

solutions such as these ones is whether they dominate
over the corresponding “disconnected geometry.” Since we
have been focusing on supersymmetric solutions, the
disconnected geometry should also preserve supersym-
metry. In our analysis we have been able to fully classify
solutions to the BPS equations subject to the metric ansatz
(1). It turns out that for a given set of boundary conditions
which allow for a wormhole solution, there is no corre-
sponding disconnected solution. Disconnected solutions
could perhaps be found by relaxing some of the isometries
built into the metric ansatz (1), but we have not carried out a
general analysis. It is straightforward to check that for our
BPS solutions, the regularized on-shell Euclidean action
vanishes.
5D supergravity.—The supergravity model considered

here is a four scalar truncation of maximal 5D supergravity
with SO(6) gauge group [16–18]. The 5D SO(6) gauged
maximal supergravity has been shown to arise as consistent
truncation of type IIB supergravity on S5 [15,19,20] and so
any solution of the maximal supergravity can be embedded
into type IIB supergravity.
The four scalar truncation discussed presently was first

introduced in the holographic study of the N ¼ 1 mass
deformation ofN ¼ 4 SYMwith all three mass parameters
taken to be equal [21,22,32]. When all masses are equal the
QFT possesses SO(3) flavor symmetry which (if we
assume it is not spontaneously broken) can be utilized
on the supergravity side to truncate the maximal theory
such that the bosonic sector contains a metric and eight

scalar fields [21]. A further discrete symmetry can be
imposed to truncate the theory even further leaving only
four scalar fields apart from the metric.
As the name suggests, the scalars of the model

parametrize a four-dimensional subspace of the full 42
dimensional scalar manifold E6ð6Þ=USpð8Þ. This subspace
consists of two copies of the Poincaré disc which we
parametrize with two complex scalar fields z1;2 [33].
The five-dimensional supergravity action of the four

scalar model takes the form

S ¼ 1

16πGN

Z
⋆
�
R − 2Ki|̄∂μzi∂μz̄|̄ − P

�
; ð2Þ

where the scalar potential is

P ¼ 1

2
eK

�
Ki|̄DiWD|̄W̄ −

8

3
jWj2

�
; ð3Þ

with the Kähler covariant derivative defined as Dif ¼
ð∂i þ ∂iKÞf, and the Kähler metric defined by Ki|̄ ¼ ∂i∂|̄K
and its inverse isKi|̄. We have written the theory in terms of
the Kähler potentialK and a holomorphic superpotentialW
which are given by

K ¼ −
X2
i¼1

logð2ImziÞ; W ¼ 3gz2ðz1 þ z2Þ: ð4Þ

The theory exhibits the scaling symmetry zi ↦ λzi which
leaves the action invariant. This is nothing but the dilatonic
shift symmetry.
The maximally supersymmetric vacuum solution of the

maximal five-dimensional supergravity is obtained as a
critical point of this model by setting z1 ¼ z2 ¼ ieφ where
φ is the constant value given to the five-dimensional
dilaton. For the vacuum solution, the scalar potential takes
the value P ¼ −3g2 and therefore the metric is AdS5 with
length scale L ¼ ð2=gÞ.
BPS equations and wormhole solutions.—We are inter-

ested in finding flat sliced supersymmetric domain wall
solutions to the equations of motion of the four scalar
model. To this end we assume that the five-dimensional
metric takes the form (1) and assume that all scalar fields as
well as the metric function A are only functions of the radial
variable r. A supersymmetric solution must satisfy the first
order equations [32]

EA ≡ A0 þ 1

3
W ¼ 0; Ei ≡ ðziÞ0 − Ki|̄

∂|̄W ¼ 0; ð5Þ

where the real superpotential W is defined as W ¼
eK=2jWj. We have verified that all solutions to the BPS
equations are also solutions to the five-dimensional equa-
tions of motion. It should be noted at this point that in
Lorentzian supergravity z̄{̄ is the complex conjugate of zi
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and the same holds true forW and W̄. In this Letter we will
also consider Euclidean solutions where z̄{̄ is best treated as
independent from zi. In general zi and z̄{̄ still represent 2
real degrees of freedom in total. This feature has been
discussed previously in, e.g., [22] but will become more
apparent later when we discuss the explicit solution to the
BPS equations.
In order to simplify the system of BPS equations,

we introduce new field variables z1 ¼ ieφþ3αþiθ1 and
z2 ¼ ieφ−αþiθ2 . The new scalar fields have a clear inter-
pretation from the perspective of the holographic dual field
theory. In particular, φ is the five-dimensional dilaton and is
dual to the marginal Yang-Mills coupling, α is dual to a
scalar bilinear operator transforming in the 200 representa-
tion of SO(6) and θ1;2 are dual to two fermion bilinear
operators transforming in the 10 ⊕ 10 representation.
It turns out to be useful to further define new sets of

variables t1;2 ¼ tan θ1;2 in order to eliminate most of the
trigonometric functions. Even with these new variables the
BPS equations are quite lengthy and difficult to analyze. In
order to make progress we replace the field α by a new
variable X defined by

X≡ 1

2ð1þ t22Þ
�
1þ t1t2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t21

q ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t22

q
cosh4α

�
: ð6Þ

This definition of X may seem ad hoc at first but it is
closely related to the real superpotential W. With these
definitions the BPS equations take the form

4
ffiffiffiffi
X

p
ðt01Þ ¼ 3g

�
t2 − t1 þ 2Xt1ð1þ t22Þ

�
;

4
ffiffiffiffi
X

p
ðt02Þ ¼ g

�
t1 − t2 þ 6Xt2ð1þ t22Þ

�
;

4
ffiffiffiffi
X

p
ðX0Þ ¼ 8gXðX − 1Þ;

4
ffiffiffiffi
X

p
ðA0Þ ¼ −2gXð1þ t22Þ: ð7Þ

Writing the BPS equations in these coordinates has
simplified them significantly enabling us to fully solve
them. Note that the dilaton has been decoupled completely
from the system as it does not appear on the right-hand side
of any of the equations. This does not mean that the dilaton
is constant, however, as its BPS equation has a complicated
right-hand side.
Recall now that the scaling symmetry present in our

model implies the existence of a constant of motion [34]

j ¼ −
g3

64
e3Aðt1 þ 3t2Þ; ð8Þ

which implies that we do not have to solve explicitly the
equations for both t1 and t2, only one combination of them
suffices. For this purpose we identify another combination
of the t scalars and solve for X in terms of the new variable

Y ≡ g3

64
e3Aðt1 − t2Þ; X ¼ Y2

kþ Y2
; ð9Þ

where k is a real integration constant. We can rescale the
metric function such that without loss of generality we can
consider three distinct values k ¼ f−1; 0; 1g. Next we use
(9) to write

dA
dY

¼ 1

2

Y
kþ Y2

�
1þ 256g−6e−6Aðjþ YÞ2�: ð10Þ

Finally, we remark that in the Y coordinate, the five-
dimensional metric takes the form

ds25 ¼
dY2

g2ðY2 þ kÞ þ e2AðYÞds2R4 : ð11Þ

A wormhole solution is obtained if the metric function
e6A has two AdS5 asymptotic regions (for jYj large) and is
otherwise positive. This only happens if k ¼ 1 and the
metric function takes the form

g6

26
e6A ¼ 4

�
2jY3 − 3Y2 − j2 − 2þ 2aðY2 þ 1Þ3=2�: ð12Þ

Since e6A has at most two real roots, we have to ensure that
the discriminant of the polynomial ð2jY3 − 3Y2 − j2 − 2Þ2−
4a2ðY2 þ 1Þ3 is negative implying it has no real roots.
Combined with the condition that a > jjjwe find wormhole
solutions if and only if 1þ j2=2 < a. It is now easy to see
that the scalar field α is imaginary when the above condition
is satisfied. In fact the condition for α being real is that
1þ j2 ≥ a2. The boundary of which is where the scalar α
vanishes throughout and can be identified with the GPPZ
solutions [30]. The two regions are completely nonoverlap-
ping. It is interesting to note that the GPPZ solution with
j ¼ 0 and a ¼ 1 (or λ ¼ 1 in the notation of [32]) is
infinitesimally close to being a wormhole and can be viewed
as the limiting solution where the wormhole neck shrinks to
zero size.
In addition to the α scalar being imaginary, the dilaton is

also imaginary. In order to see that we have to integrate the
BPS equation for the dilaton which for k ¼ 1 takes the form

φðYÞ − φ0 ¼
Z

Y

−∞

−3i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − j2 − 1

p
yðy − jÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
ða

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
þ jy − 1Þ

h
y2ða

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
þ 3Þ þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ 1

p
þ jðy2 − 3Þy − 1

i dy: ð13Þ

PHYSICAL REVIEW LETTERS 132, 161601 (2024)

161601-3



We have not been able to perform the integral analyti-
cally but it is easy to do numerically. We display a plot of a
sample solution in Fig. 1. A generic feature of the worm-
hole solutions is that they are not symmetric around Y ¼ 0,
even for j ¼ 0. This is clearly observed from Fig. 1 where
the dilaton is far from being symmetric around Y ¼ 0.
Field theory interpretation and on-shell action.—Recall

that the scalar fields α, φ, and θ1;2 have a direct relation to
operators in the dual field theory. More precisely if θ1 ¼
−3ϕ1 þ ϕ2 and θ2 ¼ ϕ1 þ ϕ2, and we think of N ¼ 4

SYM in N ¼ 1 language, then ϕ2 is dual to the gaugino
bilinear and ϕ1 is dual to the three chiral multiplet fermion
bilinear. The latter are all equal since we assumed that
the SO(3) flavor symmetry preserved by the equal mass
N ¼ 1� Lagrangian is not spontaneously broken. By
performing a expansion of the fields around the AdS5
asymptotics we can identify the sources and vevs given to
the dual operators for our solution. A general UVexpansion
compatible with the BPS equations takes the form

A ¼ −
1

2
log ϵþOðϵ2Þ; ϕ1 ¼ mϵ1=2 þOðϵ2Þ;

ϕ2 ¼ wϵ3=2 þOðϵ2Þ; α ¼ vϵþOðϵ2Þ; ð14Þ

and φ is constant at leading order. Here ϵ is the small
parameter controlling the distance from the asymptotic
boundary. From this expansion we see that the parameterm
is the mass given to the chiral fields whereas w is the
gaugino vev and v is the so-called chiral condensate, i.e.,
the vev of the scalar bilinear in the chiral multiplets.
For the wormhole solutions with k ¼ 1, we have two

asymptotic regions that are located at Y → �∞. Expanding
our solution we find the dimensionless quantities

w�
2m3

¼ ðj2 þ 1Þ � aj;
v2

m4
¼ ðj2 þ 1Þ − a2; ð15Þ

where we have denoted the two gaugino condensates that
are encountered in the two asymptotic regions Y → �∞ by
w�. The dimensionless chiral condensate v=m2, is the
same in both regions. Regular wormhole solution exist
only when the chiral condensate v=m2 is imaginary. The
conclusion is that the Euclidean wormhole solution is a
bulk geometry that connects two copies of mass-deformed
N ¼ 4 SYM where some of the boundary conditions
(including the Yang-Mills coupling constant) are different.
An important aspect for the evaluation of the gravita-

tional partition function, and of the free energy of the dual
theory, is the on-shell action of our wormholes solutions.
Adding the Gibbons-Hawking term to the action and
performing a partial integration, the action can be rewritten
in terms of the squared BPS equations

Lþ LGH ¼ −e4A
�
12E2

A − 2Ki|̄EiĒ |̄
�
− 2∂rðe4AWÞ;

where W is the real superpotential we defined before
W ¼ eK=2jWj. Evaluating this on-shell, the BPS equations
set to zero the first two terms, leaving only the total
derivative. The total derivative term leads to a divergent
expression which must be regulated. As explained in
[22,36,37] the correct supersymmetric counterterm (when
the holographic boundary is flat) should be chosen to
exactly cancel the total derivative. This implies that for all
supersymmetric regular wormhole solutions found in this
Letter, the on-shell action vanishes.
Final comments.—As anticipated in the introduction, our

wormhole solutions are supported by a negative term in the
energy-momentum tensor. In fact, the dilaton φ and the
field α are imaginary while preserving the reality of the
metric as well as the action. This is interpreted as a Wick
rotation on target space which must be simultaneously
performed whenWick rotating space-time. The target space
metric exhibits a pair of translation symmetries for α and φ,
which therefore appear as axions. However it must be noted
that the scalar potential depends nontrivially on α and so the
shift “symmetry” of α is not a true symmetry of the theory.
Nevertheless, according to the prescription in [24,26], the
Wick rotation of Lorentzian supergravity to Euclidean
should be accompanied with a similar Wick rotation in
target space α → iα and φ → iφ [38]. The Wick rotation
affects the potential but is still real.
While the space-time signature becomes Euclidean, the

target space signature is now Lorentzian. This is not particu-
larly surprising if we remember that in Euclidean signature,
the R symmetry of N ¼ 4 SYM is not SO(6) but rather
SO(1,5). This is also consistent with the fact that the holo-
graphic dual to Euclidean N ¼ 4 SYM is described by so-
called type IIB� supergravity [39–41]. This theory has a
metric with space-time signature (9,1) but some of the form
fields have negative kinetic terms (and can therefore be

–2 –1 0 1 2

–1

0

1

2

Y

FIG. 1. A plot of a wormhole solution for a ¼ 2.6 and j ¼ 0.8.
The function g2e2A=10 is drawn in gray, cosh 4α is drawn in solid
black, and cosh 4φ in dashed black.
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thought of as being analytically continued from standard type
IIB supergravity). In particular the ten-dimensional axion-
dilaton parametrize the coset space SUð1; 1Þ=SOð1; 1Þ. It is a
subject of future work to uplift the wormholes to ten
dimensions using the results of [15,19,20]. The fact that
the five-dimensional dilaton is imaginary may appear worri-
some when interpreted in ten dimensions. Even though the
relation between the five-dimensional dilaton and the ten-
dimensional one is rather complicated, asymptotically they
are simply related. It would therefore appear that the ten-
dimensional dilaton is imaginary for the wormhole solutions
which is troubling. It turns out there is a simple remedy for this
problem by employing an SLð2;RÞ transformation that
renders the dilaton real but turns on an imaginary axion
consistent with being a solution of type IIB� [35].
Since our solutions preserve supersymmetry and are

regular we do not expect any instabilities to arise and
question the validity of them. By all accounts they should
then contribute to the Euclidean path integral. Since we did
not find disconnected geometries with the same boundary
conditions as the wormholes, we are unable to answer
whether the wormholes dominate or not. If they dominate,
then it leads to the well-known factorization puzzle in
holography [7,8] in this case for deformations of AdS5 dual
to theN ¼ 1� theory. How this puzzle is resolved is a open
question at this stage. One possibility is that fermion zero
modes in the spectrum cause the wormhole contribution to
the path integral to vanish. This was indeed observed in
[42] and in that case it was related to supersymmetry being
broken.
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