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Recent developments have led to the possibility of embedding machine learning tools into experimental
platforms to address key problems, including the characterization of the properties of quantum states.
Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve
resource-efficient and accurate characterization of the polarization state of a photon. The underlying
reservoir dynamics through which such input state evolves is implemented using the coined quantum walk
of high-dimensional photonic orbital angular momentum and performing projective measurements over a
fixed basis. We demonstrate how the reconstruction of an unknown polarization state does not need a
careful characterization of the measurement apparatus and is robust to experimental imperfections, thus
representing a promising route for resource-economic state characterization.
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Context and motivations.—Accurate and resource-
efficient estimation of properties of quantum states is a
pivotal task in quantum information science, particularly in
areas such as quantum metrology [1–4]. In particular,
estimation strategies relying on single measurement settings
have attracted notable attention in the past years [5–8].
Significant attention has also been devoted to the theoretical
analysis of state estimation protocols based on randomized
measurements, in particular, through shadow tomography
protocols [5,9–12], which were later shown to be applicable
in generic measurement scenarios [13–15]. On the other
hand, several works have demonstrated the usefulness of
integratingmachine learning tools to implement and enhance
the efficiency of quantum state estimation strategies [16–28].
In particular, quantum extreme learning machines (QELMs)
[29,30] have been proposed as a particularly efficient
medium to extract features from input quantum states with
a flexible architecture [14,31,32].
In this Letter, we leverage QELMs to efficiently recover

properties of photonic quantum states encoded in the
polarization degree of freedom, exploiting orbital angular
momentum (OAM) as an ancillary degree of freedom
to enable reconstruction via a single measurement setting.
The interaction between polarization and OAM, which is

experimentally implemented via a quantum-walk-based
photonic apparatus [33,34], allows to extract information
about the input polarization state by measuring only the
OAM of the final state. In the context of QELMs, the
evolution mapping input polarization to output OAM takes
the role of “reservoir dynamics” and enables complete
reconstruction using a single measurement basis. Using the
framework of QELMs has the significant advantage of
enabling the retrieval of information about the input state
even without complete knowledge of the experimental
apparatus itself. This makes for an extremely flexible
platform to extract features of input states and is in stark
contrast with conventional reconstruction pipelines, which
crucially rely on accurate models of the evolution and
measurement undergone by the states. QELMs operate
effectively without this assumption, requiring only access
to a training dataset of known states—a task that is often
less demanding in practice. While experimental demon-
strations of single-setting quantum state estimation have
been reported in a few different platforms [5–7], recon-
structions in all such protocols rely on accurate prior
knowledge of all parts of the experimental apparatus.
By contrast, our QELM-based strategy makes for a highly
flexible estimation strategy, resilient to many types of
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experimental noise and misalignment, by virtue of the
training stage automatically adapting the postprocessing to
enable accurate reconstruction. We benchmark our results
with the accuracies obtained using alternative estimation
strategies, finding our QELM-based approach to clearly
outperform the alternatives in the considered scenarios. It is
worth noting that the reported reconstruction strategy is
fully general and applicable to any experimental scenario
where the goal is reconstructing properties of input states,
even though only a partially characterized measurement
stage is available. Furthermore, as discussed in depth in
Refs. [14,35], the statistics required for accurate re-
construction mostly depend on the symmetry properties of
the effective measurement implemented by the setup rather
than the dimension of the state one wishes to reconstruct.
QELM estimation framework.—QELMs operate by

exploiting an uncharacterized time-independent dynamics
to extract target properties from input states. To achieve
this, the scheme uses a training dataset of quantum states to
figure out the best way to extract the sought-after features
from the measurement data [14]. The use of a training
dataset allows one to forgo the need to characterize the
measurement apparatus itself: The training process auto-
matically adjusts to the complexities of the experimental
reality. Furthermore, training QELMs is a particularly
simple endeavor, amounting to solving a linear regression
problem, and is, therefore, less prone to overfitting issues,
especially when used to extract linear features such as
expectation values of observables [14]. More formally, a
QELM involves evolving input states ρ through some
quantum channel Φ—giving rise to what we will refer to
as reservoir dynamics hereafter—and then measuring them
with some positive operator-valued measure (POVM)
μ≡ ðμbÞb. Using a training dataset of the form
fðptrk ; okÞgk with ptrk the probability vector resulting from
measuring ρtrk , ðptrk Þb ≡ trðμbρtrk Þ, and ok ≡ trðOρtrk Þ for
some target observable O, one can find a linear trans-
formation w≡ ðwbÞb such that

P
b wbtrðμbρÞ ≈ trðOρÞ for

all ρ. In words, finding this w allows to read the target
expectation values of input states directly from the meas-
urement data, without requiring knowledge on the dynam-
ics Φ and on the POVM μ themselves (see Supplemental
Material for more details [36]). This protocol can be
seamlessly adapted to the case of multiple target observ-
ables. The expressivity of a QELM—that is, the space of
observables that can be accurately retrieved for a given
choice of Φ and μ—was proven to depend exclusively on
the properties of the “effective POVM,” that is, the POVM
with elements μ̃b ≡Φ†ðμbÞ, where Φ† denotes the adjoint
of Φ [41]. In particular, a necessary condition for enabling
the reconstruction of arbitrary observables is that the
reservoir dynamics Φ must enlarge the dimension of the
input space in order to guarantee a sufficiently large
number of measurement outcomes [14].
Experimental estimation strategy.—We implement

experimentally the QELM-based quantum state estimation

strategy using as reservoir dynamics a coined quantum
walk (QW) in polarization and OAM of single photons
[33,34]. The goal of the protocol is to extract expectation
values of observables on the input polarization states, using
the reservoir dynamics to transfer this information into the
larger OAM space that is then measured [see Fig. 1(a)].
More specifically, we use states of the form jΨfi ¼
ðQs

k¼1 SCkÞj0;ψi, with Ck ≡ I ⊗ Uk the unitary coin
operation, acting nontrivially only on the coin space,
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FIG. 1. Experimental QELM. (a) Schematic overview of the
experimental QELM. Initial quantum states jψ1i; jψ2i;…; jψni
encoded in the polarization degree of freedom of single photons
evolve through a reservoir dynamics, in which the information
encoded in the initial two-dimensional space is transferred into
the larger Hilbert space of the OAM. By performing only
projective measurements on the OAM computational basis, the
QELM is trained to reconstruct a set of target values y1; y2;…; yn.
(b) Experimental implementation. Single photons, generated at
808 nm via spontaneous parametric down-conversion, are sent
through the state-preparation stage (input layer) made by a
polarizing-beam splitter (PBS), a half-wave plate (HWP), and
a quarter-wave plate (QWP) to encode the initial state in the
polarization degree of freedom. Subsequently, the input states
evolve through the hidden layer following the quantum walk
dynamics implemented by HWPs, QWPs, and q plates (QPs).
After projecting onto the polarization state jψpoliwith a sequence
of HWP, QWP, and PBS, projective measurements in the OAM
computational basis, B ¼ fjnig with n ¼ f−2;…; 2g, are per-
formed through a spatial light modulator (SLM) followed by the
coupling into a single-mode fiber. From the counts measured by
an avalanche photodiode (APD), the output layer of the QELM is
trained to retrieve the expectation values of the observables
fσx; σy; σzg.
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and with S≡ ffiffiffiffi
p

p ðI⊗j↓ih↓jþI⊗j↑ih↑jÞþ ffiffiffiffiffiffiffiffiffiffi
1−p

p ðE−⊗
j↓ih↑jþEþ⊗j↑ih↓jÞ a partial controlled-shift operation,
which differs from the standard control-shift gate by also
allowing the walker state to not change with some prob-
ability. Here, fj↑i; j↓ig is the computational basis for the
coin space, I is the identity operator on the walker space,
E�jji≡ jj� 1i, with fjjig, j ¼ −N;…; N the position
states of the walker, living in a (2N þ 1)-dimensional
Hilbert space, and E−j − Ni ¼ EþjNi ¼ 0. Finally, jψi
is the input polarization state we seek to characterize.
After the QW evolution, the polarization is projected on

some state jψpoli, and the OAM is measured in its
computational basis. To connect this with the general
formalism introduced above, denote with U the unitary
corresponding to the quantum walk dynamics, j0OAMi the
initial reference OAM state. The map describing the
reservoir is ΦðρÞ ¼ AρA†, where A≡ ðhψpolj ⊗ IOAMÞ
UðIpol ⊗ j0OAMiÞ. The final measurement on the OAM
is then a standard projective measurement in the computa-
tional basis μb ¼ jbihbj, with a number of outcomes that
depends on the number of QW steps.
Optical setup.—In the experimental setup, reported in

Fig. 1(b), a set of optical elements composed of a polarizing
beam splitter, a half-wave plate [HWP ðζ1Þ], and a quarter-
wave plate [QWP (θ1)] produces an input polarization state
parametrized as

jψi ¼ 1ffiffiffi
2

p feiθ1 ½cos ð2ζ1 − θ1Þ − sin ð2ζ1 − θ1Þ�jLi

þ e−iθ1 ½cos ð2ζ1 − θ1Þ þ sin ð2ζ1 − θ1Þ�jRig; ð1Þ
where jLi and jRi stand for left- and right-circular
polarization, respectively, and θ1 and ζ1 are the rotation
angles of the wave plate optical axis. The input state then
evolves through a series of half-wave plates [HWP (ζ)],
quarter-wave plates [QWP (θ))], and an inhomogeneous
birefringent device, known as q plate [QP ðα; δÞ], which
couples polarization and OAM conditionally on the param-
eters δ, the tunable phase retardance that allows the optimal
tuning of the device when δ ¼ π, and α, which is a
characteristic angle associated to the initial orientation of
the optical axis with respect to the horizontal direction. QPs
have been used as a building block in a significant number
of demonstrations of controlled quantum dynamics [42,43]
and are, in particular, often used as controlled-shift gate to
implement QW dynamics [17,34,44–48]. The coin opera-
tion is implemented via a sequence of wave plates as
Cðζ; θ;ϕÞ ¼ QWPðζÞHWPðθÞQWPðϕÞ, with ζ; θ;ϕ tuna-
ble angles. Each q plate implements a controlled-shift
operation Sðα; δÞ with characteristic parameters α and δ.
More explicitly, these operations take the form

Cðζ; θ;ϕÞ ¼
�

e−iðζ−ϕÞ cos η eiðζþϕÞ sin η

−e−iðζþϕÞ sin η eiðζ−ϕÞ cos η

�
; ð2Þ

Sðα; δÞ ¼
XN−1

n¼−Nþ1

cos
δ

2
ðjL; nihL; nj þ jR; nihR; njÞ

þ i sin
δ

2
ðe2iαjL; nihR; nþ 1j þ e−2iαjR; ni

× hL; n − 1jÞ; ð3Þ

with η ¼ ζ þ ϕ − 2θ.
Here, jL; ni (jR; ni) denote left- (right-) circular polari-

zation, and OAM with azimuthal quantum number n.
The overall evolution U implemented by our apparatus
is obtained by combining two controlled-shift and one coin
operation:

U ¼ Sðα2; πÞCðζ; θ;ϕÞSðα1; π=2Þ; ð4Þ

where α1 and α2 are fixed by the fabrication process and in
our case equal 105° and 336°, respectively. Another coin
operation is used at the beginning to prepare the input state
[see Eq. (1)] and is, thus, not considered as part of the
reservoir dynamics. Fixing the parameters δ of the q plates
to π and π=2, respectively, allows us to enlarge the space of
reachable output OAM states without adding QW steps,
thanks to the stationary component of the dynamics. After
evolution through U, a combination of wave plates and a
polarizing beam splitter are used to project the polarization,
while a spatial light modulator (SLM) and a single-mode
fiber are employed to measure the final OAM states,
obtaining the occupation probabilities for the basis states
jni, n ¼ −2;−1, 0, 1, 2. The single-photon counts are then
collected and fed to the computer, where postprocessing
and training of the QELM take place, and the target
expectation values are estimated.
Results.—We considered two different configurations for

the QELM. In the first, we exploited the knowledge of the
QW dynamics to extract optimal values for the angles of the
coin fζ; θ;ϕg and for the projection of the hidden layer
which result in an almost uniform cover of the OAM space
(see Supplemental Material [36]). In the second one,
instead, we made a random choice of the wave plate
angles, focusing on training the accessible output layer
to optimize the performance of the characterization proto-
col. The chosen figure of merit for the quantification of
performances is the mean square error (MSE) between the
expectation values of the Pauli operators. The experimental
results are reported in Fig. 2 for both implementations.
We show the performance of QELM, trained using exper-
imental data, in retrieving the features of the polarization
state. In particular, we collected 300 experimental states
and split them into a training set and a test set, each one
composed of 150 elements. The MSE of the expectation
values over the test set is studied against the number Ntrain
of states used in the training set. A large enough training set
clearly results in a decrease of the MSE and, thus, in
significantly enhanced reconstruction accuracies for all
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considered target observables. The amount of statistics
collected for each state also crucially affects the re-
construction accuracies [14]. We analyze this aspect
explicitly in Supplemental Material [36].
Let us remark here other two significant aspects that

transpire from our experimental results. First, our
reconstruction protocol is highly resource efficient; indeed,
roughly 20 states are already sufficient to train the QELM,
as seen in Fig. 2. Second, as shown in Fig. 2(a), the optimal
configuration results in MSEs only marginally better
than those obtained with the random configuration, high-
lighting that a full characterization and fine-tuning of the
experimental setup is not essential to achieve accurate
reconstruction accuracies (see details in Supplemental
Material [36]).
Finally, to compare the quality of the results obtained

via the QELM with non-machine-learning-based alterna-
tive approaches, we consider the reconstruction MSEs
that would have been obtained with the same experi-
mental apparatus via the generalized shadow tomography
reconstruction scheme, which has been shown to be
optimal for reconstruction under relatively mild assump-
tions [35]. As discussed in detail in Supplemental Material
[36], we find that the QELM provides performances
between 5 and 10 times better than the alternative methods
for the considered target observables, in the case of the
optimal experimental setup. A main underlying reason for
this disparity is that the non-QELM-based methods rely on
accurate modeling of the experimental apparatus, which
can be quite costly to achieve in practice, whereas QELM
can easily adapt to experimental fluctuations without
significantly impacting the reconstruction accuracies.
Conclusions.—We have experimentally demonstrated a

robust and resource-efficient QELM-based property
reconstruction protocol. Our implementation, which lever-
ages the controlled QW dynamics in a photonic platform

intertwining the polarization and OAM degrees of freedom
of a photon, demonstrates the excellent performance of
property reconstruction without the need for the accurate
and careful characterization of the platform. Only training
sets with moderate size are needed to achieve low values of
the MSE of the reconstruction, while the effects of finite
statistics of the dataset can be fully accounted for. Our
experimental QELM-based reconstruction demonstrates
the viability of photonic platforms for nonstandard
approaches to quantum property retrieval, with the expect-
ation of significantly reducing the burden—in terms of
resources—of resource characterization in a computational
register.
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FIG. 2. Experimental results. Estimation MSE obtained by training and testing the QELM with experimental data. The target is
estimating the expectation values of the Pauli matrices σx, σy, σz on the input polarization state. We study the MSE as a function of the
number of training states Ntrain, at fixed statistics N. To test the protocol, we generated 300 random input states and tested the estimation
when the first 1 ≤ Ntrain ≤ 150 are used to train the QELM. The set of 300 states remains unchanged throughout all experiments. The
last 150 of these 300 states are always used for testing, to compute the MSE. All the points in the saturated regions of these figures
decrease as 1=N when increasing the statistics with which each training and test state is measured. (a) Average of the MSE estimated for
all three target observables: fσx; σy; σzg. We show the results for both optimized and random setups. (b) MSE for each individual target
observable for the optimized setup. (c) MSE for each individual target observable for the random setup. The reported results are obtained
with average experimental statistics of ∼3000 counts.
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