
Denoising and Extension of Response Functions in the Time Domain

Alexander F. Kemper ,1,* Chao Yang ,2,† and Emanuel Gull 3,‡
1Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA

2Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
3Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 15 September 2023; revised 16 January 2024; accepted 4 April 2024; published 19 April 2024)

Response functions of quantum systems, such as electron Green’s functions, magnetic, or charge
susceptibilities, describe the response of a system to an external perturbation. They are the central objects of
interest in field theories and quantum computing and measured directly in experiment. Response functions
are intrinsically causal. In equilibrium and steady-state systems, they correspond to a positive spectral
function in the frequency domain. Since response functions define an inner product on a Hilbert space and
thereby induce a positive definite function, the properties of this function can be used to reduce noise in
measured data and, in equilibrium and steady state, to construct positive definite extensions for data known
on finite time intervals, which are then guaranteed to correspond to positive spectra.
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Introduction.—Response functions are critical for the
understanding of physics in a wide variety of contexts.
They are a natural framework for considering dynamical
properties that involve excitations [1–4]. Response func-
tions are also measured in experimental setups ranging
from low-frequency THz conductivity to magnetic suscep-
tibilities and photoemission spectroscopy. A large body of
literature has been devoted to the study of response
functions, and a number of field theoretical approaches
avoid the calculation of eigenstates entirely, and instead
cast the formalism in terms of response functions, called
correlation or Green’s functions in this context. These
include embedding techniques e.g., the dynamical mean
field theory [5–7] and cluster extensions [8–11],
Monte Carlo approaches for lattice [12] and impurity
[13–17] models, self-consistent partial summation methods
for real materials and model systems [18–20], and non-
equilibrium Green’s function methods [21–30].
An important characteristic of correlation functions lies

in their analytical properties. The retarded correlation
functions have no content at negative times due to causality
[1–3]. In the complex frequency domain, they correspond
to so-called Nevanlinna functions [31] whose poles are
restricted to the lower half of the complex plane. This
analytical framework has long been utilized to evaluate
integrals that emerge in many-body theory [1–3], such as
those occurring in the context of warm dense matter [32]
and uniform electron liquids [33]. More recently, it was
used to perform analytic continuation from a Wick-rotated
frame to a standard frame. Where traditional approaches
that rely e.g., on the maximum entropy method [34] have
significant uncertainty in the final result, resulting in
washed out spectra, explicitly enforcing the highly con-
straining analytical properties of Nevanlinna functions

results in a drastic reduction of the uncertainty, leading
to sharp spectral functions [35,36]. It is clear from these
examples that encoding this mathematical structure into
numerical algorithms can be used to great benefit.
In this Letter, we analyze a fundamental property of

correlation functions in the time domain: several correlation
functions of interest are positive definite functions of their
time arguments. This property arises from viewing corre-
lation functions as an inner product in the vector space of
operators, combined with the fact that the time translation
operator is a unitary representation of the time translation
group. This positive definiteness sets a strong constraint on
the correlation function, similar to its other analytic proper-
ties—in fact, some of these directly follow from the
positive definiteness [37]. Moreover, insisting that a corre-
lation function is positive definite enables both the exten-
sion of numerical correlation functions to later times, and
the extraction of clean spectra from noisy data such as that
obtained from Monte Carlo and quantum computing
approaches.
We consider a quantum system in a quantum state ρ. In a

second quantized formalism, quantum states can be
described as states in Fock space [1–3]. The energetics
(and dynamics) of the system is described by a Hamiltonian
H; in the Heisenberg picture, the time evolution of an
operator A is given by AðtÞ ¼ eiHtAe−iHt. Expectation
values of operators for the state ρ are computed as
hAðtÞi ¼ Tr½ρAðtÞ�. In a system with time-translational
invariance, H commutes with ρ, and in the canonical
ensemble ρ ¼ e−βH=Z, with β denoting the inverse temper-
ature and Z ≡ Tre−βH.
We are primarily interested in time-dependent single-

particle correlation functions of the type
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GABðt; t0Þ ¼ hA†ðtÞBðt0Þi: ð1Þ

In a fermion system with creation operators c†i creating
particles in state i, the so-called “lesser” Green’s function
[4] G<

ijðt; t0Þ ¼ iTr
�
ρc†jðt0ÞciðtÞ

�
and the “greater” Green’s

function G>
ijðt; t0Þ ¼ −iTr

�
ρciðtÞc†jðt0Þ

�
, as well as the

charge and spin correlation functions are related to corre-
lation functions of this type. Below, we consider these
functions without their usual �i prefactors.
Mathematical exposition.—In this section, we will show

that GABðt; t0Þ are positive definite functions when A ¼ B.
First, we observe that the correlation function can be
viewed as an inner product of the linear operators that
act on Fock space V [we denote this vector space as LðVÞ].
This fact was also noted in Ref. [38], where it was used to
construct strictly positive perturbative approximations. We
define an inner product on LðVÞ as

hA; Bi ≔ Tr½ρA†B�; ð2Þ

which is conjugate symmetric, linear in the second com-
ponent, and positive for hA; Ai when A ≠ 0. The properties
of conjugate symmetry and linearity are straightforward to
verify. The positivity property hA; Ai ≥ 0 can be estab-
lished by noting that (i) if a square matrix M equals the
multiplication of a matrix with its Hermitian transpose, i.e.,
M ¼ AA†, then M is a Hermitian positive semidefinite
matrix; and (ii) the trace of the product of two positive
semidefinite matrices M and N is always greater than or
equal to zero, i.e., TrðMNÞ ≥ 0. We further restrict our
consideration to the cases where A, B are not orthogonal to
ρ, which would yield a zero expectation value and is thus
not physically relevant for correlation functions. LðVÞ
together with the inner product of Eq. (2) forms a
Hilbert space.
The correlation functions are defined as complex-valued

two-time functions (R ×R → C):

GAAðt; t0Þ ¼ Tr½ρAðtÞ†Aðt0Þ�: ð3Þ

Given the inner product, we can show that the Green’s
functions arising in the study of equilibrium and non-
equilibrium dynamics of many-body physics [1–4] are
positive definite functions [39] of two variables. That is,
given any (finite) set of arbitrarily spaced time points t, the
eigenvalues of the matrix that result from evaluating the
Green’s function at those points, ½GAAðti; tjÞ�, are all
positive or zero [40].
We prove this by using an equivalent definition of

positive definiteness, which is that, given the aforemen-
tioned set of time points t,

X
ij

GAAðti; tjÞλ�i λj ≥ 0 ð4Þ

for any set of λi. This follows from

X
ij

GAAðti; tjÞλ�i λj ¼
X
i;j

Tr½ρAðtiÞ†AðtjÞ�λ�i λj

¼ Tr

�
ρ

�X
i
λiAðtiÞ

�†�X
j

λjAðtjÞ
��

¼
�X

i

λiAðtiÞ;
X
j

λjAðtjÞ
	

≥ 0: ð5Þ

The correlation functions (and Green’s function as well as
self-energies [41,42]) are therefore positive definite func-
tions. This holds for any operator A∈LðVÞ, and in
particular it holds for fermionic creation/annihilation oper-
ators c†=c, for densities n, for magnetization operators
n↑ − n↓, and trivially for the identity. In multi-orbital
systems, the diagonal components of electronic Green’s
functions G≶

ii are positive semidefinite. Off-diagonal com-
ponents can be constructed from linear combinations of
hci þ cj; ci þ cji, hci þ icj; ci þ icji, and the diagonal
components, all of which are positive definite.
In the presence of time-translation invariance, (i.e., for

steady-state and equilibrium systems), the Green’s function
becomes a function of a single time argument correspond-
ing to the time difference: GAAðt − t0Þ, i.e., a positive
definite function of a single variable where

X
ij

GAAðti − tjÞλ�i λj ≥ 0: ð6Þ

In order for time translation to hold, the set of time points t
must form a group under addition such as R or Z. With this
additional structure, and as long as ρ commutes with the
time evolution operator,

hAðtÞ; Bðt0Þi ¼ hAðt − t0Þ; Bi ¼ hA;Bðt0 − tÞi ð7Þ

follows from the cyclicity of the trace. Additional math-
ematical details are provided in the Supplemental
Material [43].
The positive definiteness of the Green’s function sets a

strong constraint on the function and has important
practical consequences, which we will explore and exploit
in the remainder of the Letter. In short, we will show that
(i) we can improve the signal-to-noise ratio in noisy data
from experiment and theory, and (ii) we can construct
causal extensions (with a positive spectrum) from short
time data.
Denoising correlation functions.—A first, and natural

application of the mathematics presented above, is to take a
correlation function from a source that has some inherent
noise, and to use the positive definite property to project its
values to the nearest positive definite correlation function;
in effect, denoising the data. Noisy correlation functions

PHYSICAL REVIEW LETTERS 132, 160403 (2024)

160403-2



can arise from Monte Carlo evaluations, from experimental
measurements, or from simulations on quantum computers.
We consider a discretized, time-translation invariant

correlation function on a regularly spaced time axis t,
GAAðti − tjÞ. If we label the elements of the correlation
function asGAAðti − tjÞ → fi−j, then the resulting matrix G
with entries Gij ¼ fi−j is a positive semidefinite Hermitian
Toeplitz matrix [39],

G ¼

0
BBBBBBBB@

f0 f1 f2 � � � fn
f�1 f0 f1 � � � fn−1
f�2 f�1 f0 � � � fn−2

..

. . .
. ..

.

f�n f�n−1 f�n−2 � � � f0

1
CCCCCCCCA
: ð8Þ

G is commonly known as the Gramian or “Gram” matrix.
In the presence of noise in the correlation function data

(fj), this matrix is not positive semidefinite (PSD).
However, an alternating projection to the nearest PSD
matrix [44] followed by projections to the nearest Toeplitz
matrix [45] and an enforcement of the value at time zero
(which is typically known precisely, e.g., from equal-time
measurements or sum rules) results in quick convergence to
a positive definite function.
The projection to the nearest PSD matrix is achieved by

diagonalizing G and setting all negative eigenvalues to
zero. The projection to the nearest Toeplitz matrix averages
entries diagonally, and the enforcement of the norm
consists of fixing the diagonal to a predetermined value.
While an alternating projection typically converges in less
than 100 iterations, faster converging schemes, see e.g.,
[46–48], may be substantially more efficient; we have not
explored them here.
We illustrate the denoising in Fig. 1 for a positive definite

Green’s function of a steady-state transport problem simu-
lated by quantum Monte Carlo. Enforcing positive defi-
niteness by the procedure above shows a dramatic
improvement of the quality of the data. Details and an
error analysis for the analytically solvable Hubbard dimer
example are presented in the Supplemental Material [43].
Extending correlation functions to longer times.—A

second consequence of positive definiteness is that positive
definite extensions of response functions to longer times
exist, from which spectral measures can be constructed. We
make use of two well-known mathematical facts for
positive definite functions. First, functions that are only
known on a subset of their domain (e.g., Z or R) have at
least one extension to the full domain [50–52]. This is a
consequence of the extension theorems of Kreı̆n (in the
case of R) and Carathéodory (in the case of Z). Second,
according to Bochner’s theorem [37], the Fourier transform
of a positive definite function (overZ orR) is guaranteed to
have positive real part; moreover, the inverse Fourier

transform of a positive spectral function is guaranteed to
be positive definite. In the discrete case, these extensions
may not be unique; in the continuum case, uniqueness is
guaranteed by the analyticity of the Green’s function.
Conceptually, this realization offers a straightforward

methodology to obtain causal spectral functions from
finite-time data: in a first step, the function is extended
from short to long times by taking advantage of an
extension theorem. In a second step, the uniquely defined
and positive Fourier transform of the extended data is
computed.
Numerically, we can use extension theorems to predict

Green’s function values at later times from known values at
short times [39]. Supplementing a known time series
f0;…; fn by a single unknown element fnþ1, the
Gramian of Eq. (8) is a Toeplitz matrix with a single
unknown complex number fnþ1 ¼ G0;nþ1 ¼ ðGnþ1;0Þ�.
The real and imaginary parts of fnþ1 can then be obtained
in a two-dimensional search in the complex plane for the
region where the lowest eigenvalue of G is zero or larger,
i.e., G is positive definite; such a value must exist [50] and
jfnþ1j ≤ f0 due to the positive definiteness [53]. Note that
this extension may not be unique.
Figure 2 demonstrates the approach for the Green’s

function of the Hubbard dimer (for details see the
Supplemental Material [43]). Once the data is extended
to all times, it yields a unique spectral function [37].
More generally, given that the Gram matrix Eq. (8) is a

Toeplitz matrix of size n, and assuming a rank of size r, a
classical result by Carathéodory and Fejér [54] guarantees
the existence of the decomposition T ¼ APA†, where A is a
n × r Vandermonde matrix and P is a r × r positive
diagonal matrix. The columns of A can be interpreted as
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G

FIG. 1. Denoised quantum Monte Carlo data. Main panel:
inchworm [49] quantum Monte Carlo of a steady-state transport
problem (for data and parameters see Fig. 1 of [30]), real part
(orange) and imaginary part (blue). Denoised data, real part
(black) and imaginary part(red). Inset: closeup of the region near
t ¼ 2 highlighting the effect of denoising.
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uniformly sampled oscillation frequencies, and the entries
of P as positive “pole strengths.” This approach therefore
gives both access to the spectral function in terms of a series
of r discrete poles at given frequencies, and a method to
construct extensions for all times by enlarging the matrix A
with additional frequencies. It also indicates that an
extension is unique if a spectrum consists of fewer poles
than measurements, which is the typical case in model
systems and quantum computing applications.
The decomposition also establishes a connection to

signal processing and control theory, where PSD covari-
ance matrices of time-invariant processes are analyzed
using this decomposition in super-resolution algorithms
such as the multiple signal classification [55], and where
thereby approximate extensions from noisy data can be
constructed. We will explore this connection, together with
connections to reproducing kernel Hilbert spaces [56], in a
future paper.
Application to quantum computing.—As a final illus-

tration, we apply the denoising and extension implications
of Eq. (6) to a noisy correlation function measured on
IBM’s quantum computer ibm_auckland. We have mea-
sured the momentum-space greater Green’s function for the
empty state GkðtÞ ≔ h0jc†kðtÞckj0i for an 8-site Su-
Schrieffer-Heeger model, which is a model for free elec-
trons with a hopping parameter that alternates with an
amplitude δ

H ¼ −Vnn

X
i

�
1þ ð−δÞi�c†i ciþ1 þ H:c − μ

X
i

c†i ci; ð9Þ

where we set Vnn ¼ 1. The raw data (originally published
in Ref. [57]), is shown in Fig. 3, in the gapped phase with
δ ¼ 0.4 at k ¼ π=2. We report details of the calculation in
the Supplemental Material [43]. Because the model is

translationally invariant and has two bands, the momentum
basis Green’s functions should exhibit at most two frequen-
cies. However, due to the hardware noise from the quantum
computer, there is significant noise in the time domain
signal. This is similarly reflected in the Fourier transform,
where peaks can be identified, but only in the power
spectrum—the spectral function (shown in Fig. 3) does not
show the requisite analytic structure (a consistent sign
across all frequencies). We denoise the data by asserting the
positive definiteness and performing a point-by-point
optimization on the Green’s function, where the cost
function is the square of the negative eigenvalues, and
obtain an improved spectrum. Much of the broad spectrum
noise has disappeared and the peaks are clearly visible in
the spectral function. We detail the procedure and show the
result on additional data from different k points in the
Supplemental Material [43]; we find that this iterative
procedure is more suitable in the presence of extreme noise
than the alternating projection scheme used for
Monte Carlo data. The final step is to extend the data as
discussed above, which results in a long positive definite
signal, with sharp peaks in the spectrum.
Note that applying a PSD projection as done here is

conceptually distinct from recent efforts using advanced
signals processing approaches to extract a cleaner signal
from noisy quantum simulation [58–60], as well as memory

0 2 4 6 8 10
t

-0.2

-0.1

0

0.1

0.2

G
(t

)
known extension

Input
Numerical Extension
Analytic Solution

FIG. 2. Extension of the on-site Hubbard dimer Green’s
function G>

11↑ðtÞ. Shown are real (black) and imaginary (red)
parts of input data up to t ¼ 2 (circles), the numerically computed
extension from t ¼ 2 to t ¼ 10 (squares), and the analytically
known Green’s function up to t ¼ 10 (lines).

FIG. 3. Main panel: greater Green’s function G>
k ðtÞ at k ¼ π=2

of an 8-site Su-Schieffer-Heeger with δ ¼ 0.4 and μ ¼ −3. The
figure shows the raw data obtained from the ibm_auckland
quantum computer (blue), as well as the PSD denoised data
(orange), and PSD denoised and extended data (green). Inset:
corresponding spectral functions. The Fourier transform used a
damping factor τ ¼ 100. The vertical dashed lines indicate the
expected analytic frequencies.
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kernel approaches [61–66], and in fact can be combined
with both.
Discussion.—Positive semidefinite response functions

are ubiquitous in many-body physics [1,4,67], as is the
desire to reduce systematic or stochastic noise and to obtain
corresponding spectral functions. The theory and algo-
rithms presented here are broadly applicable to problems
ranging from the analysis of experimental measurements to
simulations of quantum systems on classical and quantum
hardware.
The Letter and Supplemental Material [43] demonstrate

that denoising data yields substantial improvements over
analyzing noisy spectra directly, but the approach has its
limits. It generates the closest causal solution to the
observed data, which may differ from the solution without
noise, as seen in Fig. 3 where unphysical peaks appear. For
stochastic noise, a careful error assessment through boot-
strap or jackknife methods is advised. However, in the
presence of systematic noise the method may not correct
error directions that are consistent with causality.
Similarly, the extension formalism has limitations, most

notably potential ambiguities in defining extensions.
Discrete spectra (e.g., Figs. S1 and S2) allow for a unique
extension due to the low-rank properties of the Gramian
[54]. However, smooth spectra, such as those in Fig. 1, may
admit multiple extensions. While one could theoretically
generate and examine all causal extensions, an efficient
numerical method to do so is not known to us. Empirically,
a denser sampling grid tends to offer more accurate
extensions, since the corresponding data is closer to the
(uniquely determined [51]) continuum case.

Nevertheless, we expect the applications of PSD pro-
jection to continue to be applicable as system sizes
increase. In addition to the continuum case shown in
Fig. 1, in Fig. 4 we demonstrate the denoising of a more
complex but still discrete system. We consider the on-
site correlation function GZ0Z0

ðtÞ ¼ hZðr ¼ 0; tÞZðr ¼ 0;
t ¼ 0Þi for a 16-site Heisenberg chain in the antiferro-
magnetic regime (time domain data is shown in Fig. S3). As
the figure shows, the denoising procedure recovers a proper
(positive) spectrum even for this complex system. Although
not all peaks are recovered, the denoised signal has peaks in
the appropriate places, and much more information is
visible than in the noisy signal.
In this Letter, we have demonstrated the efficiency of

removing noise with a PSD projection in the examples of
synthetic data and real-world quantum computing data, as
well as the feasibility of extending data to long time. We
believe that a PSD noise filter followed by an extension
should be applied much more broadly to any positive
definite response function, simulated or measured, before
data is analyzed and/or spectra are computed, including
data from quantum Monte Carlo, tensor networks, and
time-resolved experiments.
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