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Krylov complexity and Nielsen complexity are successful approaches to quantifying quantum evolution
complexity that have been actively pursued without much contact between the two lines of research. The
two quantities are motivated by quantum chaos and quantum computation, respectively, while the relevant
mathematics is as different as matrix diagonalization algorithms and geodesic flows on curved manifolds.
We demonstrate that, despite these differences, there is a relation between the two quantities. Namely, the
time average of Krylov complexity of state evolution can be expressed as a trace of a certain matrix, which
also controls an upper bound on Nielsen complexity with a specific custom-tailored penalty schedule
adapted to the Krylov basis.

DOI: 10.1103/PhysRevLett.132.160402

Quantifying the complexity of quantum evolution has
been a growing topic of research in recent years, driven by
two complementary perspectives. First, it is naturally
expected that integrable dynamics is intrinsically less
complicated than chaotic dynamics, and one may hope
that complexity-related measures will provide yet another
insight into the nature of this distinction. Second, any
quantum evolution can be seen as tautologically simulating
itself, and this invites the application of computational
complexity measures that have emerged from years of
research on quantum computing.
The two perspectives we have just described can be

referred to as the “quantum chaos” and “quantum compu-
tation” perspectives, respectively. Correspondingly, two
different branches of research on quantum evolution com-
plexity are in existence. Krylov complexity, originally
introduced in [1], attempts to quantify how fast operators
spread in the space of all possible operators as they evolve.
This program is rooted in the quantum chaos lore and
linked to earlier studies of out-of-time-order correlators [2].
Nielsen complexity, on the other hand, emerged in [3–5] as
a continuum analog of discrete gate complexity measures in
quantum computation. The mathematics involved in defin-
ing these two quantities could not be more different. On the
Krylov complexity side, the main ingredient is the Lanczos
algorithm for matrix tridiagonalization, which creates a
useful basis for tracking down the spread of the initial seed
operator under the dynamical evolution. On the Nielsen
complexity side, the main ingredient is optimization of the
length of curves on the manifold of unitary operators
endowed with an anisotropic metric (this metric captures
the relative difficulty of performing some unitary trans-
formations on a physical system, for example, those
involving changing the state of many particles at once).

Perhaps not surprisingly for two quantities so different in
their origins and in the relevant mathematics involved,
research on Krylov complexity [6–12] and Nielsen com-
plexity [13–16] of quantum evolution has developed in
parallel [17], with very little contact beyond descriptive
qualitative comparisons of the outcomes. Our purpose in
this Letter is to spell out a mathematical framework that
unites these two quantities.
Throughout, we shall consider a quantum system with

Hamiltonian H, and Hilbert space of finite dimension D
[18]. The evolution operator will thus be a D ×D unitary
matrix residing in the group manifold SUðDÞ. We further-
more define the energy eigenvalues En and eigenstates jni
for future use:

Hjni ¼ Enjni n ¼ 0;…; D − 1: ð1Þ

Krylov complexity and its average.—The original def-
inition of Krylov complexity in [1] tracked the Heisenberg
evolution of quantum operators. We shall be focusing here
on its closely related analog introduced in [6] that applies
the same protocol to the Schrödinger evolution of quantum
states. (Terms like “Krylov complexity of states” or “spread
complexity” may be used.)
One starts with an initial vector jv0i and lets it evolve as

e−iHtjv0i. The qualitative question is as follows: how many
extra vectors does one need to effectively capture the
evolution as time goes on, and how rapidly does this
number increase with time? (Evidently at t ¼ 0, jv0i would
suffice by itself, while at late times one would likely need a
complete basis.)
To give these questions a concrete expression, one

introduces the Krylov basis jvji, generated from the
Hamiltonian H and the initial state jv0i via the Lanczos
algorithm:
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jwjþ1i ¼ ðH−ajÞjvji−bjjvj−1i; jvji ¼
1

bj
jwji: ð2Þ

Here, the Lanczos coefficients aj and bj are defined by

aj ¼ hvjjHjvji; bj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hwjjwji

q
; b0 ¼ 0: ð3Þ

The basis is constructed to be orthonormal. In fact, the
Lanczos algorithm is nothing but Gram-Schmidt ortho-
normalization applied to the Krylov sequence Hjjv0i.
Generically, the Krylov basis spans the full space of
dimensionD, so the algorithm terminates afterD − 1 steps.
We can describe the time evolution of jv0i in the Krylov

basis:

jϕðtÞi ¼ e−iHtjv0i ¼
XD−1

j¼0

ϕjðtÞjvji: ð4Þ

The Hamiltonian is tridiagonal in the Krylov basis, as can
be deduced from (2). Thus, given a Hamiltonian H and an
initial “seed” state jv0i, the evolution is recast into a 1D
nearest-neighbor hopping model, with ϕj being the value of
the wave function at site j. (Early appeals to using such
tridiagonal representations for physical Hamiltonians can
be seen in [19,20].)
Krylov complexity is then designed as a measure of the

average position of the hopper along the chain at time t. (At
t ¼ 0, it is evidently localized at site 0.) Specifically, with a
sequence of positive nondecreasing weights wj, we define

CKðtÞ ¼
XD−1

j¼0

wjjϕjðtÞj2: ð5Þ

In practical applications, one often chooses wj ¼ j, so that
CK is literally the average position. If this value does not
grow much, one expects that jϕðtÞi in (4) is well approxi-
mated by the first few terms in the sum, making it “simple.”
Krylov complexity typically grows at early times,

eventually reaching a plateau. This plateau has been tested
as a valid indicator of integrable vs chaotic properties of the
underlying system [7,8], though the procedure shows
sensitivity to the seed of the Lanczos algorithm [9,11].
A good way to estimate the plateau height is to compute,
following [7,8], the all-time average of CK. For that, we
write

ϕjðtÞ ¼
XD−1

n¼0

e−iEnthvjjnihnjv0i; ð6Þ

and hence

jϕjðtÞj2 ¼
XD−1

n;m¼0

e−iðEn−EmÞthvjjnihnjv0ihv0jmihmjvji:

Then, for a generic spectrum with nondegenerate eigen-
values,

jϕjj2 ≡ lim
T→∞

1

T

Z
T

0

jϕjðtÞj2dt ¼
XD−1

n¼0

jhvjjnij2jhnjv0ij2; ð7Þ

and thus the time average of Krylov complexity is
expressed as

CK ¼ lim
T→∞

1

T

Z
T

0

CKðtÞdt ¼
XD−1

j¼0

wjjϕjj2

¼
XD−1

n;j¼0

wjjhvjjnij2jhnjv0ij2: ð8Þ

This is the main quantity we shall work with when building
connections with the Nielsen complexity formalism [21].
Nielsen complexity and its bound.—Defining Nielsen

complexity starts with picturing any curve UðτÞ on the
manifold SUðDÞ ofD ×D unitary matrices as a “program.”
The complexity of this program is then the length of the
curve, and the complexity of a given target unitary U is
the minimum of this length over all curves connecting U to
the identity matrix. This is a natural continuum analog
of the standard discrete gate complexity in quantum compu-
tation, with the continuum length replacing the counting of
the number of discrete gate operations. There is a control-
lable relation betweenNielsen and gate complexity for qubit
systems [3–5].
Which metric should we use on the manifold of unitaries

to compute the length? The most naive guess would be the
isotropic bi-invariant metric that treats all directions equally.
To define it mathematically, introduce the Hermitian velo-
city of the curve UðτÞ as

VðτÞ ¼ i
dU
dτ

U†: ð9Þ

The bi-invariant length of the curve segment between τ and
τ þ dτ is then simply

ds2bi-inv ¼ TrðV†VÞdτ2: ð10Þ

All geodesics of the bi-invariant metric have constant
velocities, and therefore the minimization problem involved
in the definition of Nielsen complexity can be solved
exactly. The results are (unsurprisingly) disappointing,
however, since this computation assigns the same value
of complexity to all physical systems with the same Hilbert
space dimension [15]. The isotropic bi-invariant metric is
simply too naive, as it fails to recognize that some unitary
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transformations are more difficult to implement than others.
This ingredient is essential for complexity definitions in the
context of quantum computation, just as restricting the set of
allowed gates is essential for defining gate complexity.
One must then look for more sophisticated assignments

of the metric on the manifold of unitaries that will bring out
the distinction between different kinds of dynamics. To this
end, we introduce a complete basis [22] of generators Tα,
orthonormal with respect to the inner product TrðT†

αTβÞ.
We can then decompose the velocity as

V ¼ VαTα; Vα ¼ TrðT†
αVÞ: ð11Þ

The Nielsen complexity metric introduces different penalty
factors μa for the various directions Tα:

ds2 ¼ dτ2
X
α

μαjTrðT†
αVÞj2: ð12Þ

The bigger the penalty factor μa, the more difficult it is to
move in that particular direction. The penalty factors are
typically chosen on the basis of some locality properties
(for example, acting on only a certain number of adjacent
spatial sites, or acting only on a given number of particles at
once). A common choice is to introduce a threshold so that
all operators above the threshold are “hard” (with the same
large μa) and all those below the threshold are “easy” (with
μa set to 1). For the purposes of making contacts with
Krylov complexity, we shall keep the penalty factors μa
completely general.
While the inclusion of penalty factors gives the metric

(12) a chance to distinguish different types of dynamics, it
also renders the minimization problem involved into the
definition of Nielsen complexity largely intractable. The
state of the art is that the geodesic equation has been solved
for such metrics for the case of three qubits [5]. What is
even more complicated is finding actual geodesics con-
necting two prescribed points [23], and minimizing the
length over all such geodesics. More importantly, in cases
of physical interest, the Hilbert space dimensions is orders
of magnitude higher than for the three-qubit system, and all
the difficulties multiply at a crippling rate as the number of
dimensions increases, making direct evaluation of Nielsen
complexity impossible.
A practical strategy to deal with these issues has been put

forth in [15,16]. If it is out-of-reach to minimize the
distance over all possible curves using the metric (12),
we can settle on computing an upper bound on Nielsen
complexity by minimizing the distance over a prescribed
infinite family of curves.
A simple and effective family of curves for this purpose

[15] is constant velocity curves e−iVτ. While all of these
start at the identity at τ ¼ 0, to ensure that they connect to
the desired evolution operator U ¼ e−iHt at τ ¼ t, that is
e−iVt ¼ e−iHt, we must impose

V ¼
X
n

�
En −

2πkn
t

�
jnihnj; ð13Þ

where kn are D independent integers. (For simplicity, we
are assuming a nondegenerate energy spectrum, as
expected in generic systems. See Ref. [16] for how to
treat degenerate spectra.) From (12) and (13), a bound on
Nielsen complexityCb is then given by a minimization over
the D-dimensional hypercubic lattice kn as

CbðtÞ ¼ 2π min
k⃗∈ZD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy⃗;Qy⃗Þ

p
; y⃗≡ E⃗t

2π
− k⃗; ð14Þ

with E⃗≡ ðE0; E1;…ED−1Þ, k⃗≡ ðk0; k1;…; kD−1Þ and the
matrix [24]

Qnm ≡X
α

μαhnjTαjnihmjT†
αjmi: ð15Þ

The minimization problem (14) has a natural geometric
interpretation. Up to constant factors, one is simply asking
about the distance from the point E⃗t=2π to the nearest point
of the integer hypercubic lattice ZD, with the distances
measured using not the standard Euclidean metric, but
rather the (position-independent) “skewed” metric (15).
This is known as the closest vector problem, and it has been
discussed extensively in the mathematics literature, spe-
cifically in relation to lattice-based cryptography [25].
Effective algorithms exist for finding approximate solutions
to this problem, making the minimization problem (14)
computationally tractable, unlike the original definition of
Nielsen complexity. All of this has been implemented in
practice and applied to a broad range of physical
Hamiltonians in [15,16], which can be consulted for
technical details. While our reliance on constant velocity
curves as a proxy for minimization over all curves may
seem rather ad hoc at first sight, it has been tested in
practice and is able to produce meaningful results [15,16].
In particular, the upper bound (14) consistently assigns
lower values to complexities of integrable Hamiltonians
than to chaotic ones. Furthermore, a direct relation between
local (few-body) conservation laws (a hallmark of integra-
bility) and the properties of the Q matrix (15) has been
manifested in [16].
Just as for Krylov complexity, some generic features are

expected for the time dependence of Nielsen complexity:
initial growth and late-time saturation. And as for Krylov
complexity, the height of this late-time plateau is of
particular interest. In the case of the bound (14), it can
be understood from the following heuristic argument. In
high numbers of dimensions, distances from a randomly
chosen point to a lattice tend to take essentially determin-
istic values, as one can see by elementary means for
Euclidean distances from hypercubic lattices; a practical
summary can be found in [15]. As the vector E⃗t=2π grows

PHYSICAL REVIEW LETTERS 132, 160402 (2024)

160402-3



and reaches far outside the unit cell where it started, it is
likely to behave as a generic point in space with respect to
its distance from the lattice in (14). Hence, its actual
distance from the lattice (which is, by definition, the
plateau height) will closely track the average distance
[26]. This leads to the following estimate of the late-time
plateau value Cp of (14):

Cp ¼ 2π

Z
0≤xn≤1

dx⃗ min
k⃗∈ZD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx⃗ − k⃗;Qðx⃗ − k⃗ÞÞ

q
: ð16Þ

This estimate is completely controlled by theQmatrix (15),
which will continue to play a central role in our story.
Krylov complexity ↔ Nielsen complexity.—With the

above setup, we are in a position to make our key
observations. The starting points for formulating Krylov
and Nielsen complexity are very different (Hamiltonian
tridiagonalization by linear transformations, and geodesic
optimization on the curved manifold of unitaries endowed
with an anisotropic metric), so that it is not even immedi-
ately clear how to attempt mapping the two structures into
each other. At the same time, once we focus on the all-time
average of Krylov complexity (8) and the late-time value
for the upper bound on Nielsen complexity given by (14),
the situation no longer appears hopeless. Indeed, the
expressions (8) and (15) are suggestively similar, being
both quartic in the Hamiltonian eigenvector components.
To complete the picture, it remains to spell out an explicit
relation between the two sets of formulas.
To do so, we note that (8) can be recast in the form

CK ¼ Tr q; ð17Þ

with

qnm ¼
XD−1

j¼0

wj

2
ðhnjv0ihvjjnihmjvjihv0jmi þ c:c:Þ: ð18Þ

Can we understand this q matrix as a special case of the
generalQmatrix (15), whichwould immediately connect us
to Nielsen complexity? The answer is yes, and one simply
needs to provide an identification of the penalty factors μa
and the operator basis Ta that reduces (15) to (18).
The relevant assignments can be summarized in the

following table:

Ta μa assignment

jv0ihv0j w0

jv0ihvjj or jvjihv0jwith j ≥ 1 wj=2

jviihvjjwith i; j ≥ 1 0

ð19Þ

One can check that, with these assignments, the general Q
matrix given by (15) becomes identical to (18). A link

between Krylov and Nielsen complexity has thus been
established: The all-time average of Krylov complexity is
the trace of the q matrix (18). An upper bound on the
plateau value of Nielsen complexity with the penalty
schedule (19) is given by the average distance from an
integer lattice (16) in a space where the metric Q is set
equal to the same matrix q. This relation is not an equality
of the two quantities [27], but rather a way to express them
as explicit functions of the same q matrix. The expressions
are similar in spirit, however: for example, if the eigen-
values of q grow, its trace evidently increases, but so does
the average distance estimate, since the distance growth in
different directions is controlled by the eigenvalues.
The penalty schedule (19) is rather peculiar in that it

assigns zero penalty to all generators not involving the
Krylov seed vector jv0i. This penalty schedule nonetheless
passes an important sanity check: while the commutators of
the operators in the second and third lines of (19) generate a
full basis of operators (this property is called “bracket
generating” in the language of sub-Riemannian geometry
[28] that is often evoked in the context of Nielsen
complexity [29]), nested commutators of the zero-penalty
operators in the last line of (19) will never produce anything
involving jv0i, and hence do not provide a complete basis.
For that reason, while moving in the zero-penalty directions
does not result in any length increase, it is impossible to
reach the target while moving in those directions alone, and
thus all the minimization problems that define Nielsen
complexity remain meaningful.
It is hardly surprising that a rather peculiar penalty

schedule had to be used to make Nielsen complexity
capture the behavior of Krylov complexity. Indeed,
Krylov complexity only tracks the evolution of a single
seed vector jv0i, while Nielsen complexity is sensitive to
the entire evolution operator. A sort of blinding device had
to be applied to the latter to make it mimic the former. It is
natural to think of the zero penalties in (19) as such a
blinding device.
Note furthermore that the assignment of the growing

sequence wj as penalties for the operators jv0ihvjj is very
natural. Indeed, in a typical construction of Krylov com-
plexity, the initial seed will be very simple (for example, a
state where only one spin of a spin chain is excited). A
typical Hamiltonian, on the other hand, also has a simple
structure of interactions (for example, a sum of terms each
of which couples only two spins). Such constructions are
prevalent in [1,7–9] and other literature on the subject. In
this situation, higher jvji will be progressively more and
more complicated states (say, with more and more spins
excited). Correspondingly, it is natural to think of the
operators jv0ihvjj as becoming more complicated with
growing j, assigning them an increasing sequence of
penalties. (This naive intuition does not work, however,
for the operators jviihvjj, which must be assigned zero
penalties to make the construction work, as already
remarked in the previous paragraph.)
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The framework we have described provides a stepping
stone to explore a range of similar relations for analogous
quantities. A natural question is whether the Krylov
complexity for operators, as originally defined in [1],
can be given a similar treatment. Another question is
whether Nielsen complexity of states [30,31], defined as
the minimum of the Nielsen complexity for unitaries over
all unitaries that convert a given reference state to the
desired state, can meaningfully enter the game, and, in
particular, provide additional context for the penalty
schedule (19). It could also be interesting to consider
further averaging of (8) over a suitably chosen set of initial
vectors, and explore how that affects (19), possibly pro-
ducing more conventional penalty schedules.
To sum up, we have displayed a relation between

Krylov complexity of states and an upper bound on the
Nielsen complexity of the evolution operator. Both quan-
tities end up being expressed through a specific matrix
defined by (18). Krylov complexity and Nielsen complex-
ity take rather different inputs for their definitions, and we
had to spell out explicitly how these inputs are to be
matched so as to make our construction work. Krylov
complexity requires specifying an initial seed vector jv0i,
as well as weights wj for the contributions of higher
Krylov components of the wave function. Nielsen com-
plexity requires specifying a basis of generators on the
manifold of unitaries and assigning to them penalty
factors. Within the correspondence we established, the
Krylov seed and its Krylov basis generated using the
Lanczos algorithm are converted into the generator basis
on the Nielsen complexity side, while the weights wj are
converted into penalty factors.
Relating Krylov and Nielsen complexity connects two

very different pictures of quantum evolution: the extent of
spread of states over the Hilbert space with the flow of
time on the one side, and quantum algorithms and
quantum simulations on the other side. It has in particular
been proposed (see, for instance, the conclusions of [32])
that minimization problems that define Nielsen complexity
can practically contribute to finding optimal quantum
simulation algorithms. A relation between such algori-
thms and quantities that control evolutionary spread of
states is thus another implication of the findings we
report here.
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