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Finding a local Hamiltonian Ĥ that has a given many-body wave function jψi as its ground state, i.e., a
parent Hamiltonian, is a challenge of fundamental importance in quantum technologies. Here we introduce
a numerical method, inspired by quantum annealing, that efficiently performs this task through an artificial
inverse dynamics: a slow deformation of the states jψ(λðtÞ)i, starting from a simple state jψ0iwith a known
Ĥ0, generates an adiabatic evolution of the corresponding Hamiltonian. We name this approach inverse
quantum annealing. The method, implemented through a projection onto a set of local operators, only
requires the knowledge of local expectation values, and, for long annealing times, leads to an approximate
parent Hamiltonian whose degree of locality depends on the correlations built up by the states jψðλÞi. We
illustrate the method on two paradigmatic models: the Kitaev fermionic chain and a quantum Ising chain in
longitudinal and transverse fields.
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Introduction.—The success of quantum technologies
ultimately relies on our ability to control increasingly
complex artificial quantum systems [1]. This may require,
in quantum simulators, the accurate tailoring of a many-
body Hamiltonian. Controlling [2,3] and verifying [4,5] the
actual functioning of these systems have raised increasing
attention to the search for parentHamiltonians (PHs) [6–15].
This problem consists in finding a local and/or engineerable
Hamiltonian having a givenwave function as a ground state.
The knowledge of a PH is related to Hamiltonian learning
[16–18] and verification of quantum devices, and can be
exploited to experimentally prepare a target ground state.
The search for a PH represents an especially complex
instance of the reconstruction of a Hamiltonian from one
of its eigenstates [19–23] or time-dependent states [24–29].
In particular, the space of the Hamiltonians having a given
state as an eigenstate can be efficiently reconstructed from
correlation functions [15,19,20] or expectation values of
local commutators [21]. Picking PHs in this space is a
hard task since it generally requires the diagonalization of all
the candidate PHs to verify that the target state is a ground
state [15]. More efficient methods, based on local measure-
ments, have been suggested to obtain approximate PHs
[13,14,22,23,30].
Here we introduce a method for obtaining a PH, referred

to as inverse quantum annealing (IQA), which is inspired
by quantum annealing [31–35], but with the role of states

and Hamiltonians swapped. Given a state jψ1i, whose PH
Ĥ1 we wish to construct, and starting from a simple state
jψ0i with a well-known PH Ĥ0, we construct a path
jψ(λðtÞ)i, connecting jψ0i to jψ1i. We then write down
an artificial dynamics for the Hamiltonian, inspired by von
Neumann’s equation for the density matrix, which is
amenable to a well-defined adiabatic limit, and, more
importantly, can be approximately solved with a space
of local Hamiltonians. In the adiabatic limit we obtain a
Hamiltonian having the target state as the ground state. We
will illustrate the main ideas of the method with two
paradigmatic examples: (1) the “exactly solvable” Kitaev
fermionic chain, where jψðλÞi crosses a second-order
transition point, and (2) a quantum Ising chain in the
presence of a longitudinal field, where jψðλÞi crosses a
first-order transition point. In case (1) power-law correla-
tions emerge, making the local approximation harder, while
in case (2) correlations exponentially decrease and the local
approximation is excellent.
Inverse quantum annealing protocol.—Given a

(many-body) state jψ1i, the task is to find a (local)
Hamiltonian Ĥ1 for which jψ1i is the ground state. In
many cases, this problem has more than one solution [36].
To find a solution, we introduce a method inspired by
quantum annealing [31–33], alias adiabatic quantum com-
putation [35]. The first step is to introduce a family of states
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jψðλÞi, depending on a parameter λ, with 0 ≤ λ ≤ 1, such
that (i) jψð1Þi≡ jψ1i is the quantum state whose PH Ĥ1 we
wish to determine, and (ii) jψð0Þi≡ jψ0i is a simple initial
state whose PH Ĥ0 is known. Then we seek a dynamics
that, by changing λðtÞ with time, in the adiabatic limit
λ̇ðtÞ → 0, leads to the desired Ĥ1, starting from Ĥ0.
The idea behind this artificial Hamiltonian dynamics is

the following. Consider the projector Π̂ψðλÞ on the selected
state path jψðλÞi, suitably redefined as follows:

Π̂ψðλÞ ¼ −JjψðλÞihψðλÞj; ð1Þ

where J is an arbitrary energy scale which we use as our
unit, setting J ¼ 1. Π̂ψðλÞ has jψðλÞi as its unique ground
state, at energy −J, while all other states are degenerate, at
energy 0.
Regard now Π̂ψðλðtÞÞ as a (pseudo-)Hamiltonian—in

general, nonlocal—generating a Schrödinger dynamics
associated to the evolution operator

ÛðtÞ ¼ T−exp
�
−
i
ℏ

Z
t

0

dt0Π̂ψðλðt0ÞÞ

�
: ð2Þ

By assumption a local PH Ĥ0 for jψ0i exists. Consider now
an “auxiliary Hamiltonian” ĤauxðtÞ ¼ ÛðtÞĤ0Û

†ðtÞ. It will
satisfy von Neumann’s equation:

∂tĤauxðtÞ ¼ −
i
ℏ

�
Π̂ψðλðtÞÞ; ĤauxðtÞ

�
; ð3Þ

with the boundary condition Ĥauxð0Þ ¼ Ĥ0. The presence
of the spectral gap J in Π̂ψðλÞ guarantees that, in the

adiabatic limit λ̇ → 0, the time-evolved state ÛðtÞjψ0i will
be closer and closer to the desired path of states jψðλðtÞÞi,
and, correspondingly, the “Hamiltonian” ĤauxðtÞ will
approximate a PH Ĥ(λðtÞ). The nontrivial issue with such
an adiabatically inspired solution for the PH problem is the
possible nonlocality of the Hamiltonian determined. We
need to devise a further local approximation for the PH
problem to guarantee that the solution found is actually a
physical local PH.
Before tackling the locality issue, let us rewrite

our equation using a fixed basis of Hermitian operators
P ¼ fP̂jg acting on a system ofN particles. As an example,
think of a system made of N spin-1=2, where P̂j are all
possible Pauli string operators made by an arbitrary number
of Pauli matrices σ̂x;y;zi at sites i. Without loss of generality,
we can assume that the normalization of the operators is
such that TrðP̂jP̂j0 Þ ¼ δj;j0 [37]. For any finite N, the total
number of elements in P is finite, N ¼ jPj. Any arbitrary
Hermitian operator can be expanded in the basis P, for
instance, ĤauxðtÞ ¼

P
j hjðtÞP̂j. By substituting in Eq. (3),

after simple algebra, see [37], we can rewrite Eq. (3) as

∂thjðtÞ ¼
XN
j0¼1

Kj;j0 ½ψ(λðtÞ)�hj0 ðtÞ; ð4Þ

where Kj;j0 ½ψ �≡ −iðJ=ℏÞhψ j½P̂j; P̂j0 �jψi is a skew-
symmetric commutator matrix.
The space of l-local Hamiltonians is formed by linear

combinations of a subset LðlÞ ⊂ P consisting of all
Hermitian operators connecting particles within maximum
distance l on a lattice, whose number we denote as N l.
(Let us call the maximum coupling distance of an operator
as its coupling length.) As an example, a one-local
Hamiltonian contains only single-particle terms, while a
two-local Hamiltonian will also contain two adjacent
particle interactions. In both cases, N l scales linearly in

N. Any l-local Hamiltonian is written as ĤðlÞ ¼ P
j hjL̂

ðlÞ
j .

We call a Hamiltonian local if its locality range l does not
depend on the system size N.
To find an optimal l-local PH from the adiabatic solution

of Eq. (3), we now use a time-dependent variational
principle (TDVP) [41], which allows us to determine the
Hamiltonian couplings hjðtÞ, by projecting the right-hand

side of Eq. (3) on the space LðlÞ ¼ fL̂ðlÞ
j g, through the

Hilbert-Schmidt distance dðÂ; B̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðÂ − B̂Þ2

q
, a natu-

ral Euclidean structure in the space of Hermitian operators.
As detailed in [37], we can write the resulting projected
evolution as

∂tĤ
ðlÞ ¼ Pl

�
−
i
ℏ

�
Π̂ψðλðtÞÞ; Ĥ

ðlÞðtÞ�
�
; ð5Þ

where the projector PlðÂÞ defines the closest l-local
operator B̂ to a given Â. This leads to the following
equation for the coefficients hjðtÞ of the l-local

Hamiltonian ĤðlÞðtÞ:

∂thjðtÞ ¼
XN l

j0¼1

KðlÞ
j;j0 ½ψ(λðtÞ)�hj0 ðtÞ; ð6Þ

where KðlÞ
j;j0 ½ψ �≡ −iðJ=ℏÞhψ j½L̂ðlÞ

j ; L̂ðlÞ
j0 �jψi has a size that

scales polynomially with the system sizeN. Let us note that
Eq. (6) is a truncated version of Eq. (4), with the
commutator matrix restricted to the space of l-local
operators.
Equation (6) is the central result of this work. In the

adiabatic regime, it allows us to construct an l-local PH Ĥ1

for the final state jψ1i, by integrating the differential
equations from t ¼ 0, with the initial condition set by
the expansion coefficients hjð0Þ of Ĥ0, up to a suitably
large annealing time T. While the nonprojected adiabatic
scheme behind Eqs. (1)–(3) is, by construction, protected
by a gap J, there is no guarantee that the projection on the
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space of l-local Hamiltonians will not bring in components
of higher states.
The error introduced by the l-local approximation is

inherently related to the nature of the path of states jψðλÞi.
Our physical expectation is that if jψðλÞi has a finite
correlation length, then the adiabatic solution of Eq. (3) is a

local Hamiltonian. In this case the matrix KðlÞ
j;j0 connects

operators with similar coupling length, and the truncation
leading from Eq. (4) to Eq. (6) gives rise to a small error
(akin to truncating a short-range Hamiltonian—we discuss
this point in [37]). In this case, we can truncate to a
coupling length l, independent of the system size, such that
the error introduced by the TDVP projection is arbitrarily
small. The opposite occurs if there is a λc where the

correlation length of jψðλÞi diverges: KðlÞ
j;j0 connects oper-

ators with very different coupling lengths, and the trunca-
tion gives rise to a large error.
The commutator matrix KðlÞ

j;j0 has been used in previous
works to reconstruct local Hamiltonians from their eigen-
states [21]. Previous methods, however, could not guaran-
tee finding Hamiltonians having jψðλÞi as the ground state.
The IQA, implemented through Eq. (6), can select a PH,
without the need of an explicit diagonalization for checking
the solution.
We now illustrate our method on two paradigmatic

examples: (1) the integrable quantum Ising chain in a trans-
verse field, wherewewill exploit the Jordan-Wignermapping
to the 1D Kitaev chain, illustrating the case of a diverging
correlation length for jψðλÞi at a second-order transition;
(2) the nonintegrable quantum Ising chain in a transverse and
longitudinal field, where the path jψðλÞi crosses a first-order
transition, with a finite correlation length.
(1) IQA with fermionic Gaussian states: To illustrate

our IQA method, we apply it here to the BCS-like states

jψðλÞi≡ Y
k¼ð2n−1Þπ=N
n∈ f1;…;N=2g

�
sinðθkÞ þ cosðθkÞĉ†kĉ†−k

�j0i;

with

θkðλÞ ¼
1

2
arctan

�
sin ðλπ=2Þ sinðkÞ

cos ðλπ=2Þ þ sin ðλπ=2Þ cosðkÞ
�
:

Here j0i is the vacuum state, ĉ†k ¼ ðeiπ=4= ffiffiffiffi
N

p ÞPN
j¼1 e

ikjĉ†j ,

and ĉ†j creates a spinless fermion at site j ¼ 1;…N. jψðλÞi
is the ground state of the 1D Kitaev model [42]

ĤKðλÞ ¼
XN
j¼1

	
sin

�
λ
π

2

�
ðĉ†j ĉ†jþ1 þ ĉ†j ĉjþ1 þ H:c:Þ

þ cos

�
λ
π

2

�
ðĉ†j ĉj − ĉjĉ

†
jÞ


; ð7Þ

with antiperiodic boundary conditions ĉNþ1 ¼ −ĉ1, hence
a two-local PH exists. The goal is to use the dynamics
defined in Eq. (6) to find a PH, using the exactly known
results to quantify the accuracy of the IQA. The annealing
schedule is λðtÞ ¼ t=T, where T is the final time so that the
state interpolates between jψð0Þi, the ground state of
ĤKð0Þ, and jψð1Þi, the ground state of ĤKð1Þ. Note that
jψðλÞi passes through an emerging second-order phase
transition critical point at λc ¼ 1=2 where the correlation
length diverges. Therefore, as a consequence of the TDVP
approximation, we expect IQA to work very well for paths
such that λ < λc while it may be less accurate if λ ≥ λc.
We perform IQAwith different annealing times T to study

the convergence to the adiabatic limit, analyzing different
ranges l of the interactions in LðlÞ, and different system sizes
N. The basis LðlÞ of translation and reflection invariant
l-interacting quadratic fermions is fΣz

0=
ffiffiffi
2

p
;Σα

1;…;Σα0
l ;…g

for l < N=2, and LðN=2−1Þ ∪ fΣx
N=2=

ffiffiffi
2

p
;Σy

N=2=
ffiffiffi
2

p g for

l ¼ N=2, where α; α0 ∈ fx; y; zg and Σx
m ¼ ð1=2 ffiffiffiffi

N
p ÞP

jðĉ†j ĉ†jþm þ H:c:Þ, Σy
m ¼ ði=2 ffiffiffiffi

N
p ÞPjðĉ†j ĉ†jþm − H:c:Þ,

and Σz
m ¼ ð1=2 ffiffiffiffi

N
p ÞPjðĉ†j ĉjþm þ H:c:Þ. The antiperiodic

boundary conditions imply ĉNþm ≡ −ĉm. The commutator
matrix that generates the IQA is explicitly calculated in [37],
where we also investigate the locality of the adiabatic
solution of Eq. (3).
To verify when the adiabatic evolution is achieved, we

compute the relative Hilbert-Schmidt operator distance

RT;ΔTðλÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr
�
ĤTþΔTðλÞ − ĤTðλÞ

�
2=TrĤ2

TðλÞ
q

ð8Þ

between the Hamiltonians ĤTðλÞ found by IQA, at fixed l
and different final times T and T þ ΔT. Since the operators
in L are orthonormal, this is the distance between the
couplings vectors ðh1; h2;…Þ of the two Hamiltonians.
When the annealing time T is sufficiently large, the
couplings fhjg converge to those of the adiabatic
Hamiltonian and RT;ΔTðλÞ goes to zero. In Fig. 1(a), we
show the maximum value of RT;ΔTðλÞ, for different
annealing times and system sizes. The functions
maxλ½RT;ΔTðλÞ� for different values of N overlap and fit
to maxλ½RT;ΔTðλÞ� ∝ 1=T. The error is inversely propor-
tional to the annealing time and is independent of the
system size because the expectation values corresponding

to the entries of the matrix KðlÞ
j;j0 converge for large N.

Having determined the adiabatic regime, we fix T ¼
16 000 and investigate the properties of the PH obtained
from the IQA.
In Fig. 1(b), we plot the fidelity FðλÞ ¼ jhψ ðlÞ

GSðλÞjψðλÞij2
between the target state jψðλÞi and the unique ground state

jψ ðlÞ
GSðλÞi of the adiabatic l-local Hamiltonian ĤðlÞðλÞ

obtained from the IQA. If λ < λc ¼ 1=2 the fidelity FðλÞ
is close to 1 even for relatively small values of l. This means
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that our algorithm finds an optimal l-local PH for the target
state. The scenario changes when λ > λc. Indeed, as we
show in [37], the capability of the evolution in Eq. (4) of
connecting local and nonlocal operators, as well as the
effective interaction range of its adiabatic solution, scales
with the correlation length. As a consequence, the effects
of long-range correlations can be accounted for by the
TDVP only by increasing the value of l. This happens even
though the Kitaev Hamiltonian is two-local, and is rem-
iniscent of what happens in quantum annealing at phase
transitions [43].
A more quantitative analysis is obtained by looking at

the fidelity as a function of l for different system sizes. If we
restrict our target state to λ < λc, the fidelity is close to 1

even at small values of l, and almost independent of N, see
Fig. 2(a). In Fig. 2(b), the fidelity is shown for a target state
jψðλÞi with λ close but beyond λc, λ ¼ 1.1λc. In this case,
the larger l the better the fidelity, as expected.
In order to better quantify when ĤðlÞðλÞ is a suitable PH,

let us fix a target accuracy ϵ. We can accept ĤðlÞðλÞ as a PH
if the fidelity between jψðλÞi and the ground state jψ ðlÞ

GSðλÞi
of ĤðlÞðλÞ, FlðλÞ ¼ jhψðλÞjψ ðlÞ

GSðλÞij2 is larger than 1 − ϵ.
This condition defines a minimal interaction range lϵ
required to adiabatically find the PH within the given
accuracy ϵ, i.e., FlðλÞ ≥ 1 − ϵ ∀ l ≥ lϵ. This length lϵ is
plotted versus N in Fig. 2(c) for ϵ ¼ 0.005 and different
values of λ. For λ < λc, lϵ weakly depends on the system
size, while, for λ > λc, lϵ scales almost linearly with the
system size.
(2) IQAwith a nonintegrable Ising chain: We apply the

IQA on a path of ground states jψðλÞi of a one-dimensional
Ising chain in transverse and longitudinal field

ĤIðλÞ ¼
XN
j¼1

�
σ̂xj σ̂

x
jþ1 − Bzσ̂

z
j þ BxðλÞσ̂xj

�
; ð9Þ

where σ̂x;zj are Pauli matrices, and σ̂xNþ1 ≡ σ̂x1. We choose
BxðλÞ ¼ 0.9 · ðλ − λcÞ with λc ¼ 0.5. Here, a first-order
quantum phase emerges at λ ¼ λc and allows us to further
challenge our method. We perform the IQA for λ∈ ½0; 1�,
N ∈ f4; 6; 8; 10g and Lð2Þ containing all the local transla-
tionally invariant operators up to range l ¼ 2. The time
schedule is λðtÞ ¼ 4ðt=TÞ3 − 6ðt=TÞ2 þ 3ðt=TÞ and has a
null derivative when λ ¼ λc to slowly cross the emerging
criticality.
Results of the IQA are summarized in Fig. 3 for Bz ¼ 0.8

(see [37] for Bz ¼ 0.9) corroborating our considerations
regarding the effectiveness of our method and the effect of
different order phase transitions on the adiabatic time and

(b)(a)

FIG. 1. IQA with fermionic Gaussian states. Panel (a): maxi-
mum value maxλ½RT;ΔTðλÞ� of the relative distance RT;ΔTðλÞ
between solutions of Eq. (6) with different annealing times T and
T þ ΔT ¼ 2T, for l ¼ 6, as a function of the annealing time, for
systems of different sizes. Panel (b): fidelity between the target

state jψðλÞi and the ground state jψ ðlÞ
GSðλÞi of the adiabatic l-local

Hamiltonian ĤðlÞðλÞ obtained via IQA. We consider a system of
50 sites and interaction ranges from l ¼ 1 to l ¼ 26.

(a) (b) (c)

FIG. 2. IQAwith fermionic Gaussian states. Panels (a) and (b): fidelity between the target state jψðλÞi and the ground state jψ ðlÞ
GSðλÞi of

the adiabatic l-local Hamiltonian ĤðlÞðλÞ as a function of the interaction range l and for different system sizes N [legend in panel (a)].
Panel (a) λ is just before the phase transition, i.e., at λ ¼ 0.9λc, in panel (b) just after the phase transition, i.e., at λ ¼ 1.1λc. Panel (c):
minimal interaction range lϵ required to ensure a fidelity F ≥ 1 − ϵ (ϵ ¼ 0.005) between the target state and the ground state of the
Hamiltonian obtained via the IQA, as a function of the system size and for different values of λ.
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on the error introduced by the TDVP. In panel (a) we plot
the fidelity FðλÞ between the target state and the ground
state of the IQA Hamiltonian, as a function of the control
parameter λ for different annealing times. We see that
before the phase transition at λc, a large fidelity is reached
also for short annealing times. Near λc the fidelity drops,
but, differently from the second order transition case, we
observe a large recovery after λc.
In Fig. 3(b), where we plot the final infidelity 1 − FðλÞ at

λ ¼ 1 for different annealing times, we observe that after
the critical point, the infidelity decreases polynomially with
the annealing time and becomes independent on the system
size. Remarkably, a small interaction range l ¼ 2 is
sufficient to construct an excellent PH in the adiabatic limit.
Discussion and conclusions.—Quantum annealing rep-

resents one of the major examples of the computational
potential of quantum many-body systems. In this work,
exploiting a combination of adiabatic approximation and
TDVP, we introduced an annealing technique for approxi-
mating the l-local parent Hamiltonian of a target many-
body state. We exemplified our method by reconstructing
PHs for the Kitaev fermionic chain and a quantum Ising
chain in longitudinal and transverse fields. The IQA allows
for efficient reconstruction of PHs for paths of many-body
states with finite correlation lengths, independently of the
integrability of the model or the emergence of a first-order
phase transition. The next step is to use IQA to design
Hamiltonians that would allow for the experimental prepa-
ration of quantum states relevant in many-body physics
and quantum information, directly from their wave func-
tions. Remarkable examples include quantum spin liquid
variational wave functions [44]. Finally, IQA only relies
on the knowledge of local expectation values. This
can be relevant for applications to the quantum marginal
problem [30,45–50].
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