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Depletion zones in polyelectrolyte solutions in contact with like-charged flat surfaces are investigated.
Using a coupled self-consistent field and Debye-Hückel approach, an explicit expression for the thickness δ
of the depletion layer is derived. It is found that δ ∼ δn þ cκ−1, where δn is the depletion thickness at a
neutral surface, c is a function of the electrostatic characteristics of the system, and κ−1 is the Debye length.
It is argued that the theory still holds beyond the mean-field approximation, which is confirmed by
quantitative agreement between our theoretical results and experiments.
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Introduction.—The depletion interaction [1,2] plays a
crucial role to explain key aspects of the dynamics,
colloidal interactions, and resulting phase behavior in
materials and living systems involving colloidal mixtures.
This depletion concept allows for the quantification of
properties in model colloid-polymer mixtures [3] and
provides a qualitative description of several phenomena
in practical applications [4].
Considerable progress has been made in understanding

depletion phenomena in uncharged colloid-polymer mix-
tures over the past few decades, thanks to extensive
scientific efforts [5–9]. The current challenge lies in
comprehending interactions in mixtures where the direct
interactions between colloids and/or depletants are more
realistic than pure hard-core interactions [10]. This
involves considering factors such as charges in colloid-
polyelectrolyte mixtures, an area that remains less under-
stood from both experimental and theoretical perspec-
tives [11].
Mixtures of polyelectrolytes and like-charged colloidal

particles in an aqueous salt solution are ubiquitous in
both industrial applications [12,13] and biological
systems [14,15]. A typical example is the high concen-
tration of various charged macromolecules and proteins in
living cells, leading to macromolecular crowding pheno-
mena [15]. Because of the electrostatic repulsion between
the polyelectrolyte monomers and the colloidal surface, a
depletion zone void of polyelectrolytes and with typical
size δ is formed around the colloidal particles. The size of
the depletion zone has significant impact on colloidal
interactions [4,16], dynamics [17–19], and phase behavior
[9,20] of such mixtures. Depletion forces significantly
affect protein stability within cells, with electrostatic
interactions playing a crucial role [21].

The lack of a theoretical description of electrostatically
driven depletion, next to its complexity, is possibly due to
the absence of experimental measurements of δ. However,
in recent years, various measurements of δ of a poly-
electrolyte solution next to a flat like-charged surface have
been performed [19,22,23], allowing for a direct compari-
son with theory. In these experiments, anomalously
large depletion zones with a size up to 25 times those of
neutral systems were found [22], owing to the repulsive
electrostatic interactions of the polyelectrolytes with the
surface.
Thus, in this Letter, we develop a theory to describe

electrostatically driven depletion and derive an explicit
expression for the thickness of the depletion layer adjacent
to a like-charged flat surface. We find that δ logarithmically
depends on the surface potential and linearly varies with the
Debye length κ−1. The scaling behavior of our theory is
consistent with previous theoretical work [24] and is in
quantitative agreement with both experiments and exact
mean-field calculations.
Theory.—We model the polyelectrolytes with a total

charge eZp, where e is the elementary charge, as continuous
chains with degree of polymerizationN, Kuhn length l, and
an average charge per monomer of f ¼ Zp=N. The poly-
electrolytes are in solution at a bulk concentration of
cb ¼ npN, where np is the number density of polyelectro-
lytes, and are mixed with a 1∶1 salt consisting of point
particles at number density cs. The solution is in contact with
a flat surface with surface charge density eσ. Apart from
electrostatics, the polyelectrolytes have no specific inter-
actions with the pointlike salt ions. In the limit of infinitely
long polyelectrolyte chains, the local density of polyelec-
trolytes is given by ρðxÞ ¼ cðxÞ=cb ¼ gðxÞ2, where gðxÞ
satisfies a second-order differential equation [25,26],
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∂
2g
∂x2

¼ 6

l2
uðxÞgðxÞ; ð1Þ

which may be derived using either field theoretical methods
[27] or phenomenologically [25]. Equation (1) is the
ground-state approximation to the well-known Edwards
equation [6,28,29]. The quantity uðxÞ in Eq. (1) is the local
potential, relative to the bulk solution in units of kBT, which
in a mean-field approximation is given by [27]

uðxÞ ¼ vcb
�
gðxÞ2 − 1

�þ fΨðxÞ; ð2Þ
where v is the excluded volume between monomers and
ΨðxÞ ¼ ψðxÞe=ðkBTÞ is the normalized local electrostatic
potential. The local electrostatic potential is a solution to the
Poisson-Boltzmann equation,

∂
2Ψ
∂x2

¼ κ2s sinhΨðxÞ þ 4πlBfcb½eΨðxÞ − gðxÞ2�; ð3Þ

where κ2s ¼ 8πlBcs, with lB being the Bjerrum length.
In general, the coupled set of Eqs. (1)–(3) has to be
solved numerically with suitable boundary conditions,
which for the electrostatic depletion problem at hand are
gð∞Þ ¼ 1, gð0Þ ¼ 0, Ψð∞Þ ¼ 0, and Ψ0ð0Þ ¼ −4πlBσ
(constant surface charge), where the prime denotes
differentiation with respect to x. With the obtained density
profile, the depletion thickness is subsequently calculated
as δ ¼ R∞

0 ½1 − gðxÞ2�dx.
We now derive an approximate analytical expression for

δ. Assuming ΨðxÞ ≪ 1, we first take the Debye-Hückel
approximation and linearize Eq. (3),

∂
2Ψ
∂x2

¼ κ2ΨðxÞ − 4πlBfcb½gðxÞ2 − 1�; ð4Þ

where κ2 ¼ 4πlBðfcb þ 2csÞ. We now split the density
profile of the polyelectrolyte monomers into two hypo-
thetical regions as depicted in Fig. 1: an electrostatic
depletion zone, where electrostatic repulsion between the
monomers and surface is dominant [the second term of
Eq. (2) dominates] and an excluded volume depletion zone
[where the first term of Eq. (2) dominates].
We make the a priori assumption that within the

electrostatic depletion zone gðxÞ ≪ 1 and is virtually sta-
tionary due to the electrostatic repulsion between the
monomer segments and the surface. Beyond the electro-
static depletion zone ΨðxÞ ≈ 0. One may then use a
separation of length-scale approximation and solve
Eq. (4) with a stationary gðxÞ to obtain

ΨðxÞ ≃ 4πlBσ
κ

e−κx þ 4πlBfcb
κ2

�
gðxÞ2 − 1

�
; ð5Þ

which is expected to be accurate within the electrostatic
depletion zone, but inaccurate in the excluded volume zone.
Insertion of Eq. (5) into Eqs. (1) and (2) yields

∂
2g
∂x2

¼ 2

ξ2
�
gðxÞ3 − gðxÞ�þ 24πlBfσ

κl2
e−κxgðxÞ; ð6Þ

where we defined the mean-field correlation length as
ξ2 ¼ l2=½3ðvþ 4πlBf2=κ2Þcb�, with 4πlBf2=κ2 an effective
electrostatic excluded volume. One may classify the first
term on the right-hand side of Eq. (6) as the excluded
volume contribution and the second term as a contribution
due to the repulsive interaction between a monomer and the
surface.
Within the electrostatic depletion zone gðxÞ ≪ 1, such

that gðxÞ3 − gðxÞ < 0, while the electrostatic repulsion is
positive and dominant, and thus g00ðxÞ > 0. There exists,
however, an inflection point g00ðxÞ ¼ 0 where the repulsive
electrostatic contribution to Eq. (6) is exactly canceled by
the excluded volume contribution. It is easy to verify that at
this point Eq. (2) uðxÞ ¼ 0. We define this point x ¼ d as
the edge of the electrostatic depletion zone; for x > d the
depletion is no longer dominated by electrostatics. Using
the condition g00ðdÞ ¼ 0, we solve Eq. (6) for d to obtain

d ≃ κ−1 ln

�
12πlBfξ2σ

κl2ð1 − gðdÞ2Þ
�
: ð7Þ

The limit f ¼ 0 implies d should vanish, which we use to
determine gðdÞ2 ≈ ½1þ 12πfξ2lBσ=ðκl2Þ�−1 to yield

d ¼ κ−1 ln

�
12πlBfξ2σ

κl2
þ 1

�
: ð8Þ

For f ¼ 0, gðdÞ2 ¼ 1, which seems contradictory, as
d ¼ 0 and gð0Þ ¼ 0 in this case. However, Eqs. (4) and (6)
are strictly valid only in the electrostatic depletion zone;
therefore, Eq. (8) is also strictly valid only for nonzero f, as

FIG. 1. Schematic picture of the subdivision of the interfacial
region in two separate zones: an electrostatic depletion zone with
characteristic thickness d and an excluded volume zone with
characteristic thickness ξ. At x ¼ d there is a phantom neutral
surface.
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the electrostatic depletion zone is undefined for
f ¼ 0. This can be better understood by realizing that
solving Eq. (6) with g00ðxÞ ≈ 0 yields gðxÞ2 ¼ ρðxÞ ¼
1 − 3fðξ2=l2ÞΨ0e−κx, where Ψ0 ¼ 4πlBσ=κ. This can be
regarded as a first order expansion in ΨðxÞ ¼ Ψ0e−κx. The
polyelectrolyte density is then ρðxÞ ≃ e−feffΨðxÞ, where
feff ¼ 3fξ2=l2 is an effective charge. Thus, within the
electrostatic depletion zone the polyelectrolyte roughly
behaves as a hypothetical macroion with charge feff . For
f ¼ 0, ρ ¼ 1, while d ¼ 0, as within this electrostatic
depletion zone the concentration would be equal to the bulk
concentration.
Outside the electrostatic depletion zone, the solution

approximately behaves as if it were adjacent to a neutral
wall, as the excluded volume contribution then is dominant.
Setting σ ¼ 0 in Eq. (6) and solving gives δn ¼ ξ [6]. The
total depletion thickness is then roughly given by the sum
of the depletion thickness ξ of a polyelectrolyte solution in
contact with a neutral wall, and the size d of the electro-
static depletion zone δ ≃ ξþ d,

δ ≃ ξþ κ−1 ln

�
12fξ2πlBσ

κl2
þ 1

�
: ð9Þ

Note that the concept of a phantom neutral surface is
analogous to defining an effective hard-sphere diameter in
the thermodynamic perturbation theory of charged systems,
as discussed by Barker and Henderson [30]. Equation (9)
has a similar form to the depletion thickness around a small
spherical protein with radius a in a semidilute poly-
electrolyte solution, as derived using a Wentzel-Kramers-
Brillouin approximation by Odijk: δ ≃ aþ cκ−1, where c
depends logarithmically on the charge of the protein
particle [24]. Note that Eq. (9) is derived using a point-
ion mean-field approximation, which ignores ion-ion cor-
relations and excluded volume interactions between ions
and is strictly only valid for low ion concentrations [31]. It
is known that for macroions near same-sign surfaces, finite-
sized microions cause the size of the depletion zone to
shrink [32]. This effect can primarily be attributed to
excluded volume interactions and a higher effective con-
centration of species in the solution. We anticipate that at
high salt concentrations a similar trend is observed in
polyelectrolytes at same-sign surfaces.
Equation (9) was derived using the infinite chain-length

assumption N → ∞, such that the relevant length scale is
the (bulk) correlation length ξ. However, for neutral
systems, Fleer et al. [7] showed that finite chain-length
corrections can be taken into account by formally replacing
ξ with the relevant length scale δ−2n ¼ δ−20 þ ξ−2, where in a
mean-field approximation δ20 ¼ 2Nl2=ð3πÞ. In the dilute
limit δn ¼ δ0, while in the semidilute and concentrated
regime δn ¼ ξ. In uncharged polymer solutions, δn can be
regarded as the N-dependent generalized correlation length
[7]. The formal replacement ξ → δn yielded quantitative

agreement with both experimental work and exact mean-
field computations [7,33].
A simple phenomenological argument can be made for

the replacement ξ → δn: Consider Eq. (6) for a neutral
system f ¼ 0 of polymers with infinite chain length. The
solution of which is given by gðxÞ ¼ tanhðx=ξÞ, such that
ρðxÞ ¼ tanhðx=ξÞ2 and δ ¼ R

∞
0 ½1 − ρðxÞ�dx ¼ ξ, in agree-

ment with the work of De Gennes [6]. Contrastingly, for
finite chain length in the dilute regime, ρðxÞ ≃ tanhðx=δ0Þ2
[34]. Replacing ξ → δn in Eq. (6) exactly inter-
polates between these two limits (see Fig. 8 of Ref. [7]).
It turns out that, in general, for polymers near a non-
adsorbing neutral interface the density profile is given by
ρðxÞ ≃ tanhðx=δnÞ2, as long as the exact expressions for the
dilute limit δ0 and semidilute regimes ξ are chosen [33].
Therefore, we propose that Eq. (9) is generally valid as

long as the “exact” relevant length scale is introduced.
Thus, we make the formal replacement ξ → δn. This formal
replacement yields our main result for finite N,

δ ≃ δn þ κ−1 ln

�
12fδ2nπlBσ

κl2
þ 1

�
: ð10Þ

All equations derived so far are valid next to a flat wall.
Extensions to the depletion thickness around a spherical or
cylindrical particle are straightforward by performing the
same derivation using either spherical or cylindrical coor-
dinates in Eqs. (4) and (6).
Results.—We now compare Eqs. (9) and (10) with

experimental results. Barraud et al. [22] measured the
depletion thickness δ using a dynamic surface force
apparatus, through the apparent slip of the solution.
These authors used a salt-free hydrolyzed polyacrylamide
solution with N ¼ 2.6 × 105 in contact with a same-sign
surface consisting of platinum with a one-monomer
thick layer of the hydrolyzed polyacrylamide. In this
system, jfj ¼ 0.25 and we assume no counterion conden-
sation takes place [22], as the distance between charges
on the backbone is larger than the Bjerrum length [35].
The surface charge density was measured to be
jσj ¼ 0.192 nm−2. Because of the large size of the poly-
electrolytes, the relevant length scale is ξ. To account for
correlations in the monomer density, we go beyond our
mean-field theory and estimate ξ using the variational
theory of Muthukumar [36]. The measured concentration
polyelectrolyte range c ≫ c�, where c� is the overlap
concentration such that the system is in the highly
entangled regime [22], for which ξ ≃ ð24πcblBf2=l2Þ−1=4
[Eq. (1.14) of Ref. [36] ].
Direct comparison between Eq. (9) and the experimental

measurements is shown in Fig. 2. As all parameters of the
theory are known, no adjustable fit parameters are used.
Here we find reasonably close agreement between the
analytical theory and the experimentally measured
depletion thickness. The inset shows the ratio δ=ξ, which
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reveals that the excluded volume contribution to δ is small
compared to the electrostatic contribution. As expected, the
depletion thickness decreases with increasing polyelectro-
lyte concentration, as both the surface charges and poly-
electrolyte charges are increasingly screened by the
counterions. Similar effects have been observed in solu-
tions of macroions near same-sign surfaces [32].
Similarly, we may compare our theory with the recent

reflectivity measurements by Gvaramia et al. [23]. These
authors used salt-free sodium polystyrene sulphonate
(NaPSS) solution with various degrees of polymerization
in contact with a silica surface and obtained δ as a function
of the polyelectrolyte bulk concentration. Unfortunately, no
surface charge density was measured, thus we use this as a
fit parameter. These authors found an extraordinarily low
concentration of free sodium ions of 1% of the theoretical
maximum, corresponding to an effective charge per mono-
mer of jfj ¼ 0.01. The pH of the solution was 4, such that
the concentration of free sodium ions is comparable to that
of the hydronium ions. In this case, Eq. (1.12) of Ref. [36],
ξ ≃ l=ð24cbπlBf2=κ2Þ1=2, is applicable. To test the validity
of Eq. (10) we compare measurements for N ¼ 3370 and
N ¼ 114 monomers per chain with the theoretical predic-
tions in Fig. 3. Because of the finite and relatively small N,
1=δ20 ≠ 0, for which we use the mean field δ0. For a
universal fit value of jσj ¼ 0.03 nm−2, semiquantitative
agreement is found between the experimental data points
and Eq. (10), which is well within the surface charge
density range of silica [37].
The ratio δ=δn (inset) shows that the excluded volume

contribution to the depletion thickness δ is small compared
to the electrostatic contribution over the whole concen-
tration range. The electrostatic contribution reaches a
maximum for both chain lengths, which is due to a subtle
balance between increased electrostatic screening and

decreasing δn. The maximum corresponds to the maximum
increase in the size of the depletion zone, compared to the
neutral case.
The dashed curve in Fig. 3 is Eq. (9) without the finite N

correction, showing that, for small N, this correction is
indeed necessary. It is of fundamental interest to compare
Eq. (10) with exact numerical self-consistent field theory
calculations of the depletion thickness. To this end, we
employ Scheutjens-Fleer self-consistent lattice computa-
tions (SF-SCF) for charged systems [38–40], which is the
lattice equivalent of the full Edwards equation [29] coupled
to the Poisson-Boltzmann equation. The depletion thick-
ness calculated using Eq. (10) (solid curves) and Eq. (9)

FIG. 2. The depletion thickness of a salt-free hydrolyzed
polyacrylamide solution at a same-sign surface as a function
of the polyelectrolyte concentration calculated using Eq. (9),
with ξ calculated using Eq. (1.14) of Ref. [36] with f ¼ 0.25
and σ ¼ 0.194 nm−1 [22]. The data points are obtained
from Ref. [22].
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FIG. 3. The depletion thickness of a salt-free NaPSS solution at
a silica surface as a function of the polyelectrolyte concentration
calculated using Eq. (10), with ξ calculated using Eq. (1.12) of
Ref. [36] with jfj ¼ 0.01. The dotted curve is Eq. (9) for infinite
chain length. The data points are obtained from Ref. [23]. Fitting
the surface charge density yielded jσj ≈ 0.03 nm−2.
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FIG. 4. The mean-field depletion thickness in a polyelectrolyte
solution at a flat wall as a function of the polyelectrolyte chain
length for various φb ¼ cbl3. Parameters: jfj ¼ 0.1, v ¼ l3,
10 mM salt, and jσj ¼ 0.1 nm−2. The symbols are Scheutjens-
Fleer self-consistent field computations, the solid curves are
Eq. (10), and the dashed curves are Eq. (9).

PHYSICAL REVIEW LETTERS 132, 158103 (2024)

158103-4



(dashed curves) are compared with SF-SCF computations
(symbols) as a function of N at three different φb ¼ cbl3

and 10 mM salt in Fig. 4. We used jfj ¼ 0.1 and
l ¼ 0.3 nm. Except for small N < 50, close agreement
between the exact mean-field calculations and Eq. (10) is
found. Small deviations between Eq. (10) and the SF-SCF
computations highlight the approximate nature of our
theory. Nevertheless, in general, for δ0 ≲ ξ the finite-N
correction is important, δ0 ∼ Rg, thus for systems below the
overlap concentration.
Coming back to the discussion below Eq. (8), in the

electrostatic depletion zone, the polyelectrolyte thus
behaves as a macroion with effective charge feff ¼ 3fδ2n=l2,
which in dilute conditions gives feff ∼ fN ¼ Zp as
expected, and feff ¼ 3fξ2=l2 in the semidilute regime.
Thus, feff ∼ fNcorr, where Ncorr is the number of correlated
monomers, calculated as Ncorr ¼ δ2n=l2.
Conclusions.—In summary, we have derived an analyti-

cal approximation for the size of the depletion zone δ in
polyelectrolyte systems in contact with a same-sign sur-
face. It was found that the interfacial region can be
understood to be composed of two zones, an electrostatic
depletion zone, where the polyelectrolyte roughly behaves
as a macroion with an effective charge, and an excluded
volume zone, where the polyelectrolyte behaves as it would
be next to a neutral surface. The thickness of the depleted
layer was found to scale as δ ∼ κ−1 ln κ−1. When one uses a
correlation length beyond the mean-field approximation,
our analytical theory was found to be in quantitative
agreement with experimental measurements. However,
more experiments and simulations are necessary to test
the full applicability of the theoretical predictions.

The authors acknowledge financial support from the
Ministry of Economic Affairs of The Netherlands via
the Top Consortium for Knowledge and Innovation
(TKI) road map Chemistry of Life (Grant
No. CHEMIE.PGT.2021.015). The authors acknowledge
Professor F. A. M. Leermakers for making the NAMICS [41]
SF-SCF computation software package open source.

*r.tuinier@tue.nl
[1] S. Asakura and F. Oosawa, On interaction between two

bodies immersed in a solution of macromolecules, J. Chem.
Phys. 22, 1255 (1954).

[2] A. Vrij, Polymers at interfaces and the interactions in
colloidal dispersions, Pure Appl. Chem. 48, 471 (1976).

[3] W.-K. Poon, The physics of a model colloid polymer
mixture, J. Phys. Condens. Matter 14, R859 (2002).

[4] H. N. W. Lekkerkerker, R. Tuinier, and M. Vis, Colloids and
the Depletion Interaction, 2nd ed., (Springer, New York,
2024).

[5] E. Eisenriegler, Dilute and semidilute polymer solutions
near an adsorbing wall, J. Chem. Phys. 79, 1052 (1983).

[6] P. G. De Gennes, Scaling Concepts in Polymer Physics
(Cornell University Press, Ithaca, 1979).

[7] G. J. Fleer, A. M. Skvortsov, and R. Tuinier, Mean-field
equation for the depletion thickness, Macromolecules 36,
7857 (2003).

[8] G. K. Cheong, X. Li, and K. D. Dorfman, Wall depletion
length of a channel-confined polymer, Phys. Rev. E 95,
022501 (2017).

[9] R. Tuinier, P. A. Smith, W. C. K. Poon, S. U. Egelhaaf,
D. G. A. L. Aarts, H. N. W. Lekkerkerker, and G. J. Fleer,
Phase diagram for a mixture of colloids and polymers with
equal size, Europhys. Lett. 82, 68002 (2008).

[10] K. Miyazaki, K. Schweizer, D. Thirumalai, R. Tuinier, and
E. Zaccarelli, The Asakura-Oosawa theory: Entropic forces
in physics, biology, and soft matter, J. Chem. Phys. 156,
080401 (2022).

[11] M. Ioka, A. Toyotama, M. Yamaguchi, J. Nozawa, S. Uda,
T. Okuzono, M. Yoshimura, and J. Yamanaka, Crystalliza-
tion of charged gold particles mediated by nonadsorbing
like-charged polyelectrolyte, J. Chem. Phys. 154, 234901
(2021).

[12] J. W. Nicholson, Polyelectrolyte materials-reflections on a
highly charged topic, Chem. Soc. Rev. 23, 53 (1994).

[13] L. N. Butler, C. M. Fellows, and R. G. Gilbert, Effect of
surfactants used for binder synthesis on the properties of
latex paints, Progress in organic coatings 53, 112 (2005).

[14] N. Kozer, Y. Y. Kuttner, G. Haran, and G. Schreiber,
Protein-protein association in polymer solutions: From
dilute to semidilute to concentrated, Biophys. J. 92, 2139
(2007).

[15] R. de Vries, Depletion-induced instability in protein-DNA
mixtures: Influence of protein charge and size, J. Chem.
Phys. 125, 014905 (2006).

[16] A. R. Denton and W. J. Davis, Influence of solvent quality
on depletion potentials in colloid-polymer mixtures, J.
Chem. Phys. 155, 084904 (2021).

[17] T.-H. Fan, J. K. G. Dhont, and R. Tuinier, Motion of a
sphere through a polymer solution, Phys. Rev. E 75, 011803
(2007).

[18] P. N. Pusey, A. D. Pirie, and W. C. K. Poon, Dynamics of
colloid-polymer mixtures, Physica (Amsterdam) 201A, 322
(1993).

[19] S. J. Park, A. Shakya, and J. T. King, Depletion layer
dynamics of polyelectrolyte solutions under Poiseuille flow,
Proc. Natl. Acad. Sci. U.S.A. 116, 16256 (2019).

[20] G. Pandav, V. Pryamitsyn, J. Errington, and V. Ganesan,
Multibody interactions, phase behavior, and clustering in
nanoparticle-polyelectrolyte mixtures, J. Phys. Chem. B
119, 14536 (2015).

[21] G. Ping, G. Yang, and J.-M. Yuan, Depletion force from
macromolecular crowding enhances mechanical stability of
protein molecules, Polymer 47, 2564 (2006).

[22] C. Barraud, B. Cross, C. Picard, F. Restagno, L. Léger, and
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