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Many classes of active matter develop spatial memory by encoding information in space. We present a
framework based on mathematical billiards, wherein particles remember their past trajectories. Despite its
deterministic rules, such a system is strongly nonergodic and exhibits intermittent statistics and complex
pattern formation. We show how these features emerge from the dynamic change of topology. Our work
illustrates how the dynamics of a single-body system can dramatically change with spatial memory, laying
the groundwork to further explore systems with complex memory kernels.
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In cognitive psychology, spatial memory refers to the
ability to remember and mentally map the physical spaces
in the brain [1–6]. It is an essential process in spatial
awareness and to reach optimized navigation through
complex environments, either for a taxi driver in London
to find the fastest route [7,8] or for a mouse to quickly find
food in a maze [9]. In fact, a variety of species, from
honeybees [10,11] and ants [12] to birds [13], bats [14], and
human [1,15], share this cognitive feature. Spatial memory,
however, can also be achieved externally: in contrast to a
cognitive map (where information is stored internally in the
brain), the information is encoded in space itself, and then
retrieved when the organism reencounters it. Such memory
can potentially enable collective behavior in groups and
optimize cost on the organismal level [16,17]. External
spatial memory is often mediated by chemical trails and,
generally speaking, could be attractive (self-seeking) or
repulsive (self-avoiding). Some species of bacteria are
attracted to the biochemical trails they leave behind, and
by that, they form emergent complex patterns [18–20].
Examples of self-avoiding spatial memory can also be
found in the slime mold Physarum polycephalum—an
eukaryotic multinucleated single cell—which forms spatial
memory by leaving extracellular slime at the navigated
location while searching for food. The slime then acts as a
cue and the cell avoids those regions which have been
explored already [21] (see also other memory mechanisms
based on vein dilatation and pruning in flow networks
[22,23]). Other biological examples can be found in
epithelial cell migration when cells modify their external
environment by reshaping their extracellular matrix or by
secreting biochemical signalling cues [24,25].
The self-avoiding spatial memory is not limited to living

systems, but can also be observed in physicochemically
self-propelled particles that actively change the energy
landscape in which they maneuver. An example is auto-
phoretic active droplets which move due to interfacial

stresses caused by surface tension gradients [26–30].
Active droplets leave a chemical trail behind as they move
around and avoid these trails due to the local change in
concentration gradients. Similar self-avoiding behavior had
been observed in other self-propelling active “particles”
such as spider molecules [31,32] and even nanoscale
surface alloying islands [33].
Understanding and predicting the dynamics of active

systems with memories is a difficult task. Most experi-
mental systems are highly nonlinear and include probabi-
listic features that are often time and material dependent.
Additionally, the interaction with the boundaries presents
more complexities. Here, we ask the question of how a
dynamical system with self-avoiding memory behaves in
two dimensions. We present a fully deterministic model
with minimal ingredients for motile particles with spatial
memory. We report that even such a simple single-body
dynamical system exhibits chaos and complex interactions
with boundaries, resulting in anomalous dynamics and
surprisingly intermittent behavior.
Consider a classical billiard: a massless point particle

moves ballistically on a closed two-dimensional domain
Ω ⊂ R2. The particle has a constant speed and does not
experience any frictional or viscous dissipation. When
reaching a boundary ∂Ω, the particle follows an elastic
reflection; i.e., the angle of incidence is equal to the angle
of reflection.
For over a century, mathematical billiards of various

shapes have been studied by physicists and mathematicians
to understand dynamical systems and geometries related to
various problems, from the theory of heat and light [34,35],
and (often Riemannian) surfaces [36–44], to chaos in
classical, semiclassical, and quantum systems [45–53].
Here, we present a billiard with memory. In contrast to

classical billiards, the particle continuously modifies the
topology of the billiard table, creating spatial memory. We
consider the simplest type of self-avoiding spatial memory:
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the particle reflects on its own trajectories from the past and
avoids them in the same way it reflects on the boundaries
[see Fig. 1(a) and Supplemental Material [54], Video 1].
This self-avoiding billiard (SAB) features a series of
interesting properties. First, it fundamentally lacks periodic
orbits (closed geodesics), as the particle cannot follow its
past. Second, the particle presents a continuous-time
dynamical system with self-induced excluded volume
[see Fig. 1(c)]. This means that in the long term the particle
reduces the size of its domain Ω̃ðtÞ ¼ R

Ω dx by consecutive
intersections, i.e., Ω̃ðtÞ → 0. Hence, in a SAB, particles
have a finite total length L and eventually trap themselves
in singular points in space and time. We refer to this
longtime behavior as the arrested state. Finally, the topo-
logy of a SAB is not fixed as the generated spatial memory
dynamically (and dramatically) changes the topology of the
surface in a nontrivial manner. Consider a squared table.
The topological equivalent surface of a classic square
billiard is a torus (easily obtained via the process of
unfolding [40,62]). A self-avoiding particle generates a
singular point at t ¼ 0, the moment it is introduced inside
the square. As it begins to move (t > 0), the singularity
(now a line) extends inside the domain, resulting in surfaces
with topological genus greater than 1 [42,63]. At some
point, the particle forms a new closed domain which is most

likely an irrational polygon with an unidentified topologi-
cal equivalent surface [see Fig. 1(c)].
Importantly, the topological change results in nonergodic

characteristics (the particle does not visit everywhere in
space, over time) and the anomalous transport of particles
and memory-induced chaos: a small change in the initial
condition of the particle can drastically change their
trajectories as time grows. We demonstrate this in an
example shown in Fig. 1(b). The trajectory of the two
initially close particles with the same initial angle suddenly
separates at the point close to their initial conditions. This
bifurcation leads to significantly different trajectories,
which eventually self-trap at a distance rf from each other
(see Video 2 in Supplemental Material [54]).
One effective way to categorize the trajectories and

demonstrate the chaos in SAB is to record the incidence
vector of each particle Mfpig, such that boundaries of the
polygons with N edges are labeled as I, II, III,… and the
segments of the trajectories are labeled as i∈N, where
i ≥ 1 [see Fig. 1(c)]. Two initially closed particles have the
same incident vector until the bifurcation moment. This is
shown in Fig. 1(d) next to the variation of the effective area
Ω̃ around two initially close particles [same as in Fig. 1(b)]
and their distance r. The values of Ω̃ drop every time the
particle traps itself in a new polygon, and clearly, Ω̃ → 0

(a) (b) (d)

(e)(c)

FIG. 1. (a) Underlying principle of self-avoiding billiards. A particle moves ballistically from the initial condition ðx0; α0Þ where x0 is
the initial position vector and α0 is the initial angle. The particle elastically reflects on the boundaries and its own trajectories, creating a
line segment of length li, where i∈ ½1;∞Þ is the number of segments. The particle moves until it self-traps in a singular point, where the
total length of the trajectory is L ¼ Σli (see Supplemental Material [54], Video 1). (b) Two particles at initially close distance
r0 ¼ jx2

0 − x1
0j and identical initial angle α0 diverge significantly from their path and self-trap on distinct locations at a distance rf (see

Supplemental Material, Video 2). (c) A self-avoiding particle changes the effective geometry of the billiard (Ω, highlighted in blue) over
time.Mpi

denotes the incident vector of the particle where I, II, and III are the left, bottom, and right edges of the triangle, respectively,
and the digits refer to the segment numbers of the trajectory (e.g., 1 for l1). (d) The dynamics of effective billiard area Ω̃ and the distance
between the two particles r. The inset shows the ensemble average of the effective area versus time normalized by the trapping time tf.
(e) Distribution of rf for polygons with N ∈ ½3; 8�. In all cases, r0 ¼ 10−3 and the distributions are calculated with 105 samples.
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and r → rf as t → ∞ (large number of bounces). Less
evident is the probability of rf for a pair of close particles
that are randomly placed in a billiard. Figure 1(e) shows the
ensemble-averaged probability density function of rf for
polygons of N ∈ ½3; 8�. While the majority of particles stay
close to each other, many end up at larger distances,
sometimes more than 100 times the initial one. The
probability of a larger final distance rf decays like a power
law, approximated as ρ ∼ r−pf , where p ≈ 1.4–1.7 (with a
cutoff length set by the maximum length possible in a
polygon). The origin of the power-law behavior is yet
unclear to us. This class of chaos observed in SAB shares
similarities to the concepts of pseudo chaos (also know as
weak or slow chaos) [63–66], where singular topological
features change the fate of initially close particles, e.g., in
Ehrenfest billiard [66] or billiards with barriers [67,68]. A
major difference here is that the singular features are
induced by the particles themselves and hence depend
on the initial particle conditions and the shape of the
billiard.
Given the chaotic and self-trapping nature of SAB, a

natural question arises: What specific locations in space are
particles most likely to become trapped? And how does this
likeliness depend on the (initial) geometry of the billiard?
To answer these questions, we study self-avoiding rational
polygonal billiards with different numbers of edges,
N ∈ ½3;∞Þ. To this end, we perform computer simulations
of 108 particles with random initial position vector ðx0; α0Þ,
where x0 is the position vector inside Ω and α0 is the initial
angle (see Supplemental Material Sec. A for the details of
numerical implementation [54]). Note that the particles do
not interact; hence all the present results correspond to a
single-body system.
Figure 2(a) shows the probability density function of

self-trapped locations xf when t → ∞ for the triangular
billiard (N ¼ 3). The chaotic properties of SAB result in
highly complex and rich patterns. This is associated with
sets (modes) of trajectories, some short-lived and some
extremely long-lived. This can be seen in the distribution of
the total length of the trajectories L, shown in Fig. 2(b) (see
Supplemental Material Sec. B for the statistics and calcu-
lation of the line segments and incident angles and
Supplemental Material Sec. C for illumination and mixing
tests [54]).
For simplicity, we analyze this highly intermittent dis-

tribution in five different regions (I–V) of total length (an
alternative could be to look at sets of particles with similar
incident vectors, M; see Supplemental Material Sec. D
[54]). Region I belongs to short-lived particles 0 < L ≤ 3
where the particle self-traps quickly after the movement
begins. The majority of these particles trap near the
triangular edges. The distribution in region II is different.
Particles in this region move for longer distances and form
complex structures inside the billiard. These structures
suggest the presence of multiple sets of trajectories.

Regions I and II include about 60% (29.4% and 29.3%,
respectively) of all particles. The rest (regions III–V) are
particles with a higher total length, featuring a heavy-tailed
distribution [see the inset in Fig. 2(b)]. Particles in these
regions generally do not end up near the vertices and
efficiently use the available space without self-trapping. The
rare cases (extreme events) of ultralong trajectories occur in
region V. The long lifetime of these particles is a result of a
zigzag motion between two almost parallel lines which
were previously formed by the particle. Some of these
trajectories are 20 times longer than the average trajectory
length. However, the probability of their formation is less
than 0.03%.
The spatial distribution of the self-trapping positions

highly depends on the initial shape of the billiard.
Figure 3(a) shows the arrested states for various regular
polygons, where the polygons are constructed by choosing
N equidistributed points on a unit circle (see Supplemental
Material Sec. E for the counterpart of Fig. 2 for other
polygons [54]). The total length distribution of these
geometries and also polygons with a higher number of
vertices are shown in Fig. 3(b). The dihedral symmetric

(a)

(b)

(c)

FIG. 2. The arrested state of triangular self-avoiding billiard.
(a) Probability density (ρ) of final self-trapping locations. (b) The
total length distribution. Inset: semilogarithmic representation to
highlight the tail. (c) Distribution of self-trapped positions in
regions I–V, shown in (b), and the examples of trajectories of
various lengths. The inset on the right shows a magnified view of
the zigzag motion in region V. For other polygons, see Supple-
mental Material Sec. E [54].
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final patterns (with N rotation and N reflection sym-
metries) clearly vary with the geometry of the billiard. But a
few features seem to be universal. Particles in even
polygons tend to trap more near the vertices and also have
a higher chance of a long lifetime (L), since the polygon
itself features parallel walls, allowing for zigzag bounces.
In contrast, the self-trapping probability in the center is
higher for odd polygons, and the probability of a long
lifetime is low. Notably, the triangle is the only polygon for
which highly likely arbitrarily small orbits are possible
since it has interior angles smaller than π=2. Also remark-
ably, the odd and even billiards do not converge to a similar
distribution even for large values of N , despite that their
shapes approach a circle [see Fig. 3 for the comparison of
enneadecagon (N ¼ 19) and icosagon (N ¼ 20)]. This
means the effect of parallel walls and the consequent zigzag
trajectories remains significant even for large N ; hence a
long tail persists in the length distribution of even billiards.
Note that, the case of a perfect circle features ring patterns
in the arrested state, a characteristic expected in a geometry
with full continuous symmetry. The details of such rings
(location and density), however, remains open to further
study (see Supplemental Material Sec. F [54]).

The results presented here illustrate the complex nature
of dynamical systems with spatial memory. In contrast to
previous studies on active particles with memory (e.g.,
those used in [69–75]), the current deterministic frame-
work, based on mathematical billiards, employs minimal
microscopic rules without noise or particle interaction. Yet,
complex patterns and anomalous transport emerge due to
memory-induced topological changes.
We found that ballistic particles with spatial memory self-

trap and exhibit topology-induced chaos. These dynamical
characteristics make it nontrivial to predict the long-
time asymptotic behavior of the system. Nonetheless, this
limit can be accessed through numerical simulations. As a
dynamical system, a SAB fundamentally differs fromclassic
billiards because the surface onwhich particles flow evolves
over time, and the shape of the polygon almost always
morphs into an irrational one, which is considerably more
challenging to treat mathematically. Nevertheless, the initial
shape of the polygon governs the final arrested state, as
demonstrated in Fig. 3.
There are several immediate opportunities to extend the

findings of this Letter. Classic billiards of different geom-
etries in elliptic or hyperbolic systems (e.g., stadium or

(a)

(b)

FIG. 3. The arrested state of polygon billiards. (a) Probability density (ρ) of final self-trapping locations in a square, pentagon,
hexagon, heptagon, octagon, and nonagon as well as enneadecagon (N ¼ 19) and icosagon (N ¼ 20). Note that the color bars for each
polygon are adjusted to better highlight the distributions. (b) The logarithmic total length distribution for regular polygons of different
shapes.
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Sinai billiards) may fundamentally exhibit nonergodic and
chaotic behavior. Combining spatial memory with such
billiards complements the present study. Additionally, in
biological or physicochemical systems, spatial memory
often dissipates over time as chemical trails diffuse. This
introduces another timescale tm. The ratio of the particle’s
convective timescale to the fading timescale (known as
the Péclet number in hydrodynamics) governs the dynam-
ics of the system. In the current study, tm → ∞, indicating
permanent memory. However, for finite values of tm, one
may observe both self-trapping and untrapping (cage
breaking), leading to different long-time behavior and a
nonmonotonous trend of the available area Ω̃. This could
also be of particular interest when multiple particles are
considered. Moreover, the particle’s reaction to its memory
and the boundaries represents another control parameter.
Here, we consider the simplest form of elastic collision for
all interactions. Inelastic collisions [76–79] or probabilistic
collisions can significantly alter the system’s dynamics.
The study of many-body SAB is also of particular interest
since particle interactions can take various forms, including
reciprocal and nonreciprocal interactions [80–83]. Further-
more, when returning to active biological systems, careful
experimentation is needed to study the effects of self-
avoiding spatial memory on the motility of these systems. It
is important to answer questions such as whether self-
trapping occurs in these systems and how biological
organisms (e.g., single-celled slime molds, bacteria, or
epithelial cells) utilize or avoid self-trapping when chang-
ing the landscape around them. Knowledge gained
from such experiments can inform additional features of
models based on mathematical billiards. Finally, in terms of
applications, given the simplicity of the rules employed
in this Letter, spatial memory could be utilized to opti-
mize autonomous robotic systems [84,85] and active
matter [30,86], especially when combined with learning
techniques [87,88].
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