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The “symmetric mass generation” (SMG) quantum phase transition discovered in recent years has
attracted great interest from both condensed matter and high energy theory communities. Here, interacting
Dirac fermions acquire a gap without condensing any fermion bilinear mass term or any concomitant
spontaneous symmetry breaking. It is hence beyond the conventional Gross-Neveu-Yukawa-Higgs
paradigm. One important question we address in this Letter is whether the SMG transition corresponds
to a true unitary conformal field theory. We employ the sharp diagnosis including the scaling of disorder
operator and Rényi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations.
Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition
and it should correspond to a true ð2þ 1Þd unitary conformal field theory.
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Introduction and motivation.—When a quantum critical
point (continuous quantum phase transition) does not have
a Landau-Ginzburg type of description in terms of a local
order parameter, it is often referred to as an unconven-
tional quantum critical point (QCP). In this Letter we
carefully investigate a class of candidate unconventional
QCPs involving Dirac fermions, which were proposed to
be beyond the “traditional” paradigm. When we discuss
QCPs involving Dirac fermions, the standard paradigm is
the Gross-Neveu-Yukawa-Higgs mechanism, in which a
bosonic field would couple with the Dirac mass operator,
and when the bosonic field condenses, the Dirac fermions
acquires a mass [1–4]. The bosonic field carries certain
representation of a symmetry group (or gauge group),
hence the bosonic field plays the same role as the order
parameter in the Landau-Ginzburg theory. In this conven-
tional paradigm, the Dirac fermions acquire a mass
through spontaneously breaking certain symmetry. This
is essentially the mechanism for the mass generation of all
the matter fields in the standard model of particle physics.
However, in recent years it was discovered by both
condensed matter and high energy physics communities
that, under the right conditions, the Dirac fermions can
acquire a mass continuously through a QCP without
breaking any symmetry. This mechanism is called the
“symmetric mass generation” (SMG) [5–21]. The

possibility of SMG in ð2þ 1Þd is tightly related to the
classification of interacting topological insulators or
topological superconductors in three spatial dimensions,
please refer to Ref. [5] for more discussions.
Another archetypal unconventional QCP is the “decon-

fined quantum critical point” (DQCP) between the Néel
and valence bond solid orders, supposedly realized in
certain frustrated spin-1=2 quantum magnets on the square
lattice [22,23]. In the last two decades, the nature
of the DQCP has been studied with enormous efforts
analytically, numerically, and experimentally [1,2,22–68].
Great progress has been made regarding its potential
emergent SO(5) symmetries [27,37,38,47], the surround-
ing duality web [40,41], and the connection to the
symmetry protected topological phase in the higher
dimension [69], etc. However, despite all of this progress,
the very nature of the DQCP, i.e., whether it corresponds
to a true ð2þ 1Þd unitary conformal field theory (CFT) or
not, remains controversial. One indication that the DQCP
should not be a true CFT is that, it “failed” a series of
general standards that all ð2þ 1Þd unitary CFTs are
expected to meet. These standards include the universal
logarithmic contribution to both the disorder operator
and the entanglement entropy defined in a subregion of
the 2d space, when the subregion involves sharp corners
[55,59,70–73].
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Compared with the DQCP, the nature of SMG is even
more difficult to address employing analytical techniques
such as field theory due to the lack of a controlled limit (for
example, a generalization to a controlled large-N limit),
though a candidate field theory has been proposed in
Refs. [13,14]. Hence, we need to resort to numerical
techniques. The previous quantum Monte Carlo (QMC)
simulations suggest that the SMG could indeed be a
continuous phase transition, i.e., the QCP of SMG indeed
appears to be a ð2þ 1Þd CFT [5–8,10], as the computed
Dirac fermion mass increases continuously from zero at a
critical strength of interaction. But the nature of SMG still
needs to be tested using the same standards as DQCP on
general grounds. In this Letter, we will employ the “tests”
that the DQCP failed to pass: the scaling of disorder
operator and the Rényi entanglement entropy from lattice
model QMC simulations.
Models and numerical settings.—We study the following

Hamiltonian on the honeycomb lattice

Ĥ ¼ −t
X

hiji;α
ð−1Þαðĉ†iαĉjα þ ĉ†jαĉiαÞ

þ V
X

i

ðĉ†i1ĉi2ĉ†i3ĉi4 þ ĉ†i4ĉi3ĉ
†
i2ĉi1Þ ð1Þ

where the index α ¼ 1, 2, 3, 4 and h� � �i reflect the fermion
nearest neighbor hopping. At small V, the low energy
physics of this model is captured by eight weakly interact-
ing two-component Dirac fermions. The Hamiltonian
Eq. (1) has a global SU(4) symmetry at half-filling, which
manifests after a particle-hole transformation of flavors
α ¼ 2, 4. This model Eq. (1) has been studied with fermion
QMC in Ref. [10], where a SMG QCP was found in the
ground state of the model while tuning V. Since the phase
transition is not driven by spontaneous symmetry breaking,
we locate the position of the QCP by the opening of the
fermion single particle gap Δsp, as schematically presented
at Fig. 1(a). As shown in Fig. 1(b) and in Supplemental
Material (SM) [74] as well as in Ref. [10], the single
particle gap after extrapolation to the thermodynamic limit
opens at the QCP, Vc ¼ 2.00ð5Þ. Reference [10] further
showed that at V > Vc, there is no apparent symmetry
breaking of the SU(4) symmetry in the ground state, and the
phase diagram is described by a single phase transition
from Dirac semimetal (DSM) at V < Vc to a featureless
Mott insulator (FMI) at V > Vc. In this Letter, we employ
the projector fermion auxiliary field QMC simulations
[81–83] with linear system size L ¼ 3, 6, 9, 12, 15, 18
and the number of sites N ¼ 2L2 for honeycomb lattice
(with four flavors of fermions per site), with projection
length scaling as Θ ¼ 2L to investigate the ground state
properties of the system. We also note that similar SMG
transitions between DSM and FMI have been observed in
interacting staggered fermion on a cubical space-time
lattice with global SU(4) symmetry and there is no

spontaneous symmetry breaking, i.e., condensation of
fermion bilinear, observed from large-scale QMC simu-
lations [6,8].
Numerical probes.—To probe the intrinsic properties of

the SMG QCP, we analyze two quantities in QMC
simulation. The first one is the disorder operator defined
by the symmetry properties of a system [84–87]. For
a ð2þ 1Þd theory with at least a U(1) symmetry, one
can define a disorder operator as

X̂MðθÞ ¼
Y

i∈M

expðiθn̂iÞ; ð2Þ

where n̂i is the charge density of the U(1) symmetry at site
i. We are interested in the scaling behavior of the disorder
operator. If the IR limit of the theory is a ð2þ 1Þd CFT, the
scaling form of the disorder operator should be dominated
by a perimeter law, followed by an additive logarithmic
corrections when the region M has corners [88–90],

ln jXMðθÞj ∼ −alþ sðθÞ ln lþ c; ð3Þ

where XMðθÞ ¼ hX̂MðθÞi. In the SM, we present a proof
that sðθÞ must be non-negative for all θ, for a class of
unitary theories [74].

FIG. 1. Phase diagram and entanglement regions. (a) Ground
state phase diagram sketch of our lattice model, featuring the
SMG QCP at Vc separating the Dirac semimetal (DSM) and
featureless Mott insulator (FMI) phases. (b) Fermion single
particle gap Δsp against interaction strength Vc, with the purple
curve indicating extrapolated values (refer to SM [74]).
(c)–(e) Entanglement regions M1, M2, M3, and M4 are high-
lighted, withM1 andM2 [orange and blue dots in (c)] utilized for
determining corner contributions on the disorder operator. Re-
gionsM3 [orange dots in (d)] andM4 [blue dots in (e)] represent
rectangle stripes wrapped around the x and y directions, free from
corner contributions.
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It has been shown that the disorder operator can be
conveniently computed in many numerical methods such as
QMC and density-matrix renormalization group. The
scaling properties of the disorder operator for ð2þ 1Þd
transverse field Ising, O(2), O(3), topological ordered state
and Gross-Neveu transitions have been successfully carried
out [71,72,89,91–93], and for these theories the log
coefficients of the disorder operators find agreement with
unitary CFTs. On the other hand for models that suppos-
edly realize the DQCP (both in spin and fermion realiza-
tions) [71,72], the scaling of the disorder operator suggests
that the transition is not a unitary CFT.
Since the model Hamiltonian in Eq. (1) has SU(4) flavor

symmetry at half-filling [10], we employ the U(1) charge
density operator

n̂i ¼
X4

α¼1

n̂iα − 2; ð4Þ

which is one of the SU(4) symmetry generators. To extract
the subleading logarithmic coefficient sðθÞ in a reliableway,
we introduce a new partition strategy to cancel the dominant
perimeter law contribution. Following Refs. [89,94],
we introduce the ratio PMðθÞ

PMðθÞ ¼
����
XM1ðθÞXM2ðθÞ
XM3ðθÞXM4ðθÞ

����; ð5Þ

whereM1 andM2 are the two distinct entanglement regions,
shown in Fig. 1(c), with the same corner contribution.On the
torus geometry, the entanglement regions M3 and M4 in
Figs. 1(d) and 1(e) with shape of L × L=2 are smooth such
that the disorder operator is free from corner corrections.
Since the length of the boundary ofM1 ∪ M2 is equal to that
of M3 ∪ M4, the leading perimeter law scaling is canceled
in the quotient PMðθÞ and we expect PMðθÞ ∼ l2sðθÞ.
Extracting sðθÞ from PMðθÞ turns out to be much more
reliable than a direct fit of XMðθÞ following Eq. (3).
We also calculate the 2nd order Rényi entanglement

entropy (EE) Sð2ÞM . A numerically cheap QMC calculation
of the EE [95,96] for interacting fermions turns out to be
unstable such that a replicated space-time manifold [97–99]
has to be used. This increases the computational complex-
ity which scales as βN3 for fermion QMC where β ¼ 1=T
the inverse temperature and N ¼ 2L2 for one replica of our
honeycomb lattice model. The aforementioned numerical
instabilities can be cured by an incremental algorithm
developed recently [55,100,101]. Here, we further employ
the improved protocol developed by one of us [102] to
obtain accurate evaluations of the EE.
Results of disorder operator.—Figure 2 shows our

results of ln jPMðθÞj versus lnðlÞ for various θ and V
values. According to Eq. (5), the slope of the curves give
rise to the log coefficient sðθÞ and the obtained results
are shown in Fig. 3(a). As was pointed out in previous

works [72,88,89,103], for small θ, the log-coefficient sðθÞ
arising from the corner of the subsystem is proportional to
the charge conductivity σ, which is a universal quantity
associated with a ð2þ 1Þd CFT [104]. More precisely,
sðθÞ ∼ αsθ

2 for small θ, and the coefficient αs is propor-
tional to σ. For example, for a single two-component Dirac
fermion in ð2þ 1Þd in a region with a sharp corner φ, it will
lead to the following result for the coefficient αs [88,90]:

αs ¼
1

32π2
½1þ ðπ − φÞ cotφ�: ð6Þ

Both subregions M1 and M2 have two angles with
φ ¼ 2π=3, and π=3, and, in our case, we have Nf ¼ 8

flavors of Dirac fermion. Thus, for V < Vc, in the DSM
phase, the theoretical prediction is αs ∼ 0.132, independent
of V. In Fig. 3(c), the numerical value of αs within the DSM
phase stays roughly constant and is larger than the
theoretical value indicated by the green dot. The deviation
between the numerical results and analytical value and the
weak V dependence on αs inside DSM phase are due to the
finite correlation length in QMC simulations. In SM [74],
we provide a mean field analysis to illustrate the finite size
effect on computing αs. We show the value of αs mono-
tonically converge to the value in the thermodynamic limit
by increasing the correlation length at V ¼ 0.
The SMG transition is essentially a semimetal-insulator

transition, intuitively we expect the conductivity at the
SMG to be smaller than that in the Dirac semimetal phase.
Indeed, the ratio αsðV ¼ VcÞ=αsðV ¼ 0Þ is smaller than 1
in our simulation [shown in the inset of Fig. 3(c)]. It is also
the case for the previously investigated Gross-Neveu
transition of Dirac fermions, which is also a semimetal-
insulator transition [72,93]. But we would like to remark

FIG. 2. Disorder operators. Top panels: ln jPMðθÞj [Eq. (5)]
as a function of the perimeter l ¼ 2L in the DSM phase (a), at the
SMG QCP (b) and in the FMI phase (c). Data suggest
PMðθÞ ∼ l2sðθÞ. Bottom panels: The disorder operator
ln jXM3ðθÞj as function of perimeter l in the DSM phase (d),
at the SMG QCP (e) and in the FMI phase (f). In the absence of
corners, ln jXM3ðθÞj ∼ −alþ βðθÞ.
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that, unlike the EE, there is no general theorem which
directly connects the RG flow with the magnitude of σ.
It was shown numerically that, at the DQCP sðθÞ can

become negative for a broad range of θ [71,72], if one tries
fitting the data of the disorder operator with the form of
Eq. (3), which is in stark contrast against the general
conclusion of the non-negativity of sðθÞ for all θ. In our
model, as shown in Fig. 3(a), sðθÞ indeed remains positive
for all θ and V ≤ Vc, which is analogous to the situation of
the Gross-Neveu transition. When V > Vc, sðθÞ ¼ 0 since
the system is gapped and featureless.
If the subregion M has a smooth boundary, i.e., there is

no corner, we expect that the disorder operator scales as
ln jXMðθÞj ∼ −alþ βðθÞ, with a constant βðθÞ which also
encodes the information of the CFT. The reason for this
expectation is that the conserved charge density that was
used to construct the disorder operator is dual to the Wilson
loop operator, using the standard dictionary of duality in
ð2þ 1Þd, and the Wilson loop operator can be viewed as a
1d defect inserted in the ð2þ 1Þd CFT. A quantity similar
to βðθÞ defined in flat spacetime is referred to as “defect
entropy” in Ref. [105]. In Fig. 3(b) we show βðθÞ and the
inset exhibits βðθÞ versus θ2. Taking two specific θ values
of π=4 and π=2, we observe that βðθÞ is finite for V ≤ Vc,
develops a peak close to Vc and a vanishes in the FMI
phase, as shown in Fig. 3(d).

Results of entanglement entropy.—Figure 4 shows our
results for the EE for various V values, for corner-free
bipartitions of size L × L=3 for L ¼ 3, 6, 9 as shown in
Figs. 1(d) and 1(e). Since there is no corner contribution in
our measurement, we expect the EE to exhibit the scaling

form of Sð2ÞM ¼ al − γ with l ¼ 2L. As shown in Ref. [106],
the constant term γ of the EE on a torus depends on several
global geometric parameters of the entire system and the
subregion. In Fig. 4, we see that the EE is dominated by
the perimeter law for all values of V. In the inset, we plot
the intercepts γ as a function of V and observe a maximum
at V ¼ Vc. Interestingly, we find that βðθÞ from the
disorder operator with smooth boundary and θ ¼ π=2

behaves similarly to γ from EE, where Sð2ÞM and XM map
onto each other for noninteracting problems [93].
Discussions.—In summary, we investigated three quan-

tities that should encode important universal information of
the IR behavior of the SMG transition: (1) For a subregion
M with sharp corners, the disorder operator X̂MðθÞ should
scale as ln jXMðθÞj ∼ −alþ sðθÞ ln l, where sðθÞ is a
universal quantity related to the universal conductivity of
the ð2þ 1Þd CFT [90,107–109]; and sðθÞ should be non-
negative for all θ, for a large class of unitary ð2þ 1Þd CFT
(see SM [74]). (2) For a smooth subregion M without
corner, the disorder operator X̂MðθÞ scales as
ln jXMðθÞj ∼ −alþ βðθÞ, and βðθÞ peaks at the SMG
QCP. (3) For a smooth subregion M without corner, the

second Rényi EE scales as Sð2ÞM ∼ al − γ, where γ is also a
universal quantity, which peaks at the SMG QCP.
The three universal quantities, i.e., sðθÞ, βðθÞ, and γ are

all nonzero in the Dirac semimetal phase as well as the
SMG QCP, and all vanish inside the FMI phase. In
particular, sðθÞ remains positive for all θ at the SMG
QCP. These findings strongly suggest that the SMG
transition indeed corresponds to a true ð2þ 1Þd unitary

FIG. 3. Logarithmic correction sðθÞ of the disorder operator.
(a) Logarithmic coefficient sðθÞ extracted from PMðθÞ in top
panels of Fig. 2. sðθÞ is positive for all the rotation angle
θ∈ ½0; π�. (b) The constant correction βðθÞ extracted from the
disorder operator in the bottom panels of Fig. 2, defined in
smooth region M3 as a function of rotation angle θ. Insets in (a)
and (b) show the x axis rescaled to θ2, reflecting quadratic angle
dependence of sðθÞ and βðθÞ. (c) The quadratic coefficient αs of
sðθÞ ∼ αsθ

2 reduces at the SMG QCP and vanish in the FMI
phase. Inset in (c) presents the ratio R ¼ f½sðθ; V ¼
VcÞ�=½sðθ; V ¼ 0Þ�g < 1 at small θ, analogous to the Gross-
Neveu transition discussed in Ref. [72]. (d) βðθÞ from (b) with
two specific θ values (π=4 and π=2) as a function of V, a peak of β
develops at Vc and then drops to zero at V > Vc.

FIG. 4. Entanglement entropy. Finite size scaling relation

Sð2ÞM ¼ al − γ of the EE for the bipartition with subregion L ×
L=3 and l ¼ 2L. The intercept term γ crucially characterizes
scaling behavior for different phases. At the SMG QCP V ¼ Vc,
γðVcÞ peaks compared to γðV < VcÞ governed by the free Dirac
CFT. Entering the FMI phase at V > Vc, γðV > VcÞ approaches
zero, akin to sðθÞ and βðθÞ in Fig. 3.
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CFT, without violating the non-negativity bound as in the
case of DQCP.
Various mysteries regarding the SMG transition still

remain. For instance, the Dirac semimetal phasewithV < Vc
should have a large emergent SO(16) symmetry, which
manifests when one Dirac fermion is expressed as two
Majorana fermions. Although the lattice model breaks
SO(16) symmetry, it is the maximal possible emergent
symmetries of the IR fixed points. Whether this SO(16)
symmetry (or its subgroup) can emerge at the SMG transition
remains uncertain. Future investigations should examine the
disorder operator associated with the generators of SO(16) to
ascertain the full emergent symmetry at the SMG.
Additionally, verifying the universal corner-log correction
of EEat the SMGQCP is pertinent. Because of computational
constraints in our current model, extracting this information
was unfeasible. However, we aim to explore it using more
efficient algorithms in the future.
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