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Unlike bosons and fermions, quasiparticles in two-dimensional quantum systems, known as anyons,
exhibit statistical exchange phases that range between 0 and π. In fractional quantum Hall states, these
anyons, possessing a fraction of the electron charge, traverse along chiral edge channels. This movement
facilitates the creation of anyon colliders, where coupling different edge channels through a quantum point
contact enables the observation of two-particle interference effects. Such configurations are instrumental in
deducing the anyonic exchange phase via current cross-correlations. Prior theoretical models represented
dilute anyon beams as discrete steps in the boson fields. However, our study reveals that incorporating the
finite width of the soliton shape is crucial for accurately interpreting recent experiments, especially for
collider experiments involving anyons with exchange phases θ > π=2, where prior theories fall short.
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Introduction.—Anyons are exotic quasiparticles of two-
dimensional systems that exhibit exchange statistics inter-
mediate between bosons and fermions [1–5]. They appear
in the fractional quantum Hall (FQH) effect, where their
charge e� is a fraction of the electron charge and exchang-
ing two anyons contributes an exchange phase θ. While the
fractional charge has been measured some time ago [6,7],
evidence for the anyonic statistical phase was only found
recently [8–14]. The experiments [8,12–14] are based on
the idea that the signature of anyonic statistics is imprinted
in current cross-correlations in setups involving multiple
quantum point contacts (QPCs) [15–26]. The specific
anyonic signature can be interpreted in terms of time-
domain interference of anyons [24–27].
An observable studied in collision experiments [8,13,14]

(for a schematic setup see Fig. 1) is the generalized Fano
factor P, defined as the sum of the current noise due to
partitioning at the collision QPC and the noise in the
incoming currents transmitted through the collision QPC,
normalized by the latter [22]. For a fractional quantum Hall
edge with equilibrium density fluctuations, the correlation
function of an anyon tunneling operator decays like a
power law in time, governed by a dynamical exponent 2δ.
The Fano factor in a symmetric collider setup with two
balanced incident anyon beams has been found to be
P ¼ 1 − tanðθÞ tanðπδÞ−1ð1 − 2δÞ−1, where a negative P
is a robust signature of anyonic statistics [22]. This form of
the Fano factor applies to cases where δ < 1=2 and
θ < π=2, with the restriction due to the approximation of
quasiparticle pulses with vanishing spatial and temporal
width made in [22].
However, experiments indicate that the dynamical expo-

nents δ can deviate from the universal value describing a
pristine edge, and may be close to 1 [12,13] even for filling
ν ¼ 1=3. As δ appears in the expression for the Fano factor,

from which one would like to obtain the exchange phase θ,
an uncertainty in δ leads to an uncertainty in θ. To reliably
determine the exchange phase from experiments, it is
therefore necessary to know the Fano factor as a function
of δ outside the range δ < 1=2. In addition, previous theory
does not apply to the ν ¼ 2=5 FQH state, where θ ¼ 3π=5
is expected for e� ¼ e=5 quasiparticles. The reason is that
in the exponential ei2θ a positive phase 2θ > π has the same
effect as a negative phase 2π − 2θ, giving rise to a positive
P due to this ambiguity. Experimentally, small negative
Fano factors have been measured [13,14], and explaining
this finding is a challenge for theory.
In this Letter, we compute the Fano factor for dynamical

exponents 0 < δ ≤ 1 for exchange phases θ ¼ 3π=5 and
θ ¼ π=3 by taking into account a finite width of anyonic
pulses in the incident dilute beams. This idea is based on
the observation of Schiller et al. [27] that a finite width of
quasiparticles allows one to correctly compute the Fano
factor even for electrons with θ ¼ π and δ ¼ 1. When

FIG. 1. Schematic of an anyon collider setup with two chiral
edge channels (black arrows) and a quantum point contact (red).
We consider dilute beams of anyons incident along the edges
(gray) which are allowed to tunnel between the edges at the
quantum point contact with small tunneling amplitude. Treating
the tunneling coupling as a small perturbation, we compute the
tunneling current expectation value hÎTi and the current cross-
correlations hδÎ2i defined in Eq. (2). We consider both the
symmetric case I− ¼ 0 and the case of a current imbalance
ξ ¼ I−=Iþ > 0, where I� ¼ Iu;0 � Id;0.
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computing the Fano factor, the time integral describing
current cross-correlations contains a factor of ∼ðitþ τcÞ−2δ
with short time cutoff τc, reflecting the equilibrium decay
of the correlation function of the anyon tunneling operator.
Hence, the integral is dominated by large times for δ < 1=2,
such that approximating the anyon pulse as zero width is a
good approximation. In contrast, for δ > 1=2 there are
relevant contributions from short times where details on the
shape of the solitons matter (Fig. 2). The resulting Fano
factor for large dynamical exponents is nonuniversal
depending on the width of anyon pulses.
Setup.—We consider an anyon collider consisting of

chiral edge channels (α∈ fu; dg) as schematically illus-
trated in Fig. 1, which can be realized in FQH systems.
Here, the dilute anyon beams impinging on the collision
QPC are created by applying a voltage V across additional
source QPCs (not shown in Fig. 1), allowing tunneling of
quasiparticles into the u, d edges with a small tunneling
probability, thereby ensuring that the spatial separation
between anyons is much larger than their width. The edge
states [28] are described as chiral Luttinger liquids [29].
Owing to the presence of the collision QPC between the u
and d edge, time-domain interference effects allow the
extraction of information about the anyon braiding phase
from the tunneling current expectation value hÎTi and
current cross-correlations hδÎ2i.
In the bosonization formalism, the operator for the

tunneling current between the upper and lower edge is
given by ÎT ¼ ie�ðA† − AÞ, with AðtÞ ¼ ζeiϕuð0;tÞ−iϕdð0;tÞ,
where e� is the fractional charge of the anyons, ζ is the
tunneling amplitude at the collision QPC, and ϕαðx; tÞ is
the boson field for the anyons on edge α. The charge
density on the edges is given by ραðx; tÞ ¼ ∂xϕαðx; tÞ=2π.
The collision QPC is located at x ¼ 0. The equal time
commutator ½ϕαðx; tÞ;ϕβðy; tÞ� ¼ ie�πδαβsgnðx − yÞ is pro-
portional to the fractional charge measured in units of the
electron charge e, while the equal position commutator
½ϕαðx; t1Þ;ϕβðx; t2Þ� ¼ iδπδαβsgnðt1 − t2Þ contains the
dynamical exponent δ that can be different from e� and
also θ=π [30].

To model the nonequilibrium situation depicted in Fig. 1,
we decompose the boson fields into ϕð0Þ

α ð0; tÞ describing
the equilibrium quantum fluctuations and a classical non-
equilibrium part describing Poissonian fluctuations in the
quasiparticle number with expectation value hIα;0i=e� [22].
Here, Iα;0 is the current of the dilute anyon beam on edge α
before the collision QPC. An anyon with exchange phase θ
arriving at time t0 at the collision QPC causes a shift of the
nonequilibrium part of the boson field, described by

ϕαð0; tÞ → ϕð0Þ
α ð0; tÞ − 2θ

�
1

π
arctan

�
t − t0
τs

�
−
1

2

�
; ð1Þ

where we take into account the finite width τs of the anyon
pulses [27] (see Fig. 2). The soliton width is related to the
voltage V of the edge from which the anyons tunnel onto
edge α at the source QPC via τs ≈ ℏ=e�V [31], plausible due
to the energy-time uncertainty relation. This finite soliton
width has previously been neglected by using discrete steps
in the boson field, which corresponds to delta peaks in the
density.Here, the arctan shape of the solitons ismotivated by
considering an incoming quasiparticle with Cauchy wave
packet shape jψðtÞj2 ¼ 1

π ½τs=ðτ2s þ t2Þ� of width τs at the
source QPC. If the particle tunnels into the dilute edge, at
time t, the portion of the probability density that has tunneled
is described by the cumulative distribution function
CðtÞ ¼ R

t
−∞ dt̃jψðt̃Þj2 ¼ 1

2
þ 1

π arctanðt=τsÞ. The phase of
the corresponding wave function also contains the arctan
shape, ψðtÞ ∝ ðitþ τsÞ−1 ∝ exp ½−i arctanðt=τsÞ�.
Current and noise in linear response.—The expectation

value of the tunneling current is given by hÎTiðtÞ ¼
e�

R
∞
−∞h½A†ð0Þ; AðtÞ�idt. The noise in the tunneling current

is obtained as

hðδÎÞ2iðtÞ≡ h½ÎTðtÞ − hÎTiðtÞ�½ÎTð0Þ − hÎTið0Þ�i; ð2Þ

with the ω ¼ 0 frequency component of its Fourier trans-
form given by hðδÎÞ2iω¼0 ¼ ðe�Þ2 R∞

−∞hfA†ðtÞ; Að0Þgi0dt.
Under the assumption that the beams are sufficiently

dilute, i.e., ℏ=e�V ≪ e�=Iα;0, we can treat the individual
anyons on one edge as independent, allowing one to
describe them using Poisson statistics. This gives rise to
the correlation function

hA†ð0ÞAðtÞi0
hA†ð0ÞAðtÞi0;eq

¼ e
τsIþ
e� ReIðt=τsÞ

�
cos

�
τsI−
e�

ImIðt=τsÞ
�

þ i sin

�
τsI−
e�

ImIðt=τsÞ
��

; ð3Þ

where h:i0 denotes the nonequilibrium expectation value in
the absence of the tunneling coupling, and hA†ð0ÞAðtÞi0;eq ¼
τ2δc e−iπδsgnðtÞ=jtj2δ is the zero-temperature equilibrium
expectation value of the unperturbed edge with short time
cutoff τc. We defined I� ¼ Iu;0 � Id;0, where Iα;0 is the

FIG. 2. A step of height 2θ in the boson field ϕ describes the
passage of a quasiparticle with exchange phase θ. Here, the anyon
creation operator on the edge is related to the boson field via
ψðx; tÞ ∝ eiϕðx;tÞ. Instead of discrete steps (gray, dashed), we
consider a smooth increase with soliton width τs.
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current of the dilute beam on edge α before the QPC. In
Eq. (3), the integral I is given by

Iðt=τsÞ≡
Z

∞

−∞
dx

�
exp

�
i
2θ

π

�
arctan

�
x −

t
2τs

�

− arctan

�
xþ t

2τs

���
− 1

�
: ð4Þ

Weused that the real part of the integral is an even function of
t, while the imaginary part is odd, and the contributions to the
exponent of the correlation function for edge α is given by
ReðIÞ þ αImðIÞ (α ¼ �1 for u and d respectively).
By using the expression for the correlation functions,

Eq. (3), in the current expectation value, we find to leading
order in the tunneling amplitude ζ

hÎTi ¼ −ie�
jζj2τ2δc
τ2δ−1s

Z
∞

−∞
dt̃

sin
�τs
e� I−ImIðt̃Þ	

exp
�
− τs

e� IþReIðt̃Þ
	

×

��
1

it̃þ τc=τs

�
2δ

−
�

1

−it̃þ τc=τs

�
2δ
�
: ð5Þ

Similarly, we find that the current noise is given by

hðδÎÞ2iω¼0 ¼ ðe�Þ2 jζj
2τ2δc

τ2δ−1s

Z
∞

−∞
dt̃

cos
�τs
e� I−ImIðt̃Þ	

exp
�
− τs

e� IþReIðt̃Þ
	

×

��
1

it̃þ τc=τs

�
2δ

þ
�

1

−it̃þ τc=τs

�
2δ
�
: ð6Þ

The quantity

Ts ≡ Iþ
e�

τs; ð7Þ

which appears in the exponential factors of the current and
noise integrands and is approximately equal to the trans-
parency of the source QPC [32], determines how fast the
integrands decay. Even in the limit Ts → 0 where it seems
plausible that tunneling onto edge α may be described by a
discrete step in the boson field, the short time behavior of
the integrals is not accurately approximated. This problem
arises for δ > 1=2, where the integrals have large short time
contributions from the ð�itþ τc=τsÞ−2δ terms.
We denote the ratio of short time cutoff and broadening

time as η ¼ τc=τs and require η < 1. We find that already
for values of η ∼ 10−2–10−1 the dependence of current and
noise on η is negligibly weak [32].
Fano factor.—As an experimentally accessible observ-

able which depends on the braiding phase 2θ, we consider

the generalized Fano factor at current imbalance
ξ ¼ I−=Iþ,

PðξÞ ¼ hδIdδIuiω¼0

e�ðIu;0∂Iu;0 − Id;0∂Id;0ÞhÎTijI−¼0

≡ PnðξÞ
Pdð0Þ

; ð8Þ

where the denominator is the noise in incoming currents,
transmitted through the QPC—a generalization of Johnson-
Nyquist noise. The fact that the denominator is defined as a
derivative of the current expectation value allows us to
consider the symmetric case, I− ¼ 0, for which hÎTi
vanishes. It can be shown that the Fano factor only depends
on the ratio ξ ¼ I−=Iþ and has a maximum at I− ¼ 0 [22].
The numerator of the Fano factor contains the sum
of the current noise due to partitioning at the QPC and
of the transmitted noise. The numerator is given by
hδIdδIuiω¼0 ¼ −hδÎ2i þ e�ðIu;0∂Iu;0 − Id;0∂Id;0ÞhÎTi [22].
For a current imbalance ξ, the second term can be

expressed as

PdðξÞ
2e�Iþjζj2τ2δc τ−2ðδ−1Þs

¼−2
Z

∞

0

dt̃eTsReI

× ½ImI cosðTsξImIÞ
þ ξReI sinðTsξImIÞ�

×sin

�
2δarctan

�
t̃
η

��
½t̃2þ η2�−δ; ð9Þ

and the difference between the numerator and denominator
function, i.e., −hδÎ2i, becomes

PnðξÞ − PdðξÞ
2e�Iþjζj2τ2δc τ−2ðδ−1Þs

¼ −
2

Ts

Z
∞

0

dt̃ eTsReI cos ðTsξImIÞ

× cos

�
2δ arctan

�
t̃
η

��
½t̃2 þ η2�−δ:

ð10Þ

Here, we use the abbreviations ImI ¼ Im½Iðt̃Þ� and
ReI ¼ Re½Iðt̃Þ�. These expressions can efficiently be
numerically evaluated as they are real and the integral I
only depends on a single parameter θ and the reduced time
t̃ ¼ t=τs, which allows for reusing the results for different
values of δ and η.
The full Fano factor in the symmetric case I− ¼ 0 is then

given by

Pðξ ¼ 0Þ ¼ 1þ 1

Ts

R∞
0 dt̃ eTsRe½Iðt̃Þ� cos



2δ arctan

�
t̃
η

	�½t̃2 þ η2�−δR
∞
0 dt̃ Im½Iðt̃Þ�eTsRe½Iðt̃Þ� sin



2δ arctan

�
t̃
η

	�½t̃2 þ η2�−δ : ð11Þ
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Analytic solution for δ ¼ 1 and ξ ¼ 0.—Before we
discuss the numerical results for PðξÞ as a function of δ,
we first present an approximate analytical solution for
δ ¼ 1, which is close to the experimentally estimated value
of the dynamical exponent [12,13], and show that the Fano
factor is nonuniversal and logarithmically diverging for
Ts → 0 in this case.
In the limit δ → 1, the denominator of the Fano factor

can be evaluated analytically as the expression in the square
brackets of Eq. (5) reduces to the first derivative of a delta
distribution 2πi∂t̃δðt̃Þ and ∂t̃I jt̃¼0 ¼ −2iθ, such that

Pdðξ ¼ 0; δ ¼ 1Þ
2e�Iþjζj2τ2c

¼ 2πθ þOðτcÞ: ð12Þ

To evaluate the numerator, we approximate the integral I
for short times using a Taylor expansion to second order,
Iðt̃ → 0Þ ¼ −2iθt̃ − t̃2θ2=π þOðt̃3Þ, and for late times
using its asymptotic behavior Iðt̃ → ∞Þ ∼ −t̃ðe2iθ − 1Þ.
We smoothly connect the two approximations at the point
ta ¼ π½1 − cosð2θÞ�=ð2θ2Þ, where the asymptotic slope
agrees with the slope of the tangent of the quadratic
behavior for small times, and obtain for the real part of
the integral

ReIðt̃Þ ≈
�
−t̃2θ2=π for t̃ < ta
−t̃½1 − cosð2θÞ� þ t2aθ2=π for t̃ ≥ ta:

ð13Þ

In Fig. 3, we show the short time approximation together
with the numerically obtained real part of I for both θ ¼
π=3 and θ ¼ 3π=5. Using the approximation, we find the
Fano factor,

Pðξ ¼ 0; δ ¼ 1Þ

≈ 1þ 1 − cos 2θ
πθ

�
1 − γ − ln

�
πð1 − cos 2θÞ2

2θ2
Ts

��

þOðη; TsÞ; ð14Þ

with the Euler constant γ. The logarithmic divergence for
Ts → 0 indicates that the Fano factor for δ ¼ 1 depends in a
significant way on the source QPC transparency.
Numerical results for θ ¼ 3π=5.—We numerically com-

pute the Fano factor for anyons with exchange phase
θ ¼ 3π=5. As recent studies [12–14] indicate that δ >
3=5 may be realized experimentally, we compute the Fano
factor for the symmetric case as a function of δ (Fig. 4). We
find that for a dilution of Ts ¼ 10−2 [panel (a)], indeed a
negative Fano factor is obtained for all δ > 1=2, which has
a significant dependence on δ. For even wider solitons with
Ts ¼ 10−1, we find that the Fano factor changes sign as a
function of δ. In Ref. [13], measurements have been
performed for Ts ¼ 0.14 and 0.34, in agreement with
the theoretical finding of Pð0Þ ¼ −0.21 for Ts ¼ 0.1 and
δ ¼ 3=5. In addition, Ref. [14] reports results for dilutions
in the range Ts ∈ ½0.25; 0.5�, somewhat outside the dilute
anyon regime discussed here.
Numerical results for θ ¼ π=3.—For Laughlin anyons

with θ ¼ π=3 in the symmetric case ξ ¼ 0, we expect to
recover the result of a universal Fano factor from Ref. [22]
close to δ ¼ 1=3 < 1=2. Indeed, we find that the results
with finite soliton width show good agreement with the
prediction for zero width for δ < 1=2 (Fig. 5). For larger
values of δ approaching 1, the finite soliton width removes
the divergence to large negative values, yielding negative
Fano factors on the order of −2 for a dilution of Ts ¼ 10−3,
compatible with recent experiments [8,12–14].

FIG. 3. Analytic approximation (blue, dashed) of the real part
ReIðt̃Þ at small times together with the numerically obtained real
part of Eq. (4) (orange). The main panel shows the comparison
for the phase θ ¼ 3π=5 and the inset for Laughlin anyons with
θ ¼ π=3. We find that the approximation accurately describes the
short time behavior.

FIG. 4. Numerical results for the Fano factor PðξÞ at different
values of the current imbalance ξ ¼ I−=Iþ for anyons with θ ¼
3π=5 as a function of the dynamical exponent δ > 1=2. The
dashed, black line shows the analytical approximation for δ ¼ 1,
ξ ¼ 0. In the left panel, we use finite width solitons with Ts ¼
10−2 and for the right panel Ts ¼ 10−1. In the left panel, all
curves lie on top of each other. We here show results for
η ¼ τc=τs ¼ 10−1; however, the dependence on η < 1 is negli-
gible [32].
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Discussion.—By considering anyon pulses with finite
dilution 10−2 ≲ Ts ≲ 10−1, we find a negative Fano factor
in agreement with recent experimental results [13,14] for
anyons with e� ¼ e=5 and θ ¼ 3π=5. However, when
further reducing Ts, unphysical jumps in the Fano factor
as a function of δ appear for θ ¼ 3π=5 (see the
Supplemental Material [32]), which are due to a negative
tunneling current that cannot be explained by numerical
instabilities. In addition, while the θ ¼ π=3 results are in
good agreement with experiments, yielding an increasing
Fano factor with increasing Ts, the dependence on Ts

seems to be somewhat weaker in experiments [13] than
predicted theoretically. This could be due to the semi-
classical description of nonequilibrium physics, or perhaps
related to the arctan shape of the solitons chosen in our
calculation.
Conclusion.—Our study reveals the crucial importance

of finite soliton widths in analyzing anyon collider (time-
domain interference) experiments, especially for exchange
phases greater than π=2 and dynamical exponents above
1=2. We demonstrate that incorporating a finite soliton

width leads to a prediction of negative Fano factors for
anyons with exchange phases of 3π=5, in agreement with
recent experimental data. This finding is crucial for
accurately interpreting experiments and understanding
universal and nonuniversal contributions to Fano factors
in anyonic systems, thereby offering a more comprehensive
framework for exploring anyonic statistics in fractional
quantum Hall states.

Note added.—Recently, we became aware of Ref. [33],
which also studies the soliton shape for the description of
anyon colliders and finds results consistent with ours.

We would like to thank X.-G. Wen, N. Schiller, G. Fève,
and F. Pierre for helpful conversations.
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