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We have studied the power dependence of superfluid Helmholtz resonators in flat (750 and 1800 nm)
rectangular channels. In the A phase of superfluid 3He, we observe a nonlinear response for velocities larger
than a critical value. The small size of the channels stabilizes a static uniform texture that eliminates
dissipative processes produced by changes in the texture. For such a static texture, the lowest velocity
dissipative process is due to the pumping of surface bound states into the bulk liquid. We show that the
temperature dependence of the critical velocity observed in our devices is consistent with this surface-state
dissipation. Characterization of the force-velocity curves of our devices may provide a platform for
studying the physics of exotic surface bound states in superfluid 3He.
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One of the defining features of superfluidity is the ability
to flow without dissipation for velocities below a critical
value [1]. The Landau criterion states that this velocity
threshold is set by a local minimum in the dispersion
relation of the lowest energy excitation of the system [1].
For fermionic superfluids, the relevant energy scale is the
superfluid gap, Δp⃗, which is the energy required to excite a
quasiparticle from the Fermi surface, and the Landau
critical velocity is therefore vL ¼ Δp⃗=pF [2].
Implicit in the arguments of Landau is the assumption

that the gap is both spatially homogeneous and isotropic. In
superfluid 3He the latter assumption holds only for the bulk
B phase, which has an isotropic gap. Near a surface,
however, the gap is suppressed and develops separate
parallel and perpendicular components [2,3]. The suppres-
sion of the gap near the wall breaks the Landau assumption
and allows for bound states with energies less than the bulk
gap. Experiments studying oscillating macroscopic objects
in 3He-B have shown that there is a sub-Landau critical
velocity threshold at which bound states are emitted from a
moving surface, leading to an observable change in dis-
sipation [4,5]. Characterization of the coupling of these
mechanical oscillators to fluid flow has proven to be a
valuable tool for studying surface bound states in 3He-B
[4–10], which supplements other techniques [11–13].
These surface bound states are of interest not only from
the perspective of understanding 3He hydrodynamics [14]
and quantum turbulence [15,16], but also as a condensed
matter realization of exotic quasiparticles such as Weyl or
Majorana fermions [17–26]. Experimental studies of sur-
face bound state dissipation have thus far been limited to
the B phase, as research on A-phase surface states is more
complex due to the intrinsic anisotropy of the gap. Here,
we reveal the pumping of surface bound states into the bulk
A phase, with a lower critical velocity than the B phase

due to additional suppressed states from the anisotropic
A-phase gap.
In the A phase, there exists an anisotropy axis l̂, which

points in the direction of a Cooper pair’s orbital angular
momentum, along which the superfluid gap closes at two
point nodes (see Fig. 1). Since the A phase exhibits long-
range spatial ordering in the orbital angular momentum of
Cooper pairs, l̂ðr⃗Þ is a vector field, or texture, which can
vary smoothly in space over distances larger than the
coherence length. The magnitude of the gap for a given
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FIG. 1. A-phase flow. (a) Simplified phase diagram showing the
range of temperatures where the A phase exists for 750 and
1800 nm channels. The red and blue points are the transition
temperatures measured for both devices and the dashed lines are
fits. The A phase is stabilized to lower temperatures and pressures
by the tight confinement [27]. (b) Drawing of the confined
Helmholtz resonator volume. The dimensions of the channel are
D × 1.6 mm × 1.38 mm, where D ¼ 750 or 1800 nm. (c) Mo-
mentum space plot of the Fermi surface (red) and the gap which
goes to zero at the poles aligned with the anisotropy vector l̂. The
plot shows the spatial dependence of ΔAðzÞ, in the highly
confined dimension, where the distance from the wall is in units
of the coherence length ξ. The spatial dependence has been
computed using Ginzburg Landau theory [2].
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momentum, p⃗, is specified by the equation Δp⃗ ¼
ΔA½1 − ðp̂ · l̂Þ2�1=2 ¼ ΔAj sin θj. Here, θ is the angle be-
tween the momentum and anisotropy axis, such that the gap
has a maximum magnitude, ΔA, for excitations with
momentum p⃗⊥l̂ and a minimum magnitude of zero for
p⃗kl̂. For this reason, naive application of the Landau
criterion implies a critical velocity of zero.
Critical velocities of a different kind are possible in cases

where the texture is dynamic. The motion of l̂ changes the
gap, and therefore dissipates energy by creating new
excitations as it moves [28]. The texture couples both to
superfluid phase gradients (i.e., flow), and to spin degrees
of freedom [2]. In the absence of other orientational effects,
the tendency of the l̂ texture is to align with the superfluid
flow velocity v⃗s [29]. This tendency is in competition with
the boundary conditions, which requires the l̂ texture to be
perpendicular to surfaces. This means that 3He-A flowing
over a surface can produce a textural gradient where l̂ is
parallel to the flow far from the wall and perpendicular at
the surface [29]. The characteristic length scale over which
the texture rotates by 90° is the healing length, ξAheal ∼ 8 μm
[2]. For bulk systems, where all dimensions are large
compared to the healing length, the texture becomes a
hydrodynamic variable that exhibits complicated behavior,
including critical velocities [30–35]. Systems where one or
more dimensions are small compared to the textural healing
length tend to lock a particular texture in place. This can be
seen in the literature from experiments with varying
degrees of confinement [36–46].
In cases where the texture is static, constant A-phase

superfluid flow can be stable even when aligned with l̂,
because only a small number of states exist near the nodes.
These states quickly fill when the fluid begins to flow, but
once filled do not contribute to dissipation [47]. This
produces a nonlinear relationship between the superfluid
velocity and momentum density,

j⃗s ¼ ρsðvsÞv⃗s: ð1Þ

The superfluid density, ρs, decreases with increasing
velocity as excitations are produced. Thus the momentum
density, jsðvsÞ, has a local maximum known as the
maximum pair breaking current [2]. This relationship
assumes the system is always near equilibrium such that
the available states are filled. There is, therefore, no special
velocity at which dissipation onsets for this static texture,
constant flow, case.
Until now, an open question remained as to what critical

velocities, if any, the A phase would exhibit if the texture is
stationary but the flow is oscillatory. As with the dc flow
case, excitations can be produced near the nodes for
arbitrarily small velocities, but to continuously dissipate
energy there must be some process by which these states
are continuously populated, and then emptied. The most

obvious candidate is the bound state pumping process
already known to exist in the B phase [4,5].
Our experiment studies the critical dissipative behavior

of the A phase using alternating flow in a parallel plate
geometry with confinement much smaller than the healing
length [27,48–51], ensuring a uniform texture. We have
made use of our nanofluidic devices called Helmholtz
resonators, which have been described in previous pub-
lications [27,52–54]. The devices are comprised of bonded
quartz chips that have been etched to create a small volume
sandwiched between the chips. The shape of this space is a
circular basin (3.5 mm radius), with two 1.60 × 1.38 mm ×
D rectangular channels connecting it to the external helium
bath. The variable D is the thickness of the enclosed
space, which is constant throughout. The two devices
used in this experiment had thicknesses of D ¼ 750� 12
and 1800� 12 nm.
Aluminum electrodes are patterned onto the quartz, creat-

ing a parallel plate capacitor inside the basin. The volume of
the basin can be slightly decreased by an electrostatic force
between the capacitor plates.When this platemotion is driven
resonantly with the Helmholtz mode of the channels, fourth
sound is driven. The normal fluid does not move in the
channels because the viscous penetration depth, δ, is large
compared to the confinement (δ ≈ 400 μm ≫ D) [55].
Furthermore, the confinement is also small compared to
the healing length (D ≪ ξAheal ≈ 8 μm) [2]. Therefore, the
texture is uniformly aligned in the highly confined direction ẑ,
effectively eliminating textural dissipation mechanisms.
The capacitance of the Helmholtz resonator varies in

time when driven. The measured capacitance signal
responds to changes in the basin fluid mass when the
fourth sound resonance is driven. A model of this system,
described in the Supplemental Material [56], relates the
spatially averaged mass current, hjsi, to the measured
detector voltage via the equation

hjsi ¼
ð1þ 2ΣÞ
2C0Rtrans

�
ρAD
a

�
VDET

Vdc
: ð2Þ

Here, C0 is the undriven capacitance, Rtrans is the current to
voltage conversion factor of a transimpedance amplifier, ρ
is the total mass density of the 3He, Vdc is a bias voltage
used to enhance the signal, A is the area of the basin, a is
the cross-sectional area of the channel, and Σ is a small
correction factor to account for the finite compressibility of
the helium.
By performing repeated power-sweep measurements of

the Helmholtz resonance, we can measure the drive
dependence of the resonance amplitude [52]. As shown
in Fig. 2, for low drives there is a linear regime where the
peak amplitude is proportional to the drive voltage,
suggesting that the superfluid density is independent of
drive. Once the peak of the resonances crosses a critical
value, Vc, there is a secondary regime where the amplitude
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increases at a slower rate and the line shape begins to flatten
at the top of the resonance. The amplitude saturates for
large drive voltages, suggesting that there is a maximum
momentum density beyond which we cannot drive the
resonator.
We characterize this effect by recording the detector

voltage at which the slope changes for both devices at
pressures of 2.87, 22.45, and 27.94 bar, over a range of
temperatures. This voltage threshold was then converted
into a critical current using Eq. (2). These results are
compiled in Fig. 3. The temperature was determined using
the known temperature dependence of the superfluid
density [70], calibrated to a primary melting curve ther-
mometer [71]. Specifically, the temperature of each data
point was computed using the resonance frequency of the
fourth sound mode of the 1800 nm device. The fourth
sound mode frequency changes according to the equation

�
ω0ðTÞ
ω0ð0Þ

�
2

¼ ρs
ρ
; ð3Þ

where ω0ð0Þ is a function of the resonator dimensions, total
fluid density, and the isothermal compressibility. Inversion
of this curve allows the measured frequency to be converted
into a temperature as described in the Supplemental
Material [53,56].
The temperature scaling was investigated by fitting 750

and 1800 nm amplitude datasets to a function of the form

hjci ¼ j0ð1 − BT=Tc;1800Þn=2: ð4Þ

The prefactor B is included to account for the suppression
of the critical temperature due to confinement. For the

1800 nm device B ¼ 1, and for the 750 nm device it is the
ratio of the two critical temperatures B ¼ Tc;1800=Tc;750 ¼
1.042. The value of this ratio is inferred by measuring the
mode frequency as a function of temperature and extrapo-
lating to zero frequency.
For the 1800 nm device, both pressure datasets are well

fit by n ¼ 3.20. For the 750 nm device, a similar curve,
n ¼ 3.13, can be fit to the data, but it deviates from this
trend at lower temperatures. The fact that the A phase
persists to lower temperatures under higher confinement
allows us to measure a wider range of temperatures in the
750 nm device. The deviation from a 3=2 power law
appears to be a consequence of the fact that the superfluid
fraction is approximately linear near Tc, but not at lower
temperatures.
The critical currents are converted into critical velocities,

by taking the ratio vc ¼ hjci=ρs;c. Here, ρs;c ¼ ρsðvcÞ is the
velocity-dependent superfluid density computed from the
measured Helmholtz frequency at the critical value. We
find the critical velocity curves for the two devices, at three
different pressures, come close to falling onto one another
(see Fig. 4) and are not inconsistent with a function of the
form

vc ¼ v0ð1 − BT=Tc;1800Þ1=2; ð5Þ

which is the same temperature scaling as the Ginzburg-
Landau gap. The temperature-independent prefactor of the
fit is v0 ¼ 2.65� 0.09 mm=s. This is reminiscent of
the Landau critical velocity for an isotropic superfluid
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FIG. 2. Characterizing the nonlinear regime. (a) The mass
current, calibrated from the detector peak voltage, for the 750 nm
device at 22.45 bar and 2.08 mK is plotted as a function of the
pressure gradient across the channels j∇Pj. The bias voltage Vdc
is held constant throughout the experiment such that hjsia ∝
VDET and j∇Pj ∝ Vac. The inset highlights the linear drive regime
and a critical value at which the slope abruptly changes. The
dashed line is a fit to the linear regime data used to highlight the
change in slope. The dotted lines indicate the point at which the
slope changes. (b) Log-plot of the Helmholtz resonance with
drive voltages ranging from 1 to 50 mV. The resonances are
normalized by the drive voltage. Near resonance, the line shape
distorts above the critical drive.
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FIG. 3. Temperature scaling. (a) Plot of the peak voltage as a
function of temperature for the 750 nm device at 22.45 bar
(green squares), and 27.94 bar (blue squares), as well as 1800 nm
device at 22.45 bar (red circles), and 27.94 bar (orange circles).
The dashed lines show fits to functions of the form
ð1 − BT=Tc;1800Þn=2. The parameter B is used to rescale the
critical temperature for the 750 nm device. The 22.45 bar and
27.94 bar datasets are fit together for the 1800 nm device but
separately for the 750 nm device. (b) Measured frequency
dependence of the Helmholtz modes. (c) Superfluid density of
each device as calculated from the resonant frequency. The gray
curve is the bulk superfluid fraction.

PHYSICAL REVIEW LETTERS 132, 156001 (2024)

156001-3



vLðTÞ ¼ ΔðTÞ=pF. However, the analogy is not straight-
forward due to the existence of the A-phase nodes.
Comparing our results to the dc flow experiments

performed by Manninen et al. [44,45], which studied flow
through an 0.8 μm Nuclepore filter, multiple dissipation
regimes were observed only in cases where the end effects
produced orbital viscosity. These end effects occurred only
when the A phase existed both inside and outside the pores,
but not when the superfluid was B phase outside the pores
and A phase inside. In light of this, it is worth considering
the phase transitions of the bulk fluid outside the Helmholtz
resonator. At 22.45 bar the bulk A to B transition occurs at
TAB ¼ 0.979Tc, redat 27.94 bar it is TAB ¼ 0.876Tc, and
at 2.87 bar it does not occur at all. This means that in
the majority of our measurements the fluid outside the
Helmholtz resonator is B phase. To study the role of the
boundary, we performed a measurement at 27.94 bar at
2.37 mK, which is above the bulk TAB line, ensuring A
phase both inside and outside the Helmholtz resonator. We
found the critical velocity follows the same temperature
scaling, suggesting the phase boundary plays no role [56].
In the experiments of Ref. [44,45] where the A-phase
texture was static, there was no special velocity at which
dissipation onsets, as expected for dc flow. This suggests
that the dissipation onset velocity we observe is unique to
the dynamics of oscillatory flow resulting from our ac
Helmholtz resonance.
To understand the role of oscillatory flow, we now

consider in more detail the mechanical oscillator experi-
ments performed in 3He-B [4,5]. Near the surface of a
moving object, the gap is suppressed allowing for bound

state excitations localized near the surface. Similar to the
states near the A-phase nodes, these states do not contribute
to dissipation once filled, unless they can escape into the
bulk fluid. When the flow is alternating, with an oscillation
period that is large compared to the quasiparticle lifetime, a
pumping process can occur at a fraction of the Landau
critical velocity when the energy of a bound state exceeds
that of an unoccupied bulk state. This allows for dissipation
as the surface states are continuously populated and
released. There does not seem to be any conceptual reason
why this same process should not occur in the A phase and,
when textural dynamics are eliminated, we argue it should
be the lowest energy critical velocity. Since the critical
velocity due to bound state dissipation is proportional to the
gap magnitude, this is consistent with the temperature
scaling we observe. It is worth mentioning that although the
previously mentioned mechanical oscillator experiments
[4,5] needed to cool to the ballistic temperature regime to
study bound state dissipation, this is due primarily to the
normal fluid viscosity. Since our experiment is based on a
superleak, a critical velocity due to bound states could in
principle be measured at any temperature, though the exis-
tence of thermal excitations may modify the results quanti-
tatively (see discussion in Supplemental Material [56]).
We note that the flow inside the Helmholtz resonator is

quite different from a vibrating wire. Because of viscous
clamping of the normal fluid, there is no analogous back-
flow parameter for the Helmholtz resonator. Analysis of the
flow fields, however, shows that there is localized flow
enhancement at the corners of the channels. Our simula-
tions (discussed in the Supplementary Material [56])
suggest that the peak flow velocity at the corners may
be a factor of ∼10 times larger than the spatially averaged
channel velocity that we calculate from our measurements.
For this reason, bound state dissipation is likely initially
localized to a region near the corners. Our experiment is
only sensitive to the average velocity, therefore the values
we report in Fig. 4(a) may not reflect the velocity at pair
breaking [72]. Future experiments will investigate the
effects of rounded corners on the critical velocity. Such
rounded corners will ensure uniform velocity, hence
quantitative measurements of the pair-breaking velocity.
We argue in the Supplemental Material that the confine-

ment does not permit textural transitions even when the
flow enhancement is considered [56]. The question of
dissipation due to vortices (i.e., nucleation at the channel
corners, or a vortex mill process) is also explored in the
Supplemental Material [56], which has been considered as
an alternative interpretation of the observed critical veloc-
ity. We offer several arguments against this view, the most
important of which is the difference in the nonlinear scaling
we observe in the B phase compared to the A phase. Any
dissipative process involving pure phase winding vortices,
which exist in both the A and B phases, should give rise to a
similar critical velocity in both phases. Contrary to this, we

v c
(a) (b)

(c)

FIG. 4. Critical velocity. (a) The critical current of the Helm-
holtz resonator is computed from the resonance amplitude at
which the linear regime ends, and the superfluid density from the
center frequency of the resonance as vc ¼ hjsi=ρs;c. The ratio of
these values is the critical velocity. The dashed line is a fit to all
datasets of the form v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − T=Tc

p
. (b) Plot of the quasiparticle

dispersion relation when the fluid is at rest. The solid lines
represent the bulk dispersion relation, and the dashed lines the
bound state dispersion. (c) Plot of the quasiparticle dispersion
relation at a finite critical velocity when the maximum energy
value of the lower-band bound states is equal to the minimum
energy value of the upper-band bulk states (highlighted by the
dotted line).
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find a drastically different drive scaling for the B phase.
Figure 5 shows how the peak height of the Helmholtz
resonance scales with the drive voltage for the 1800 nm
device at 27.94 bar, for temperatures above and below the
A-B transition temperature. In the A phase there is an
obvious critical drive where the slope changes as the
resonance line shape begins to distort. For the B phase
the scaling remains linear for higher drives, eventually
displaying a qualitatively different type of nonlinearity.
Instead of the resonance line shape becoming flatter, it
develops a bistability, which will be explored elsewhere.
The fact that the B phase does not display the same

critical velocity as the A phase suggests that the dissipation
mechanism must either be unique to the A phase or simply
occur at higher velocities in the B phase. A simple model
has been constructed in the Supplemental Material to
explain this difference [56]. This model suggests that the
existence of bulk states near the A-phase nodes modifies the
critical velocity, compared to an isotropic superfluid, by a
factor of sinðθmaxÞ ≈ 0.57–0.85 depending on pressure.
Since the A-phase gap is proportional to sinðθÞ, the low
energy states near the node preferentially fill up first. The
value θmax is introduced as an effective quantity that sets the
minimum energy of available bulk states for surface states
to scatter into. The combination of this correction factor,
and the corner flow enhancement, accounts for the rela-
tively low critical velocity measured in our experiment.
In conclusion, we have carried out measurements of the

force-velocity curves for oscillatory flow in 3He-A in
channels with thicknesses of 1800 and 750 nm. We find
dissipation onsets at a critical velocity that has the same
temperature scaling as the Ginzburg-Landau gap. This

critical velocity is best explained by the pumping of surface
bound states in our devices, an effect that has not previously
been shown in 3He-A. Our experiment studies channel sizes
that are still large compared to the gap suppressed region
where bound states are localized. In this regime, our
measurement of the critical velocity does not show any
notable dependence on the channel height or pressure.
In future experiments, we are interested in investigating

the confinement limit where the channel thickness is
comparable to—or even smaller than—the coherence
length, a regime that is beginning to be experimentally
accessible, such as in NMR devices of 192 nm [73] and
Helmholtz resonators as small as 25 nm [74]. Theoretical
work suggests that the A phase is favored over the planar
phase even in this highly confined limit when strong
coupling is considered [48,50]. In this highly confined
regime, the gap suppression should extend across the entire
channel, which we expect to have consequences for the
critical velocity. Using the pressure and temperature
dependence of the coherence length, ξðP; TÞ, gives us an
in situ knob to change the ratio D=ξ. Studying the
Helmholtz mode force-velocity curves as a function of
this ratio is thus a platform for probing the properties of
bound states in both 3He-A and 3He-B, which are predicted
to be exotic Weyl [19,22,23,26] and Majorana quasipar-
ticles [75,76].
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