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We show how to perform exact diagonalizations of SUðNÞ Fermi-Hubbard models on L-site clusters
separately in each irreducible representation (irrep) of SUðNÞ. Using the representation theory of the
unitary group UðLÞ, we demonstrate that a convenient orthonormal basis, on which matrix elements of
the Hamiltonian are very simple, is given by the set of semistandard Young tableaux (or, equivalently, the
Gelfand-Tsetlin patterns) corresponding to the targeted irrep. As an application of this color factorization,
we study the robustness of some SUðNÞ phases predicted in the Heisenberg limit upon decreasing the on-
site interaction U on various lattices of size L ≤ 12 and for 2 ≤ N ≤ 6. In particular, we show that a long-
range color ordered phase emerges for intermediate U for N ¼ 4 at filling 1=4 on the triangular lattice.
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The Fermi-Hubbard model (FHM) is among the most
important models in condensed matter [1–3]. In particular,
the SU(2) FHM on the square lattice might describe the
physics of electrons carrying a spin one half in cuprate
superconductors [3–5] and has motivated numerous theo-
retical investigations [6,7]. Considering N, the number of
degenerate orbitals, as an integer parameter of the models, a
natural extension of the SUðN ¼ 2Þ FHM is the SUðNÞ
FHM [8–10].
This higher symmetry group Hamiltonian, first intro-

duced as a theoretical tool to provide an asymptotic
description of spins 1=2 in the large N limit [11–14],
can also describe some condensed matter systems like
transition metal compounds [15,16] or graphene with
SU(4) spin valley symmetry or in twisted bilayer [17].
Alternatively, alkaline-earth cold atoms like 173Yb or 87Sr
can simulate SUðNÞ-invariant FHMs for N up to 10 on
various engineered optical lattices [18–21]. Additionally,
the continuous experimental achievements in this field
[22–27] brought theoreticians to investigate these systems
in order to look for exotic phases that would generalize
their N ¼ 2 counterpart.
Apart from some quantum Monte Carlo studies [28,29]

addressing the SUðNÞ FHM at half filling for a wide range
of positive on-site interaction U, most of the theoretical
investigations focused on the large U limit, where the
atoms, in the Mott insulating phase, are described by
SUðNÞ Heisenberg models (HMs) [30–37]. Depending
on the lattices and on the number of colors N, different
two-dimensional phases are predicted at T ¼ 0, among
which the SUðNÞ plaquette phases [38–42] are cousins of
the valence bond states for spins 1=2, the Néel long-range
color ordered (LRO) states [34,35] are analogous to the
famous (π, π) (respectively, 120°) Néel states existing on

the square [43,44] (respectively, the triangular [45,46])
lattice for N ¼ 2, and diverse kinds of SUðNÞ spin liquids
[47–56] generalizing the Anderson resonating valence
bond states [4,57]. Except for the one-dimensional system
where there is a Bethe ansatz solution [58], the theoretical
investigation of these models, based on advanced numerical
tools, is challenging mainly because the dimension of the
full Hilbert space on finite-size lattices increases exponen-
tially, being equal to NL, where L is the number of sites of
the cluster, for filling 1=N (exactly one particle per site) in
the SUðNÞ HM.
However, it was realized that working in the SUðNÞ

singlet subspace, which usually contains the ground state
(GS) in the antiferromagnetic case, is very advantageous as
its dimension is much smaller than NL. For instance, for
N ¼ 6 and L ¼ 12, such a dimension is equal to 132, while
NL ≡ 612 ≈ 2 × 109. In addition, the exact diagonalization
(ED) of the HM directly in the SUðNÞ singlet subspace can
be made easy on the basis of standard Young tableaux
(SYT) using the orthogonal representation of the group of
permutations SL [59]. It is crucial to extend this theory to
the SUðNÞ FHM as the dimension of the full Hilbert space
is even larger, i.e., equal to 2NL. In fact, for N ¼ 6, L ¼ 12
at filling 1=6 the dimension of the singlet subspace for the
SU(6) FHM is ≈14 × 106, while the full Hilbert space has
dimension 272 ≈ 5 × 1021.
In this Letter, we use the representation theory of the Lie

group UðLÞ to show how to perform ED of the SUðNÞ
FHM directly in each irreducible representation (irrep).
After the description of the method, we apply the procedure
to show some ED results on square and triangular clusters
of size up to L ¼ 12 and for N up to N ¼ 6 to see how
robust are some SUðNÞ Mott insulating phases while
decreasing the on-site repulsion.
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The Hamiltonian for the SUðNÞ FHM reads

H ¼
X

hi;ji

�
−tijEij þ H:c:

�þU
2

XL

i¼1

E2
ii; ð1Þ

where the tij are the (possibly complex) hopping amplitude
between sites i and j of a L-site finite cluster, and the on-site
interaction amplitude is U. The SUðNÞ-invariant hopping
terms Eij ¼ E†

ji ¼
P

N
σ¼1 c

†
iσcjσ satisfy the commutation

relation of the UðLÞ generators (∀ 1 ≤ i; j; k; l ≤ L),

½Eij; Ekl� ¼ δjkEil − δliEkj; ð2Þ
so that the Hamiltonian in Eq. (1), where the integer
parameter N is hidden, can be seen as an element of the
Lie algebra of the unitary group UðLÞ [60]. It should be
considered as the counterpart of the quantum permutation
Hamiltonian for the SUðNÞ-invariant HM, i.e., H ¼P

hi;ji JijPij þ H:c:, with Pij (respectively, Jij) the permu-
tation (respectively, coupling constant) between interacting
sites i and j, for which the representation theory of the
algebra of the group of permutations was used to perform
ED directly and separately in each irrep of SUðNÞ [59,62].
We remind the reader that an irrep of SUðNÞ is labeled by

a Young tableau (YT) or shape α (see Fig. 1), the N rows of
which represent N integers α ¼ ½α1; α2;…; αN � such that
α1 ≥ α2 ≥ � � � ≥ αN ≥ 0 and

P
N
i¼1 αi ¼ M, whereM is the

number of particles [i.e., the filling is M=ðLNÞ]. Calling
HM;N

L , the Hilbert space for L sites andM SUðNÞ fermions,
its dimension DM;N

L ≡ dimðHM;N
L Þ is [63]

X

α

hᾱL
YL

i¼1

�
N

ᾱi

�
¼

X

α

dαNd
ᾱ
L; ð3Þ

where the sums on both sides run over all the YT α of M
boxes, with maximum L columns and N rows. ᾱ ¼
½ᾱ1;…; ᾱL� is defined as the transposeYTof α, transforming
rows into columns (cf. Fig. 1 for some examples). On the lhs
of Eq. (3), ᾱ is a distribution of fermions: ᾱj being the
number of fermions (necessarily ≤ N) on site j for
1 ≤ j ≤ L;

Q
L
i¼1ðNᾱiÞ is the number of states for such a

distribution. The factor hᾱL, defined as h
ᾱ
L ¼ L!=

Q
N
k¼0ðnᾱkÞ!,

where nᾱk ¼ Cardinalfj∈ ⟦1;L⟧∶ᾱj ¼ kg, is the number of
distributions corresponding to a given partition ᾱ, while
permuting the ᾱj (or the site indices j) for 1 ≤ j ≤ L. In the
rhs of Eq. (3), dαN (respectively, dᾱL) stands for the dimension
of the SUðNÞ irrep α [respectively, the UðLÞ irrep ᾱ] [71],
which we can calculate using existing formulas [63]. These
dimensions are equal to the number of semistandard Young
tableaux (ssYT) of shape α (respectively, ᾱ) filled with
numbers from1 toN (respectively,L), since these latter form
a basis of the SUðNÞ or UðLÞ irrep. Given a UðLÞ irrep
represented by some YT, a ssYT is filled up with integer
numbers from 1 to L in nondescending order from left to
right in any row (repetitions allowed), and in strictly
ascending order (repetitions not allowed) from top to bottom
in any column [cf. Fig. 1 and Eq. (4) for some examples].
As detailed below and in the Supplemental Material [63],

for the color-invariant SUðNÞ FHM [cf. Eq. (1)], the Hilbert
space HM;N

L can be decomposed, or color-factorized, fol-
lowing the rhs of the equation for the dimension DM;N

L , i.e.,
Eq. (3). In particular, targeting a given collective SUðNÞ
irrep α, we will need to diagonalize a matrix of dimension
dᾱL, and there will be dαN independent copies (some multi-
plicity) of the corresponding spectrum in the full energy
spectrumof themodel. For instance, whenM is amultiple of
N, one important sector is the SUðNÞ singlet sector, as it
usually contains the lowest energy eigenstates (in the large
U > 0 limit, for instance); it is labeled by the perfectly
rectangularN-rowYTα ¼ αS;M ≡ ½M=N;M=N;…;M=N�.
In this case, dαS;MN ¼ 1 and for L ¼ 12 at filling 1=N
(M ¼ L), one has, for instance, dᾱS;M¼L

L¼12 ¼ 13 026 013 for
N ¼ 4 and dᾱS;M¼L

L¼12 ¼ 14 158 144 for N ¼ 6. This should be
compared to the dimensions of the sector usually addressed
in standard ED with a fixed number of fermions
of each color [conserving the U(1) symmetry], which

is dUð1Þ
L;M;N ¼ ð L

M=NÞN : one has dUð1Þ
L¼M¼12;N¼4 ≈ 2.34 × 109

(respectively, dUð1Þ
L¼M¼12;N¼6 ≈ 8.27 × 1010). As N increases,

it is more and more advantageous to implement the full
SUðNÞ symmetry, working in the SUðNÞ singlet sector and,
more generally, in a sector of a given irrep α.
For a given UðLÞ irrep ᾱ, the highest weight state

(jhwsi), uniquely (up to some similarity) and fully deter-
mines the irrep, as one can generate the entire basis by
applications of the generators Eij (for 1 ≤ i; j ≤ L). The
jhwsi is represented by the shape ᾱ filled with 1 for the first
row (of length ᾱ1), 2 for the second row (of length ᾱ2), etc.

(a) (b)

FIG. 1. Examples of SUðN ¼ 2Þ irrep α for a L ¼ 4-site cluster
andM ¼ 6 fermions in (a) andM ¼ 4 fermions in (b). The Young
tableaux are α ¼ ½3; 3� (respectively, α ¼ ½3; 1�), representing
singlets (respectively, spin 1) states. We associate the transpose
YT, flipping the shape: α ¼ ½3; 3� → ᾱ ¼ ½2; 2; 2� for (a) and α ¼
½3; 1� → ᾱ ¼ ½2; 1; 1� for (b). We fill up ᾱ to get the highest weight
state to which we associate dαN¼2 physical states, each of which
generates an independent dᾱL-dimensional sector invariant under
the application of the operators Eij. See text for details.
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(cf. Fig. 1). It is defined by the following properties:
Eiijhwsi ¼ ᾱijhwsi ∀ i∈ ⟦1;L⟧ and Eijjhwsi ¼ 0 for
i < j [72]. Crucially, in HM;N

L , there are dαN orthonormal
states jϕhws

α;k i (k ¼ 1;…; dαN) that have these properties and
can then be represented by the same ssYT associated with
the jhwsi. For example, for the SUðNÞ singlet irrep αS;M,
there is only one state jϕhws

α;1 i and it is the product of SUðNÞ
singlets for sites 1; 2;…;M=N, with no particles on sites
M=N þ 1;…; L [cf. Fig. 1 and the Supplemental Material
[63] for details about SUðNÞ singlets].
On the basis of the ssYT, which are equivalent to the

Gelfand-Tsetlin (GT) patterns [63,73], the matrix elements
of the infinitesimal generators Epp, which are the occupa-
tion numbers on site p for p ¼ 1;…; L and of Ep−1p
(respectively, Epp−1), which generalize the lowering oper-
ator J− (respectively, Jþ) for U(2), are very simple. Found
by Gelfand and Tsetlin [74], we detail them in the
Appendix. As an illustrative example, for the SU(4) adjoint
irrep at filling 1=4 for L ¼ 12 (the basis has then 57972915
elements), we have, for instance,

ð4Þ

Finally, from the successive applications of the commuta-
tion relations [Eq. (2)] and from Eij ¼ E†

ji, one gets the
matrix representing the SUðNÞ FHM Hamiltonian H
[cf. Eq. (1)] in the irrep ᾱ, which corresponds to the
SUðNÞ irrep α.
We have applied this theory to study the FHM of Eq. (1)

for uniform nearest neighbors hopping tij ≡ t ¼ 1 as a
function of U at filling 1=N, starting from the Heisenberg
limit (U → ∞) and diminishingU. The ground states of the
SU(3) HM on the triangular lattice (TL) and of the SU(5)
HM on the square lattice (SL) are both Néel LRO states,
with a three-sublattice ordering pattern for SU(3)
[35,75,76] and a (chess) knight move pattern for SU(5)
[59]. We give evidence of such orders by calculating the
simple correlation patterns of the exact ground states of the
FHM in Fig. 2 for U ¼ 10. Moreover, the energy spectra
plotted as a function of the quadratic Casimir C2 [63,72] of
the different irreps α exhibit an Anderson tower of states
(Atos), which reveals the continuous symmetry breaking of
SU(3) [respectively, SU(5)] as shown in Fig. 3 (respec-
tively, in the Supplemental Material [63]). We have
checked the convergence in the limit U → ∞ within each
irrep α of the eigenenergies toward those of the HMs with
the factor 2=U. In fact, the group theory coefficients used in
the protocol for the SUðNÞ FHM converge [63] toward the
ones needed in the algorithm for the SUðNÞ HM [59].
While diminishing U, the structure of the energy spectra

stays the same up to U ∼ 2.5 (respectively, U ∼ 1) for
SU(3) on the L ¼ 12 TL [respectively, SU(5) on the

L ¼ 10 SL]. Then, some energy plateau as a function of
C2 appears for smaller U, which is also true for SU(2) on
the TL, as shown in Fig. 3. Such a system should be in the
metallic phase for U ≲ 8.5, as expected from density-
matrix renormalization group (DMRG) simulations on
large cylinders [77], so that the plateau could be a signature
of the metallic phase in the weak coupling limit. To further
characterize the metallic phase and to locate its boundary,
we show in Fig. 4 and in the Supplemental Material [63] the
charge gap defined by Δc ¼ E0ðM ¼ Lþ 1Þ þ E0ðM ¼
L − 1Þ − 2E0ðM ¼ LÞ, where E0ðMÞ is the minimal
energy for the lattice with M fermions, which implies
the diagonalization over all the relevant M ¼ L, L� 1 box
irreps ᾱ. It suggests that the metallic phase develops for
U ≤ Uc ¼ 9.8ð�0.4Þ for SU(3) on a TL and for U ≤ Uc ¼
8.75ð�0.15Þ for SU(5) on a SL, with apparently no
intermediate phase between the latter and the LRO in
the large U limit. The scenario of successive LRO phases,
with different antiferromagnetic orders, like what was
numerically observed in the SU(3) FHM on the SL [78],
does not seem to occur here, since the correlation patterns
are monotonic [63]. However, the sizes of the clusters
within reach of our ED method do not exclude such a
scenario in the bulk limit.
The presence of an in-between phase, detectable on

finite-size clusters, might occur when the HM limit is not a

FIG. 2. Correlation patterns of the ground states of the FHM at
filling 1=N for U ¼ 10 in (a),(c),(d) and for U ¼ 12 in (b). They
are defined as hP1ji − 1=N, where P1j ≡ −1þ E1jEj1, with the
reference site 1 in black, and j the site indices being blue (red) for
positive (negative) correlation, with area proportional to its
absolute value. At the top, triangular lattice with L ¼ 12 sites,
for SU(3) (a) compatible with the three-sublattice Néel order
[35,75,76] and for SU(4) (b) compatible with the four-sublattice
Néel order [32]. (c) SU(5) on the cluster

ffiffiffiffiffi
10

p
×

ffiffiffiffiffi
10

p
, pattern

compatible with the (chess) knight move LRO [59]; (d) SU(6) on
the 3 × 4 cluster, compatible with the SU(6) plaquette state [42].
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LRO, such as for SU(3) on the honeycomb lattice [79]. The
SU(4) FHM on the TL might enter into this category as the
HM limit is a gapless quantum spin liquid [32,54,56]. In
fact, while there are four low-lying energy SU(4) singlet
states for U ¼ 50 on the L ¼ 12 site TL, when decreasing
the interaction, the singlet gap (defined as the gap within
the singlet irrep αS;M) starts increasing and an emerging
Atos appears for U ≲ 15 (cf. Fig. 3 with both U ¼ 12 and
U ¼ 50), which is similar to the one occurring in a pseudo-
HM with next-nearest neighbor (nnn) couplings on the
same L ¼ 12 TL cluster [32]. The nnn couplings, which are
present at order 4 in t=U in the large U limit [53], were
shown to stabilize a four-sublattice order [32], also appar-
ent in the correlation patterns of our Fig. 2. From the charge
gap shown in Fig. 4, the boundary between this phase and
the metallic phase occurs around U ¼ Uc ¼ 11.2� 0.2.
Like for the other systems, such a value slightly changes for
larger L due to finite-size effects, as illustrated for SU(2),
L ¼ 12, and L ¼ 16 in the Supplemental Material [63]. We
also show, in Fig. 4(b), the SUðNÞ spin gaps Δs defined as
the difference between the minimal energy of the SUðNÞ
adjoint irrep sector (corresponding to α ¼ ½M=N þ 1;
M=N;…;M=N − 1�) and that of the singlet sector (i.e.,
for α ¼ αS;M). The spin gaps Δs, which are also impacted
by finite-size effects [63], exhibit some peaks at values ofU
that roughly match with the values Uc for each N.

Finally, we have investigated the SU(6) FHM on the SL,
as the HM limit is also not a LRO but a plaquette state [42].
Through the correlation pattern of the GS on a 4 × 3

periodic SL for U ¼ 10 in Fig. 2, we found some evidence
of the six-site plaquette state in the Mott phase, a feature
confirmed by the presence of two low-lying energy SU(6)
singlet states, compatible with the periodic boundary
conditions, for large U (i.e., U ¼ 20, cf. Fig. 3). When
U decreases, the spin gap becomes smaller than the singlet
gap, suggesting a change of phases. However, with the
current version of our code and with the limitation of our
computational resources, the necessary calculation of the
charge gap was too demanding, leaving open both the
question of the size of the metallic phase and the presence
of some intermediate phase.
To conclude, we found an efficient protocol to perform

ED of the FHM on L-site clusters directly in each SUðNÞ
irrep, which uses the set of ssYT (or GT patterns) as a
convenient basis with matrix elements of the UðLÞ group
generators. This approach, which generalizes the use of
SYT for SUðNÞ in HMs [59], dramatically reduces the
dimension of the matrices to diagonalize. We applied our
method to study the survival of the SUðNÞ Mott phases
from N ¼ 3 to N ¼ 6 on TL and SL when the on-site
interaction U decreases. In particular, we found an emerg-
ing intermediate LRO phase for SU(4) on the TL, remi-
niscent of the four-sublattice order in the HM with nnn
couplings [32].
Among the perspectives, since the SUðNÞ FHM can be

seen as a fine-tuned version of the SpðNÞ FHM [80], one
could generalize our approach to Hamiltonians invariant
under SpðNÞ [19,81,82]. It would be numerically helpful,
as the dimension of the SpðNÞ singlet sector is also much
smaller than that of the sector used in traditional ED [63].
However, GT-type bases for finite-dimensional irreps of

FIG. 3. Energy spectra of the FHM in Eq. (1) (with tij ≡ 1 at
filling 1=N) as a function of the quadratic Casimir C2 for various
values of U and N for the L ¼ 12 periodic triangular lattice
[(a)–(d)] and for the L ¼ 4 × 3 periodic square lattice in (e),
where we focused on N ¼ 6. Note that the constant LU=2 has
been withdrawn. (c) The Atos is reminiscent of the one revealing
the four-sublattice order in the HM with nnn couplings [32]. Inset
of (e): spin (singlet) gap in blue (red).

FIG. 4. (a) Charge gaps Δc for the FHM on the L ¼ 12 sites
triangular lattice for N ¼ 2, 3, and 4 at filling 1=N. The dashed
lines (cf. the Supplemental Material [63] for the fitting procedure)
cross the x axis at U ≃ 8.6 for N ¼ 2, U ≃ 9.8 for N ¼ 3, and
U ≃ 11.2 for N ¼ 4 separating the small U metallic phase from
the Mott insulators. (b) SUðNÞ spin gaps Δs.
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SpðNÞ are more complicated to handle than those for the
irreps of SUðNÞ [83,84]. Other perspectives would be the
implementation of the ssYT basis in tensor networks and
DMRG algorithms, in a fashion similar to what was done
with the SYT for the HM [85,86], and the combination of
both the implementation of the SUðNÞ and of the spatial
symmetries in ED.

We acknowledge F. Mila for fruitful discussions and
S. Gozel for a critical reading of the manuscript, as well as
A. Laeuchli and C. Ganahl who gave us some 15 digit
SU(3) FHM eigenenergies [53] for data comparisons. This
work has been supported by an Emergence grant from
CNRS Physique.

Appendix.—The matrix elements of the infinitesimal
generators between equal or consecutive sites Epp,
Ep−1p, Epp−1, take a simple form on the basis of the
ssYT. Calling jνi a ssYT, one has for p ¼ 1;…; L,

Eppjνi ¼ Cardinal
�
p∈ ν

�jνi; ðA1Þ

where Cardinalfp∈ νg is equal to the number of
occurrences of p inside jνi, corresponding to the
occupation number on site p (cf. Fig. 1 for some
examples).
Second, calling jνi a ssYT, one has for p ¼ 2;…; L,

Ep−1pjνi ¼
Xp−1

j¼1

ajp−1F
j
p−1jνi; ðA2Þ

where the tableau operators Fj
p−1 transform the number p

in the jth row in jνi into p − 1. As for the coefficients ajp−1,
which vanish in the case where such a transformation is not
possible, either because there is no p in the jth row of jνi or
because the resulting tableau is not a proper ssYT, they read
[63,87]

ajp−1 ¼
				

Qp
i¼1ðli;p − lj;p−1Þ

Qp−2
i¼1 ðli;p−2 − lj;p−1 − 1ÞQ

i≠jðli;p−1 − lj;p−1Þ
Q

i≠jðli;p−1 − lj;p−1 − 1Þ
				
1=2

;

ðA3Þ

where lk;q ¼ mk;q − kwithmk;q as the length of the kth row
of the subtableau that remains when we delete all the boxes
containing numbers > q in jνi. Finally, from Eij ¼ E†

ji, we
obtain the matrix elements of Epp−1 for p ¼ 2;…; L.
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