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We present the first determination of the energy dependence of the B-D̄ and B�-D̄ isospin-0, S-wave
scattering amplitudes both below and above the thresholds using lattice QCD, which allows us to
investigate rigorously whether mixed bottom-charm b̄c̄ud tetraquarks exist as bound states or resonances.
The scattering phase shifts are obtained using Lüscher’s method from the energy spectra in two different
volumes. To ensure that no relevant energy level is missed, we use large, symmetric 7 × 7 and 8 × 8

correlation matrices that include, at both source and sink, Bð�Þ-D̄ scattering operators with the lowest three
or four possible back-to-back momenta in addition to local b̄c̄ud operators. We fit the energy dependence of
the extracted scattering phase shifts using effective-range expansions. We observe sharp peaks in the Bð�Þ-D̄
scattering rates close to the thresholds, which are associated with shallow bound states, either genuine or
virtual, a few MeV or less below the Bð�Þ-D̄ thresholds. In addition, we find hints for resonances with
masses of order 100 MeV above the thresholds and decay widths of order 200 MeV.
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The majority of experimentally observed mesons can be
understood in the quark model as quark-antiquark pairs.
However, mesons, which are hadrons with integer spin, can
in principle also be composed of two quarks and two
antiquarks. The existence of these so-called tetraquarks had
already been proposed in the early history of the quark
model and QCD [1–3], but clear experimental confirmation
was obtained only around a decade ago, for example in
form of the observation of the charged Zc and Zb states as
reviewed in Refs. [4,5]. While the masses and decays of the
latter strongly indicate the presence of a c̄c pair or a b̄b pair,
their nonvanishing electric charge implies additionally a
light quark-antiquark pair. Recently, there was another
experimental breakthrough in the field, namely the detec-
tion of the Tcc tetraquark with quark flavors c̄c̄ud by

LHCb [6,7]. In contrast to previously observed tetra-
quarks and tetraquark candidates, its mass is slightly
below the lowest meson-meson threshold, making it by
far the longest-lived experimentally confirmed tetraquark.
Following the observation of this doubly charm tetraquark,
possible next targets for experimental searches could be
mixed bottom-charm tetraquarks with flavor content b̄c̄ud.
Their production cross section at the LHC is estimated to be
about 40 times larger compared to the doubly bottom b̄b̄ud
tetraquark [8]. The experimental signatures of a tetraquark
are completely different depending on whether its mass is
above or below the lowest strong-decay threshold. Thus,
reliable theoretical predictions concerning b̄c̄ud tetraquarks
are very important and also urgent.
On the theoretical side, for the lightest b̄b̄ud tetraquark

with IðJPÞ ¼ 0ð1þÞ (which is the bottom-quark partner of
the previously mentioned Tcc), there is a consensus from
recent lattice-QCD calculations that it is deeply bound
[9–15] and will decay through the weak interaction only
(see Refs. [8,16,17] for discussions of possible decay
modes). For the case of b̄c̄ud, there is no such consensus.
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After finding initial hints for a possible QCD-stable b̄c̄ud
bound state with IðJPÞ ¼ 0ð1þÞ from lattice QCD [18], the
same authors refined their calculation with larger lattice
sizes and other improvements, and the hints disappeared
[19]. In Ref. [13], some of us also performed lattice-QCD
calculations of the b̄c̄ud energy spectra for both
IðJPÞ ¼ 0ð1þÞ and IðJPÞ ¼ 0ð0þÞ, and we likewise did
not find any evidence for QCD-stable bound states
(although we could not rule out a shallow bound state). In
contrast, another independent group very recently reported
an IðJPÞ ¼ 0ð1þÞ, b̄c̄ud bound state 43ðþ7

−6Þðþ24
−14Þ MeV

below the B�-D̄ threshold based on their lattice-QCD study
[20], in which the B�-D̄ scattering length was determined
using the Lüscher method [21–24] applied to the ground
state. Nonlattice approaches also do not show a consistent
picture. While Refs. [25–36] predict a QCD-stable b̄c̄ud
tetraquark, Refs. [37–42] reached the opposite conclusion.
In the following, we present a new lattice-QCD study

of the b̄c̄ud systems with both IðJPÞ ¼ 0ð1þÞ and
IðJPÞ ¼ 0ð0þÞ. This study uses a different lattice setup
and substantially more advanced methods compared to
previous work, allowing us to apply the Lüscher method to
multiple excited states in addition to the ground state and
hence to reliably determine the detailed energy dependence
of the B-D̄ and B�-D̄ isospin-0, S-wave scattering
amplitudes.
In lattice QCD, the low-lying finite-volume energy levels

with a given set of quantum numbers (the total spatial
momentum, the quark flavor content, and the irreducible
representation of the full octahedral group) are extracted
from numerical results for imaginary-time two-point cor-
relation functions CijðtÞ ¼ hOiðtÞO†

jð0Þi. The operatorsOi
are constructed out of quark and gluon fields such that they
excite states with the desired quantum numbers, which
resemble the low-lying energy eigenstates of interest. For
an infinite (in practice, large) time extent of the lattice, the
two-point function is equal to CijðtÞ ¼

P
nhΩjOið0Þjni×

hnjO†
jð0ÞjΩi e−Ent, where jΩi is the vacuum state and the

sum is over all eigenstates jni of the finite-volume QCD
Hamiltonian for which the product of overlap matrix
elements is nonzero. By analyzing the time dependence
of the numerical results for CijðtÞ, the energies En can be
extracted. Because lattice QCD uses a Monte-Carlo sam-
pling of the Euclidean path integral, the numerical results
have statistical uncertainties. Moreover, these uncertainties
typically grow exponentially with t.
For multiquark systems, experience has shown that the

simplest possible operator choices in which the quark fields
are combined at the same spacetime point (“local” oper-
ators) are often insufficient to reliably extract even just
the ground state [43]. The reason is that all or most of the
energy levels resemble multihadron states with specific
relative momenta, and the spectrum of such states in the
case of heavy-quark systems is particularly dense. Among

the previous lattice studies of b̄c̄ud systems, Refs. [18–20]
used only local four-quark operators with various types of
smearing (local, wall, box) applied to each quark.
Reference [13] improved upon this by including also
two-meson (B-D̄ and B�-D̄) “scattering” operators, that
is, operators with each meson individually projected to a
specific momentum (equal to zero only, in this case). These
operators were included at the sink only, to avoid having to
generate expensive all-to-all light-quark propagators. The
work presented in the following no longer makes this
restriction and is the first lattice-QCD calculation of b̄c̄ud
correlation matrices with Bð�Þ-D̄ scattering operators at
both source and sink, and also the first to include Bð�Þ-D̄
scattering operators with nonzero back-to-back momenta.
Specifically, to study the b̄c̄ud system with IðJPÞ ¼

0ð0þÞ, we use seven operatorsOAþ
1

1…7, of whichO
Aþ
1

1 through

O
Aþ
1

3 are operators with all four quarks at the same
spacetime point (but with Gaussian smearing of the quark
fields) and jointly projected to zero total spatial momentum,

and O
Aþ
1

4 through O
Aþ
1

7 are B-D̄ scattering operators with
zero total spatial momentum in which the B and D̄
operators have back-to-back momenta of magnitudes 0,
2π=L,

ffiffiffi
2

p
2π=L, and

ffiffiffi
3

p
2π=L (L is the spatial lattice size).

Similarly, for the b̄c̄ud system with IðJPÞ ¼ 0ð1þÞ, we use
eight operators O

Tþ
1

1…8, of which O
Tþ
1

1 through O
Tþ
1

4 are local

four-quark operators and O
Tþ
1

5 through O
Tþ
1

8 are B�-D̄
scattering operators in which the B� and D̄ have back-

to-back momenta of magnitudes 0, 2π=L (for bothO
Tþ
1

6 and

O
Tþ
1

7 ), and
ffiffiffi
2

p
2π=L. Two different operators are used for

the case with one unit of back-to-back momentum to
account for the mixing of S and D partial waves [44].
The labels Aþ

1 and Tþ
1 refer to the octahedral-group irreps

of positive parity that contain the angular momenta
J ¼ 0; 4;… and J ¼ 1; 3;…, respectively. The explicit
definitions of all operators are given in the Supplemental
Material [45]. We compute the symmetric 7 × 7 and 8 × 8
correlation matrices of these operators, using combinations
of (Gaussian smeared) point-to-all and stochastic time
slice-to-all propagators [53].
Our calculations were performed for two different lattice

sizes, 243 × 64 and 323 × 64, with a lattice spacing of
approximately 0.12 fm and pion mass of approximately
220 MeV in both cases. The charm and bottom valence
quarks were implemented using the Fermilab method [54]
and lattice NRQCD [55], respectively, with approximately
physical kinetic masses. Further details are provided in the
Supplemental Material.
We computed the b̄c̄ud correlation matrices for approx-

imately 1000 gauge configurations on each lattice, with 30
source locations per configuration for the elements com-
puted using (Gaussian smeared) point-source propagators,
and three random Z2 × Z2 sources on four time slices per
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configuration for the elements computed with (Gaussian
smeared) stochastic propagators; we also use color and spin
dilution and the one-end trick [53]. To extract the b̄c̄ud
finite-volume energy levels from these correlation matrices,
we follow the well-established approach of solving the
generalized eigenvalue problem (GEVP) [22,56]

X
j

CijðtÞvj;nðt; t0Þ ¼ λnðt; t0Þ
X
j

Cijðt0Þvj;nðt; t0Þ; ð1Þ

where we set t0=a ¼ 3 and verified that the results do not
significantly depend on this choice. We then perform
single-exponential fits of the form λnðt; t0Þ ¼ Ane−Ent to
obtain the energy levels En; see the Supplemental Material
[45] for further details.
Our results for the lowest five energy levels of each b̄c̄ud

system are shown as a function of the spatial lattice size
Ns ¼ L=a in Fig. 1. Also shown are the lowest
four noninteracting Bð�Þ-D̄ energy levels, calculated as E ¼
EBð�Þ ðp2Þ þ ED̄ðp2Þwith momenta p satisfying the periodic
boundary conditions [each component an integer multiple
of 2π=L], and with the single-meson energies calculated on
the lattice and described by the dispersion relations

EBð�Þ ðp2Þ ¼ EBð�Þ ð0Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bð�Þ;kin þ p2
q

−mBð�Þ;kin;

EDðp2Þ ¼ ED̄ð0Þ þ p2=ð2mD̄;kinÞ − p4=ð8m3
D̄;4Þ: ð2Þ

The values of EBð�Þ ð0Þ,mBð�Þ;kin, ED̄ð0Þ,mD̄;kin, andmD̄;4 are
provided in the Supplemental Material [45]. In Fig. 1 we
see that the actual b̄c̄ud energy levels are shifted signifi-
cantly relative to the noninteracting levels due to the
meson-meson interactions in the finite volume, except
for the third level in the case of J ¼ 1 (we discuss the
reason for this behavior farther below).
To rigorously investigate whether bound states or reso-

nances exist, we map the observed finite-volume energy
levels En to infinite-volume S-waveBð�Þ-D̄ scattering phase
shifts δ0ðknÞ using the Lüscher quantization condition

cot δ0ðknÞ ¼
2Z00½1; ðknL=2πÞ2�

π1=2knL
; ð3Þ

where Z00 is the generalized zeta function [23] and kn
is the scattering momentum associated with energy level
En, calculated from En ¼ EBð�Þ ðk2nÞ þ ED̄ðk2nÞ with the
dispersion relations (2) . To ensure that the single-channel,
single-partial-wave approximation is applicable, we only
extract the phase shifts for the energy levels below the
B�-D̄� (J ¼ 0) and B-D̄� (J ¼ 1) thresholds. Furthermore,
for J ¼ 1, we observe that the third finite-volume energy
level is consistent with the noninteracting jpj ¼ 2π=L
energy level that has multiplicity 2 once we include both
S-wave and D-wave structures, as we did in our operator
basis. Because finite-volume interactions for higher partial
waves are suppressed, we conclude that this energy level is
dominantly D wave, and we therefore exclude it from the
Lüscher analysis. This is further corroborated by the
eigenvectors from the GEVP, which show that this state

has a non-negligible overlap only with the operator O
Tþ
1

7

that was subduced from aD-wave structure. Note that there
are similar degeneracies for higher noninteracting levels
above the energy region used in our analysis [44].
Our results for the scattering phase shifts, along with

effective-range expansion (ERE) fits of the form

k cot δ0ðkÞ ¼
1

a0
þ 1

2
r0k2 þ b0k4; ð4Þ

are shown in Fig. 2 (left). The numerical values of the
fitted ERE parameters are given in the Supplemental
Material [45]. The scattering phase shift is related to the
S-wave scattering amplitude and cross section by

T0ðkÞ ¼
1

cot δ0ðkÞ − i
; σðkÞ ¼ 4π

k2
jT0ðkÞj2: ð5Þ

Poles of T0ðkÞ at purely imaginary k correspond to genuine
or virtual bound states for ImðkÞ > 0 or ImðkÞ < 0,
respectively, while poles with ReðkÞ ≠ 0 and ImðkÞ < 0
correspond to resonances. Using our ERE fits, we find
genuine bound-state poles as well as resonance poles for

FIG. 1. Left: the finite-volume energies of the b̄c̄ud system with
IðJPÞ ¼ 0ð0þÞ as a function of the spatial lattice size. The data
points with error bars show the actual finite-volume energy
levels; points plotted with a lighter shade of gray are excluded
from the Lüscher analysis. The solid blue curves correspond to
what would be the noninteracting B-D̄ energy levels, the lowest
of which coincides with the strong-decay threshold. The dashed
green line shows the B�-D̄� threshold. Right: the corresponding
plot for IðJPÞ ¼ 0ð1þÞ. Here, the solid blue curves correspond to
what would be the noninteracting B�-D̄ energy levels, and the
dashed green line corresponds to the B-D̄� threshold.
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both J ¼ 0 and J ¼ 1 at the values of
ffiffiffi
s

p
− ffiffiffiffiffi

sth
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Bð�Þ þ k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D̄ þ k2
q

−mBð�Þ −mD̄ given in

Table I (s denotes the Mandelstam variable equal to the
square of the center-of-momentum energy). We used our
lattice results for the kinetic Bð�Þ and D̄ masses to evaluate
this expression; to obtain predictions for absolute tetra-
quark bound state or resonance masses, one simply needs to
add the experimental value of the threshold energy,
mexp

Bð�Þ þmexp
D̄ .

The resonances have masses of order 100 MeVabove the
Bð�Þ-D̄ thresholds and decay widths of order 200 MeV. We
caution that the resonance poles lie outside the radius of
convergence of the ERE, which is limited by the presence
of a left-hand cut associated with a two-pion t-channel
exchange in the scattering process (a single-pion exchange
would require a D� in the initial or final state, and is
therefore not relevant here). The center-of-momentum
energy at which the left-hand cut starts is obtained from
the kinematic relations for the Mandelstam variables by
expressing s in terms of t and the scattering angle θ�, and

then setting t ¼ ð2mπÞ2 and θ� ¼ π [57]; this gives
ffiffiffiffiffiffiffi
scut

p −ffiffiffiffiffi
sth

p ≈ −18 MeV for both J ¼ 0 and J ¼ 1, corresponding
to ðakÞ2cut ≈ −0.019, as indicated with the magenta lines in
Fig. 2. While our ERE fit is seen to describe the data very
well for real ðakÞ2 in the full momentum range, the
prediction of resonance poles away from the real axis
may be less reliable. We note, however, that instead of
expanding k cot δ0ðkÞ around k2 ¼ 0 one could as well
expand around the midpoint of the left-hand cut and the
second threshold. The convergence radius in the complex
energy plane would then be significantly larger, while the
resulting parametrizations of the lattice data points for
k cot δ0ðkÞ would be identical to those obtained from the
ERE. The reason is that in both cases second-order
polynomials in k2 are fitted to the same data points.
This suggests that our results can be trusted in a signifi-
cantly larger region of the complex energy plane, namely
disks of radius 94 MeVaround E ¼ 76 MeV for J ¼ 0 and
of radius 52 MeV around E ¼ 34 MeV for J ¼ 1. The
predicted resonances are still located outside, but quite
close to the boundaries of these convergence regions. To
further test their stability, we also performed ERE fits

FIG. 2. Left: our results for the functions ak cot δ0ðkÞ for S-wave B-D̄ scattering (top) and S-wave B�-D̄ scattering (bottom), where k is
the scattering momentum, δ0ðkÞ is the scattering phase shift, and a ¼ 0.11887ð80Þ fm is the lattice spacing. The data points were
obtained directly from the lattice energy levels, and the curves correspond to ERE fits through order k4. Also shown are the functions
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðakÞ2

p
(solid red parabolas) whose intersections with ak cot δ0ðkÞ just below threshold correspond to the shallow b̄c̄ud bound states

we predict, andþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðakÞ2

p
(dashed red parabolas) whose intersections with ak cot δ0ðkÞwould correspond to virtual b̄c̄ud bound states.

The vertical magenta lines show the positions of two-pion-exchange left-hand branch points. Right: our results for the product of
scattering momentum and Bð�Þ-D̄ scattering cross section, which is proportional to the scattering rate, as a function of center-of-
momentum energy.
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through order k6. The coefficients of k6 are found to be
consistent with zero within the statistical uncertainties, and
the other parameters remain consistent with those from the
order-k4 fit. For J ¼ 0, the resonance pole obtained from
the order-k6 fit is at a similar location. For J ¼ 1, where we
have fewer data points, the uncertainties from the k6 fit are
too large to determine the pole locations.
The bound-state poles are extremely close to threshold

and therefore well within the region of validity of the ERE.
However, as can be seen from the �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðakÞ2

p
parabolas in

Fig. 2, statistical fluctuations could turn the genuine bound
states into virtual bound states, which are not asymptotic
states in QCD but would still strongly affect the Bð�Þ-D̄
scattering rates near threshold [58], or could, at first glance,
lead to the complete disappearance of the poles. To quantify
this uncertainty, we generated 10 000 multivariate Gaussian
random samples for the ERE fit parameters a0, r0, and b0
according to their mean values and covariance matrix. For
each sample, we first checked whether it is still consistent
with our finite-volume energy spectra. To this end, we
calculate the two finite-volume energy spectra predicted by
the sample using the Lüscher quantization condition. For
some of the samples, the intersection of k cot δ0ðkÞ and
2Z00½1; ðknL=2πÞ2�=ðπ1=2LÞ below threshold disappears
for at least one of the volumes, leaving only the inter-
sections that match the first and higher excited-state energy
levels calculated on the lattice. These samples are therefore
inconsistent with the observed spectra, and we removed
them. For each of the remaining samples, we then checked
whether there is a genuine bound state (GBS), a virtual
bound state (VBS), or no bound state (NBS), with the
following outcome: J ¼ 0: 88.5% GBS, 11.5% VBS, 0.0%
NBS; and J ¼ 1: 97.7% GBS, 2.3% VBS, 0.0% NBS.
The lower and upper limits for ΔmGBS given in Table I

correspond to the 16th and 84th percentiles of those
random samples for which genuine bound states exist,
while the central values correspond to the best-fit points. To
further test our prediction of shallow bound states, we
performed additional ERE fits of order k0 and order k2

using only the three data points closest to threshold,
which are within the strict radius of convergence of the
ERE. These fits, which are shown in the Supplemental
Material [45], give consistent results.
Returning to the discussion of our main fits as shown in

Fig. 2, we note that, in addition to the shallow-bound-state

and the broad-resonance poles, there are poles with purely
imaginary k below the left-hand branch point. These poles
must be discarded because the direction of the crossing
corresponds to a pole residue with an unphysical sign [59],
and our parametrization of k cot δ0ðkÞ is invalid in that
region (bound states this far below threshold are also ruled
out by the absence of corresponding finite-volume energy
levels).
The scattering rate (probability per time) is equal to the

product of flux and cross section, and hence proportional to
kσðkÞ for nonrelativistic k. These products are shown in
Fig. 2 (right) as a function of the center-of-momentum
energy. We emphasize that the scattering rates only depend
on our fit functions for real-valued k2 that interpolate our
data very well, so these predictions are also expected to be
very reliable. We observe sharp enhancements in the
scattering rates close to the thresholds, related to the
shallow bound states or virtual bound states. At higher
energies, the scattering rates continue to be enhanced,
likely by the broad resonances. The scattering rates are very
close to the largest possible value allowed by unitarity,
given by jT0j2 ¼ 1, up to several tens of MeV above
threshold.
In summary, the substantial improvements made here in

determining the b̄c̄ud finite-volume energy levels allowed
us to determine the detailed energy dependence of the B-D̄
and B�-D̄ S-wave scattering amplitudes for the first time
using lattice QCD, revealing very interesting strong-
interaction phenomena. We found poles for both J ¼ 0
and J ¼ 1 corresponding to shallow bound states, as well
as hints for poles corresponding to broad resonances. While
further lattice-QCD computations at additional lattice spac-
ings and pion masses will be needed to pin down the exact
location and nature of each pole at the physical point, we
expect our prediction of shallow bound states, either genuine
or virtual, to be quite robust. The possible resonances above
threshold are very broad and are therefore presumably
difficult to observe at the LHC and future experiments.
On the other hand, if the J ¼ 0 pole just below the B-D̄
threshold is confirmed as a genuine bound state, this
isoscalar, scalar b̄c̄ud tetraquark will decay through the
weak interaction only and could become the first tetraquark
to be observed at the LHCwith this feature. If the J ¼ 1 pole
just below the B�-D̄ threshold is confirmed as a genuine
bound state, it will decay electromagnetically into BD̄γ (and
also into the J ¼ 0 tetraquark plus a photon, if that tetraquark
is confirmed as a genuine bound state).
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Lett. 119, 202001 (2017).

[28] S. Sakai, L. Roca, and E. Oset, Charm-beauty meson bound
states from BðB�ÞDðD�Þ and BðB�ÞD̄ðD̄�Þ interaction,
Phys. Rev. D 96, 054023 (2017).

[29] C. Deng, H. Chen, and J. Ping, Systematical investigation
on the stability of doubly heavy tetraquark states, Eur. Phys.
J. A 56, 9 (2020).

[30] S. S. Agaev, K. Azizi, B. Barsbay, and H. Sundu, Weak
decays of the axial-vector tetraquark T−

bb;ū d̄
, Phys. Rev. D

99, 033002 (2019).

PHYSICAL REVIEW LETTERS 132, 151902 (2024)

151902-6

https://doi.org/10.1016/S0031-9163(64)92001-3
https://doi.org/10.1103/PhysRevD.15.267
https://doi.org/10.1016/j.ppnp.2016.11.003
https://doi.org/10.1088/1361-6633/aca3b6
https://doi.org/10.1088/1361-6633/aca3b6
https://doi.org/10.1038/s41567-022-01614-y
https://doi.org/10.1038/s41567-022-01614-y
https://doi.org/10.1038/s41467-022-30206-w
https://doi.org/10.1016/j.physletb.2018.09.018
https://doi.org/10.1103/PhysRevLett.118.142001
https://doi.org/10.1103/PhysRevD.99.034507
https://doi.org/10.1103/PhysRevD.99.034507
https://doi.org/10.1103/PhysRevD.100.014503
https://doi.org/10.1103/PhysRevD.100.014503
https://doi.org/10.1103/PhysRevD.102.094516
https://doi.org/10.1103/PhysRevD.106.034507
https://doi.org/10.1103/PhysRevD.106.034507
https://doi.org/10.1103/PhysRevD.107.114510
https://doi.org/10.1103/PhysRevD.107.114510
https://doi.org/10.1103/PhysRevD.108.054502
https://doi.org/10.1103/PhysRevD.108.054502
https://doi.org/10.1103/PhysRevD.98.053005
https://doi.org/10.1016/j.physletb.2019.135073
https://doi.org/10.1103/PhysRevD.99.054505
https://doi.org/10.1103/PhysRevD.102.114506
https://arXiv.org/abs/2307.14128
https://doi.org/10.1007/BF01211097
https://doi.org/10.1016/0550-3213(90)90540-T
https://doi.org/10.1016/0550-3213(91)90366-6
https://doi.org/10.1016/0550-3213(91)90584-K
https://doi.org/10.1140/epjc/s10052-009-1140-x
https://doi.org/10.1140/epjc/s10052-009-1140-x
https://doi.org/10.1103/PhysRevD.89.054037
https://doi.org/10.1103/PhysRevD.89.054037
https://doi.org/10.1103/PhysRevLett.119.202001
https://doi.org/10.1103/PhysRevLett.119.202001
https://doi.org/10.1103/PhysRevD.96.054023
https://doi.org/10.1140/epja/s10050-019-00012-y
https://doi.org/10.1140/epja/s10050-019-00012-y
https://doi.org/10.1103/PhysRevD.99.033002
https://doi.org/10.1103/PhysRevD.99.033002


[31] T. F. Caramés, J. Vijande, and A. Valcarce, Exotic bcq̄q̄
four-quark states, Phys. Rev. D 99, 014006 (2019).

[32] G. Yang, J. Ping, and J. Segovia, Doubly-heavy tetraquarks,
Phys. Rev. D 101, 014001 (2020).

[33] Y. Tan, W. Lu, and J. Ping, Systematics of QQq̄q̄ in a chiral
constituent quark model, Eur. Phys. J. Plus 135, 716 (2020).

[34] T. Guo, J. Li, J. Zhao, and L. He, Mass spectra of doubly
heavy tetraquarks in an improved chromomagnetic inter-
action model, Phys. Rev. D 105, 014021 (2022).

[35] J.-M. Richard, A. Valcarce, and J. Vijande, Doubly-heavy
tetraquark bound states and resonances, Nucl. Part. Phys.
Proc. 324–329, 64 (2023).

[36] X.-Y. Liu, W.-X. Zhang, and D. Jia, Doubly heavy tetra-
quarks: Heavy quark bindings and chromomagnetically
mixings, Phys. Rev. D 108, 054019 (2023).

[37] D. Ebert, R. N. Faustov, V. O. Galkin, and W. Lucha,
Masses of tetraquarks with two heavy quarks in the
relativistic quark model, Phys. Rev. D 76, 114015 (2007).

[38] E. J. Eichten and C. Quigg, Heavy-quark symmetry implies
stable heavy tetraquark mesons QiQjq̄kq̄l, Phys. Rev. Lett.
119, 202002 (2017).

[39] W. Park, S. Noh, and S. H. Lee, Masses of the doubly heavy
tetraquarks in a constituent quark model, Nucl. Phys. A983,
1 (2019).

[40] E. Braaten, L.-P. He, and A. Mohapatra, Masses of doubly
heavy tetraquarks with error bars, Phys. Rev. D 103, 016001
(2021).

[41] Q.-F. Lü, D.-Y. Chen, and Y.-B. Dong, Masses of doubly
heavy tetraquarks TQQ0 in a relativized quark model, Phys.
Rev. D 102, 034012 (2020).

[42] Y. Song and D. Jia, Mass spectra of doubly heavy tetra-
quarks in diquark-antidiquark picture, Commun. Theor.
Phys. 75, 055201 (2023).

[43] W. Detmold, R. G. Edwards, J. J. Dudek, M. Engelhardt,
H.-W. Lin, S. Meinel, K. Orginos, and P. Shanahan
(USQCD Collaboration), Hadrons and nuclei, Eur. Phys.
J. A 55, 193 (2019).

[44] A. Woss, C. E. Thomas, J. J. Dudek, R. G. Edwards, and
D. J. Wilson, Dynamically-coupled partial-waves in ρπ
isospin-2 scattering from lattice QCD, J. High Energy Phys.
07 (2018) 043.

[45] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.132.151902 for a PDF
file with details on the lattice actions and parameters,
operator definitions, and additional tables and plots, which
includes Refs. [46–52].

[46] T. Bhattacharya, V. Cirigliano, S. Cohen, R. Gupta, A.
Joseph, H.-W. Lin, and B. Yoon (PNDME Collaboration),

Isovector and isoscalar tensor charges of the nucleon from
lattice QCD, Phys. Rev. D 92, 094511 (2015).

[47] R. Gupta, Y.-C. Jang, B. Yoon, H.-W. Lin, V. Cirigliano, and
T. Bhattacharya, Isovector charges of the nucleon from
2þ 1þ 1-flavor lattice QCD, Phys. Rev. D 98, 034503
(2018).

[48] A. Bazavov et al. (MILC Collaboration), Lattice QCD
ensembles with four flavors of highly improved staggered
quarks, Phys. Rev. D 87, 054505 (2013).

[49] R. L. Workman et al. (Particle Data Group Collaboration),
Review of particle physics, Prog. Theor. Exp. Phys. 2022,
083C01 (2022).

[50] R. J. Dowdall et al. (HPQCD Collaboration), The Upsilon
spectrum and the determination of the lattice spacing from
lattice QCD including charm quarks in the sea, Phys. Rev. D
85, 054509 (2012).

[51] K. Jansen, C. Michael, A. Shindler, and M. Wagner (ETM
Collaboration), The static-light meson spectrum from
twisted mass lattice QCD, J. High Energy Phys. 12
(2008) 058.

[52] Y. Aoki et al. (Flavour Lattice Averaging Group (FLAG)
Collaboration), FLAG review 2021, Eur. Phys. J. C 82, 869
(2022).

[53] A. Abdel-Rehim, C. Alexandrou, J. Berlin, M. Dalla Brida,
J. Finkenrath, and M. Wagner, Investigating efficient
methods for computing four-quark correlation functions,
Comput. Phys. Commun. 220, 97 (2017).

[54] A. X. El-Khadra, A. S. Kronfeld, and P. B. Mackenzie,
Massive fermions in lattice gauge theory, Phys. Rev. D
55, 3933 (1997).

[55] G. P. Lepage, L. Magnea, C. Nakhleh, U. Magnea, and K.
Hornbostel, Improved nonrelativistic QCD for heavy quark
physics, Phys. Rev. D 46, 4052 (1992).

[56] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes, and
R. Sommer, On the generalized eigenvalue method for
energies and matrix elements in lattice field theory, J. High
Energy Phys. 04 (2009) 094.

[57] A. B. a. Raposo and M. T. Hansen, The Lüscher scattering
formalism on the t-channel cut, Proc. Sci. LATTICE2022
(2023) 051.

[58] M. Padmanath and S. Prelovsek, Signature of a doubly
charm tetraquark pole inDD� scattering on the lattice, Phys.
Rev. Lett. 129, 032002 (2022).

[59] T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N.
Ishii, H. Nemura, and K. Sasaki, Are two nucleons bound in
lattice QCD for heavy quark masses? Consistency check
with Lüscher’s finite volume formula, Phys. Rev. D 96,
034521 (2017).

PHYSICAL REVIEW LETTERS 132, 151902 (2024)

151902-7

https://doi.org/10.1103/PhysRevD.99.014006
https://doi.org/10.1103/PhysRevD.101.014001
https://doi.org/10.1140/epjp/s13360-020-00741-w
https://doi.org/10.1103/PhysRevD.105.014021
https://doi.org/10.1016/j.nuclphysbps.2023.01.014
https://doi.org/10.1016/j.nuclphysbps.2023.01.014
https://doi.org/10.1103/PhysRevD.108.054019
https://doi.org/10.1103/PhysRevD.76.114015
https://doi.org/10.1103/PhysRevLett.119.202002
https://doi.org/10.1103/PhysRevLett.119.202002
https://doi.org/10.1016/j.nuclphysa.2018.12.019
https://doi.org/10.1016/j.nuclphysa.2018.12.019
https://doi.org/10.1103/PhysRevD.103.016001
https://doi.org/10.1103/PhysRevD.103.016001
https://doi.org/10.1103/PhysRevD.102.034012
https://doi.org/10.1103/PhysRevD.102.034012
https://doi.org/10.1088/1572-9494/acc019
https://doi.org/10.1088/1572-9494/acc019
https://doi.org/10.1140/epja/i2019-12902-4
https://doi.org/10.1140/epja/i2019-12902-4
https://doi.org/10.1007/JHEP07(2018)043
https://doi.org/10.1007/JHEP07(2018)043
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.151902
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.151902
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.151902
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.151902
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.151902
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.151902
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.151902
https://doi.org/10.1103/PhysRevD.92.094511
https://doi.org/10.1103/PhysRevD.98.034503
https://doi.org/10.1103/PhysRevD.98.034503
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1103/PhysRevD.85.054509
https://doi.org/10.1103/PhysRevD.85.054509
https://doi.org/10.1088/1126-6708/2008/12/058
https://doi.org/10.1088/1126-6708/2008/12/058
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1016/j.cpc.2017.06.021
https://doi.org/10.1103/PhysRevD.55.3933
https://doi.org/10.1103/PhysRevD.55.3933
https://doi.org/10.1103/PhysRevD.46.4052
https://doi.org/10.1088/1126-6708/2009/04/094
https://doi.org/10.1088/1126-6708/2009/04/094
https://doi.org/10.22323/1.430.0051
https://doi.org/10.22323/1.430.0051
https://doi.org/10.1103/PhysRevLett.129.032002
https://doi.org/10.1103/PhysRevLett.129.032002
https://doi.org/10.1103/PhysRevD.96.034521
https://doi.org/10.1103/PhysRevD.96.034521

