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Alday and Maldacena conjectured an equivalence between string amplitudes in AdS5 × S5 and null
polygonal Wilson loops in planar N ¼ 4 super-Yang-Mills (SYM) theory. At strong coupling this identifies
SYM amplitudes with areas ofminimal surfaces in anti–de Sitter space. Forminimal surfaces in AdS3, we find
that the nontrivial part of these amplitudes, the remainder function, satisfies an integrable system of nonlinear
differential equations, and we give its Lax form. The result follows from a new perspective on “Y systems,”
which defines a newpsuedo-hyper-Kähler structuredirectly on the space of kinematic data, via a natural twistor
space defined by the Y-system equations. The remainder function is the (pseudo-)Kähler scalar for this
geometry. This connection to pseudo-hyper-Kähler geometry and its twistor theory provides a new ingredient
for extending recent conjectures for nonperturbative amplitudes using structures arising at strong coupling.
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Introduction.—The spaces of kinematic data Kn on
which N ¼ 4 super Yang-Mills amplitudes are defined
has a rich combinatorial that has been a fertile ground
for advancing the understanding of scattering amplitudes
[1–3]. This Letter discovers new geometric structures that
arise from the analysis of the amplitude at strong coupling
[4,5] and that complements the combinatorial cluster
variety and positivity structures that arise at weak coupling.
The successes of the bootstrap of [6,7] hinges on the cluster
geometry of kinematic spaces Kn but more recently
features from strong coupling have played an instrumental
role in generating the nonperturbative conjectures of [8,9].
Our new integrable geometric structures encode the full
structure of the strong coupling amplitude and will provide
foundations for further advances in this direction.
Alday-Maldacena [10,11] conjectured a three-way

correspondence between planar amplitudes, A: planar null-
polygonal Wilson loops, hWγi, both forN ¼ 4 super-Yang-
Mills, and type IIB string amplitudes in AdS5 × S5

A ¼ hWγi ¼
Z
∂Σ¼γ

D½Σ ⊂ AdS5 × S5�e− 1

α0Sstring : ð1Þ

Here γ is a null polygon made up from the null momenta
in the amplitude. The α0 string parameter is related to the
’t Hooft coupling, λ, by R2

AdS=α
0 ¼ ffiffiffi

λ
p

. The first equality

has been proved (The tree-level MHVamplitude is removed
in the definition of A.) in perturbation theory [12,13]. The
second equality is a conjecture arising from the AdS/CFT
correspondence. It has only been systematically investigated
at strong coupling as λ → ∞ (and α0 → 0), where the semi-
classical approximation for the string gives

hWγi ∼ e−AreaðΣÞ=α0 ; ð2Þ

whereAreaðΣÞ is the area of theminimal surface,Σ, bounded
by γ. Like the Wilson loop hWγi the area of the minimal
surfaceΣ is divergent at its cusps where it meets the boundary
at infinity. These correspond precisely to the infrared diver-
gences of the amplitude. These divergences can be removed
compatibly with all three interpretations leading to a regu-
larized area or remainder function RðγÞ, which is our main
object of study.
Alday-Maldacena reformulate minimal surfaces in AdS

as a Hitchin system and express the area as the Hamiltonian
for a certain circle action on the kinematic data [4]. Hitchin
moduli spaces are often hyper-Kähler [14,15] but discrete
symmetries are imposed to give minimal surfaces so that
standard results (from, e.g., [16,17]) do not apply, and our
space is not expected to be hyper-Kähler from these
arguments, see Sec. 3.3 of [4]. However, we will show
that these smaller moduli spaces are often pseudo-hyper-
Kähler, i.e., the analog of hyper-Kähler appropriate to
metrics of split signature.
Although the main structures we use are available for full

kinematics, in this Letter we work with momenta and the
Wilson loop lying in 1þ 1 dimensions with the spanning
minimal surface living in AdS3. Although this might seem
restrictive, in practice the extension to full kinematics is
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well known to be a straightforward but elaborate extension
to larger cluster varieties [18,19] where the extra complex-
ity will obscure the essential ideas. We therefore postpone
this discussion. We prove here that the regularized area of
this surface is a Kähler scalar for a pseudo-hyper-Kähler
structure on Kn, when it has 4k dimensions. We do this by
using the Y system [5] to define a twistor space for Kn,
analogous to the twistor spaces for full Hitchin moduli
spaces; we expect this novel connection between Y systems
and twistor constructions to be of much wider applicability.
Then we derive a system of integrable equations satisfied
by the regularized area, which can be used to solve for the
area. In Sec. 2 we introduce the kinematic space Kn and
both its cluster and associated Poisson or symplectic
structure. In Sec. 3 we recall the Y system [5] and explain
how it defines a twistor space for K. In Sec. 4 we find the
hyper-Kähler structure explicitly and show the regularized
area is a Kähler scalar for a split signature analog of a
hyper-Kähler metric that satisfies an integrable system
of generalized Plebanski equations. Finally in Sec. 5 we
mention a number of checks and further developments
including applications to amplitudes at finite coupling.
The spaces of kinematic data in 1þ 1 dimensions.—Our

kinematic space Kn here will be the moduli space of
2n-sided null polygonal Wilson loops in 1þ 1 dimensions.
Such Wilson loops are given by a set of ordered null
momenta (the “edges” of the loop) that sum to zero (so that
the loop closes). Take null coordinates ðXþ; X−Þ on
Minkowski space with metric

ds2 ¼ 2dXþdX−: ð3Þ
The edges of a polygonal Wilson-loop alternate between
lines of constant Xþ and constant X−. The kinematic data
for a 2n-sided Wilson loop in AdS3 is therefore given by
two cyclically ordered sets of real numbers fXþ

i g; fX−
i g,

with i ¼ 0;…; n − 1. Vertices of the polygon are given by
the points ðXþ

i ; X
−
i−1Þ, ðXþ

i ; X
−
i Þ, then ðXþ

iþ1; X
−
i Þ and so on

as illustrated in Fig. 1. Conformal invariance means that our
functions of these parameters should be invariant under
Möbius transformations on the Xþ

i and X−
i separately. Thus

the space of kinematic data Kn is

Kn ¼ MR
0;n ×MR

0;n; ð4Þ
where

MR
0;n ¼ fX�

i ; i ¼ 1;…; ng=PSL2 ð5Þ
is the moduli space of n points on RP1 modulo Möbius
transformations.
Möbius invariant functions on K are functions of cross

ratios

ðijjklÞ� ¼ ðX�
i − X�

j ÞðX�
k − X�

l Þ
ðX�

i − X�
l ÞðX�

j − X�
k Þ

: ð6Þ

Our charts for K are sets of cross ratios called clusters [20].
A cluster is specified by choosing a triangulation of the
n-gon. For a fixed triangulation, the chords are indexed by
s ¼ 1;…; n − 3. Such a chord connects say vertex i to k
making the diagonal i − k of some quadrilateral ði; j; k; lÞ
formed by two triangles. To this chord associate the
coordinate

χ�s ¼ ðiljkjÞ�: ð7Þ
The set of these cross ratios, fχ�s g define a cluster of
coordinates on Kn.
Different choices of clusters of coordinates are related by

mutation relations. Flipping a chord s inside a quadrilateral
that it is a diagonal of, gives a new chord, s0, and the new
cross ratios are related to the old ones by

μðχsÞ ¼ χ−1s ; μðχtÞ ¼ χtð1þ χϵsts Þϵst : ð8Þ
The only cross ratios that change are those sharing a
triangle with s in the triangulation.
Finally, there is a 2-form on Kn that is symplectic when

Kn is even dimensional (n odd). Fixing a triangulation of
the n-gon as above, define an antisymmetric matrix, ϵss0
where for chords s and s0, write ϵss0 ¼ 0 if the two chords
do not share a triangle. If they share a triangle, write
ϵss0 ¼ 1 if s0 is clockwise of s, or write ϵs0s ¼ −1 is s0 is
counterclockwise of s. On each copy of MR

0;n define

ω� ¼
X
i;j

ϵijd log χ�i ∧ d log χ�j : ð9Þ

We fix, for example, the zigzag triangulation of Fig. 2,
as in [5]. This gives cross ratios

χ�s ¼
�ðs− 1; sj− s−1;−sÞ� sodd;

ðs− 1; sj− s;−sþ 1Þ� seven;
s¼ 1;…;n− 3;

ð10Þ

FIG. 1. Null coordinates on M1;1.
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where we specify vertices of the polygon mod n. The
matrix ϵss0 is given by ϵs;sþ1 ¼ 1, s odd, and ϵs;sþ1 ¼ −1 for
s even giving

ω� ¼
X

d log χ�2i ∧ ðd log χ�2i−1 − d log χ�2iþ1Þ: ð11Þ

The symplectic structures is invariant under mutations
[20]. After one mutation using (8), the symplectic 2-form
becomes

ω� ¼ μðω�Þ ≔
X
i;j

ϵ̃ijd log μðχ�i Þ ∧ d log μðχ�j Þ; ð12Þ

where μðχ�i Þ are the new cross ratios, and ϵ̃ij is the matrix
of the mutated triangulation. Thus, a series of mutations
preserves ω� so ω� is independent of the choice of cluster.
From the Y system to the twistor space.—The Y system

of [5] is based on the zigzag cluster coordinates ðχþs ; χ−s Þ on
Kn [Eq. (2.8)]. The Y system associated with this cluster
consists of a family of functions

Ys¼Ysðχþr ;χ−r ;ζÞ∶Kn×CP1⟶C; s¼1;…;n−3 ð13Þ
that are complex analytic in the spectral parameter ζ∈CP1

fixed by the following four conditions. First, at ζ ¼ 1; i
we have

Ysð1Þ ¼ χþs ; YsðiÞ ¼ χ−s : ð14Þ
Second, the Ys, are holomorphic except for branching
singularities at ζ ¼ 0 and ζ ¼ ∞, with a branch cut
along R−. Third, we require exponential asymptotics at
the singularities:

logYs ≃ Zsζ
−1 þ…; as ζ → 0;

logYs ≃ Z̄sζ þ…; as ζ → ∞ ð15Þ
for some Zsðχþr ; χ−r Þ. Finally, we define the analytic
continuation Ys across R−. Writing Yþþ

s ðζÞ ¼ YðeiπζÞ,
the analytic continuation for the zigzag cluster is given by

Yþþ
2kþ1Y2kþ1 ¼ ð1þ Y2kþ2Þð1þ Y2kÞ;
Yþþ

2k Y2k ¼ ð1þ Yþþ
2kþ1Þð1þ Yþþ

2k−1Þ: ð16Þ

These relations are defined so that analytic continuation
implements a series of mutation relations on the χ�s , (8),
that rotate the initial triangulation by 2π=n. In other words,
Yþþ

s ð1Þ and Yþþ
s ðiÞ are the cross ratios obtained by

performing this series of mutations.
The Ys are uniquely determined by these conditions as

can be seen by iteration of the equivalent integral equations
of the thermodynamic Bethe ansatz (TBA) described
in [5,21].
We now define the twistor space to be (We suppress the

proper description of the real slice jζj ¼ 1 as treated in
the analogous case of [22].) T n ¼ Kn × CP1 as a smooth
manifold. The Ys functions define holomorphic coordi-
nates on T n, making it a complex manifold.
Proposition 3.1.—T n is a complex n − 2 manifold with

local holomorphic coordinates ðYs; ζÞ and holomorphic
projection: p∶ T n → CP1. There is a family of symplectic
2-forms ΣðζÞ on the fibers of p. For odd n, ΣðζÞ is
nondegenerate. Moreover, ½T n;ΣðζÞ� is invariant under
the holomorphic circle action

ðYs; ζÞ ⟶ ðYs; eiθζÞ: ð17Þ
Finally, there is an antiholomorphic involution on T n,

ðYs; ζÞ ⟶ ðȲs; 1=ζ̄Þ; ð18Þ
so that the Ys are real on the unit circle jζj ¼ 1.
Proof.—Construct T n by gluing together holomorphic

coordinate patches

U¼f−π<argζ<πg; and Uþþ¼f0<argζ<2πg; ð19Þ
glued by ζ ↦ eiπζ. The Ys functions are holomorphic
coordinates on U and the Yþþ

s on Uþþ. These two sets of
holomorphic coordinates are glued together on U ∩ Uþþ
by the Y-system equations (3.4).
For fixed ζ, define

ΣðζÞ ≔
X

ϵijd logYi ∧ d logYj: ð20Þ
We claim that this closed 2-form is preserved by mutations.
(A direct proof is to define a generating function for (3.4).
A conceptually interesting proof is to apply a series of
“mutations on sinks,” as in the proof of Zamolodchikov’s
periodicity conjecture given, for example, by Theorem 8.8
of [23]; see [24] for a review.) In particular, ΣþþðζÞ≡
ΣðeiπζÞ ¼ ΣðζÞ. So ΣðζÞ is defined for all ζ, except for
ζ ¼ 0 and ζ ¼ ∞. Moreover, Ys are invariant under the
circle symmetry, so Σ is likewise circle invariant.
Finally, the functions Ȳsð1=ζ̄Þ have the same analytic

properties and special values as the functions YsðζÞ, and
satisfy the same Y-system equations as YsðζÞ. But the Ys

functions are unique, so that Ȳsð1=ζ̄Þ ¼ YsðζÞ. ▪
Integrable system for the remainder function.—The

remainder function, Rðχþr ; χ−s Þ, is the nontrivial part
of the regularized area of the minimal surface in AdS3.

FIG. 2. Left: The correspondence between chords of a triangu-
lation and cross ratios. Right: The zigzag triangulation of the
polygon.
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Here we define R to be the Hamiltonian for the circle
action, (3.5) (following Sec. 3 of [4]). Our main result
is that R satisfies an integrable system on kinematic
space, Kn. In fact, R defines a pseudo-hyper-Kähler
structure on Kn.
A pseudo-hyper-Kähler structure is the analog of a

hyper-Kähler structure [25,26], but with a split-signature
metric, as in [27]. This structure consists of a split-signature
metric, together with three symplectic 2-forms, ω� and Ω.
The 2-forms are compatible with the metric if they satisfy
the pseudo-quaternion relations. Using the metric to
raise the indices of the 2-forms to obtain tensors, J� and
Ω♯, the pseudo-quaternion relations are: ðJþÞ2¼ðΩ♯Þ2¼1,
ðJ−Þ2 ¼ −1 and J−Jþ ¼ −JþJ− ¼ Ω♯, fJ�;Ω♯g ¼ 0.
Proposition 4.1.—For n odd, Kn is pseudo-hyper-

Kähler, with split-signature metric

ds2 ≔ Rrsdxþr dx−s ; ð21Þ
and the three symplectic 2-forms

ω� ¼ ϵrsdxþr ∧ dxþs � ϵrsdx−r ∧ dx−s ;

Ω ¼ Rrsdxþr ∧ dx−s : ð22Þ
Proposition 4.3 can be shown as a consequence of the

following result, which shows that R satisfies the analog of
the first Plebanski equation.
Proposition 4.2.—For n odd, the remainder function

satisfies

RpqRrsϵpr ¼ ϵqs; ð23Þ
together with circle invariance [Eq. (4.22)]. Here ϵpqϵqr ¼
δrp and Rpq is the Hessian:

Rrs ¼ ∂
2R

∂xþr ∂x−s
; ð24Þ

with x�p ≡ log χ�p . This is an integrable system with Lax
system fLr; Ṽg, where

Lr ≔ ðζ2 − 1Þ ∂

∂xþr
þ ðζ2 þ 1ÞiRrs ∂

∂x−s
;

Ṽ ≔ ϵrs

�
∂R
∂xþs

∂

∂xþr
þ ∂R
∂x−s

∂

∂x−r

�
þ iζ

∂

∂ζ
: ð25Þ

A pseudo-hyper-Kähler structure is the analog of a
hyper-Kähler structure, but with a split-signature metric.
Proposition 4.3.—For n odd,Kn is pseudo-hyper-Kähler,

with split-signature metric

ds2 ≔ Rrsdxþr dx−s ; ð26Þ
and the three symplectic 2-forms

ω� ¼ ϵrsdxþr ∧ dxþs � ϵrsdxþr ∧ dxþs ;

Ω ¼ Rrsdxþr ∧ dx−s : ð27Þ

Proposition 4.3 follows from the proof of Proposition 4.2.
Proof.—Consider a Laurent series expansion of ΣðζÞ

in ζ. Equation (3.2) implies that ΣðζÞ has special values
Σð1Þ¼

X
ϵijdx

þ
i ∧dxþj ; and ΣðiÞ¼

X
ϵijdx−i ∧dx−j :

ð28Þ
Moreover, writing ys ≡ logYs, ys ∼ 1=ζ at 0 and ys ∼ ζ
at ∞. So ΣðζÞ has double poles at ζ ¼ 0 and ∞. By
Proposition 3.1,

Σð−ζÞ ¼ ΣðζÞ; ð29Þ
so that the Laurent series only contains even powers of ζ.
Equations (4.8) and (4.9) imply that the Laurent expansion is

ΣðζÞ¼ðζ2þ1Þ2
4ζ2

Σð1Þ−ðζ2−1Þ2
4ζ2

ΣðiÞþðζ4−1Þ
4ζ2

iΩ: ð30Þ

for some ζ-independent closed 2-form Ω.
Since ΣðζÞ is nondegenerate with rank n − 3,

½ΣðζÞ�ðn−1Þ=2 ¼ 0: ð31Þ
Taking the derivative with respect to ζ at ζ ¼ 1; i gives,
respectively,

½Σð1Þ�ðn−3Þ=2 ∧ Ω ¼ 0; ½ΣðiÞ�ðn−3Þ=2 ∧ Ω ¼ 0: ð32Þ
Since ½Σð1Þ�ðn−3Þ=2 ≠ 0 is of top degree in the dxþr alone,
the first implies that Ω is at least linear in the dxþr and the
second that it is at least linear in dx−s , so

Ω ¼ 1

4
Jrsdxþr ∧ dx−s ð33Þ

for some Jrsðxþ; x−Þ. But Ω is closed, so

Jrs ¼ ∂
2J

∂xþr ∂x−s
ð34Þ

for some scalar Jðxþ; x−Þ. Again using the vanishing of the
leading terms in the expansion of (31), and extracting
components with exactly two dxþ’s (or two dx−’s) gives

ϵrr0JrsJr
0s0 ¼ ϵss

0
: ð35Þ

There is a Lax system for (4.15). Since ΣðζÞ has rank
n − 3, it has n − 3 null directions. It can be checked using
(4.10) and (4.13) that these null directions are spanned by

Lr ≡ ðζ2 − 1Þ ∂

∂xþr
þ ðζ2 þ 1ÞiJrs ∂

∂x−s
; ð36Þ

for r ¼ 1;…; n − 3. Since Lr ⌟ΣðζÞ ¼ 0, it follows that the
Lr are involutive. In fact, using (4.15) and (4.16), these
vector fields commute: ½Lr;Ls� ¼ 0. Finally, since ϵij is
nondegenerate, and since the Lr span the kernel of ΣðζÞ, it
follows that these vector fields annihilate the Y functions:
LrYsðζÞ ¼ 0. This can be used to solve for the Y functions.
Near ζ ¼ 1; i, we find
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logYrðζÞ ¼ x�r þ ðζ2 ∓ 1Þϵrsi
∂J
∂x�s

þO½ðζ2 ∓ 1Þ2�; ð37Þ

and the Lax system further determines all higher
order terms.
Let V be the vector field onKn generating the circle action

that rotates the phases of the Zr of (3.3). The remainder
function, R, was shown in [4] to be the Hamiltonian for V
with respect to the symplectic form Σð1Þ þ ΣðiÞ obtained as
the coefficient of ζ0 in ΣðζÞ. The Hamiltonian equation is
dR ¼ V ⌟ ½Σð1Þ þ ΣðiÞ�. This implies that

V ¼ ϵrs

�
∂R
∂xþs

∂

∂xþr
þ ∂R
∂x−s

∂

∂x−r

�
: ð38Þ

We can relate this to J as follows. The lift Ṽ of V to T n acts
on ζ by ṼðζÞ ¼ iζ and so is given by Ṽ ¼ V þ iζ∂ζ. On T n,
Ṽ annihilates ΣðζÞ because Yr and hence ΣðζÞ are circle
invariant. Thus the coefficients Að�2Þ of ζ�2 in ΣðζÞ have
weights ∓ 2 under V:

£VAð�2Þ ¼∓ 2iAð�2Þ; ð39Þ
where £VAð�2Þ ¼ dðV ⌟Að�2ÞÞ. Adding both signs of (4.19)
gives

∂
2R

∂xþr ∂x−s
¼ ∂

2J
∂xþr ∂x−s

: ð40Þ

Since J is defined only up to a sum of a function of xþr and
another of x−r , we can fix this freedom by identifying J ≡ R.
Then the difference between the � parts of (4.19) gives

0¼∂xþr ðJtsVþ
t Þþ∂x−s ðJrtV−

t Þ; ϵrs¼∂x�s ðJrtV∓
t Þ: ð41Þ

With J ¼ R, the first of these equations reads

0 ¼ ∂xþr

�
∂
2R

∂xþt ∂x−s

∂R
∂xþu

ϵtu
�
þ ∂x−s

�
∂
2R

∂xþr ∂x−t

∂R
∂x−u

ϵtu
�
: ð42Þ

Likewise, with J ¼ R, the remaining equations simplify, and
are solved by (35), which is now

0 ¼ ϵrsRrr0Rss0 þ ϵr
0s0 : ð43Þ

Together, (4.22) and (4.23) are an integrable system for R.
In Lax form, the system is fLr; V þ iζ∂ζg, where V þ iζ∂ζ
is the circle symmetry generator.
To complete the proof, we show that (4.22) is linearly

independent of (4.23). Write ∂r ¼ ∂=∂xþr and ∂
r0 ¼ ∂=∂x−r0 .

Then (4.23) can be written as

∂
½rðRs�s0Rr0ϵr0s0 − ϵs�qxþq Þ ¼ 0; or;

∂
½r0 ðRs0�sRrϵrs − ϵs

0�q0x−q0 Þ ¼ 0: ð44Þ
These are integrability conditions for the existence of
functions S and S0 satisfying

Rss0Rr0ϵr0s0 −ϵsqxþq ¼∂
sS; Rs0sRrϵrs−ϵs

0q0x−q0 ¼∂
s0S0; ð45Þ

where S is defined up to functions of x−r0 , and S0 is
defined up to functions of xþr . Equation (4.22) becomes
∂
r
∂
r0S0 þ ∂

r0
∂
rS ¼ 0, which imposes one additional con-

straint on the system: Sþ S0 ¼ 0. ▪
Note that (4.25) together with Sþ S0 ¼ 0, provides an

alternative form of the integrable system, with one fewer
derivatives, at the price of introducing the additional
function S.
Discussion.—The remainder function R is the key

observable for SYM amplitudes. We find that at strong
coupling R satisfies an integrable system (for n odd),
analogous to the first Plebanski equation for 4d self-dual
gravity. Our result follows from a new perspective on the Y
systems of [18]: they define twistor spaces for the kin-
ematic space Kn of null polygonal Wilson loops with 2n
sides. Moreover, we find that Kn carries a pseudo-hyper-
Kähler structure, for which R is the pseudo-Kahler scalar.
The Poisson structures for the n-even cases are necessarily
degenerate, and the Y-system can be directly solved for the
combinations of Y-functions in the kernel of the Poisson
structure; our methods then apply to the symplectic leaves
on which these functions are held constant. These results
establish a new geometry underpinning the structure of
Wilson loops at strong coupling whose study, following the
strategy of the conjectures of [8,9], should give insights into
the amplitudes to all orders. Similar ideas apply to other
SYM operators, see, for example, [28,29] for examples
where the imprint from strong coupling can be seen in the
full nonperturbative correlator.
We stress that the new pseudo-hyper-Kähler spaces

studied here are not related to other hyper-Kähler structures
that arise in studies of Hitchin systems. Hitchin showed that
moduli spaces of regular Hitchin systems admit hyper-
Kähler structures, [15] and this result has been partially
extended to the irregular case in [16] and more analogously
by Gaiotto, Moore, and Neitzke in [17,30]. However,
neither of these apply directly to amplitudes at strong
coupling, because Kn parametrizes an invariant subspace
of the Hitchin moduli space under an involution [4,5,21].
We have verified that the standard hyper-Kähler structures
do not restrict to this subspace to yield our results, even in
simple examples.
We comment on implications of our results. First, these

methods apply to other cluster varieties or Y systems, such
as the ADE-type cases [31], and the affine and surface-type
cluster algebras. Physically, type D corresponds to form
factors at strong coupling for restricted kinematics. Beyond
these cases, Grassmannian cluster algebras appear when
computing strong coupling amplitudes and form factors for
full N ¼ 4 SYM kinematics. The Y systems associated to
these cluster algebras are known, [5] as are generalizations
incorporating form factors [19,32]. Our strategy developed
here will lead to integrable systems for the amplitudes in
all of these cases, albeit with novelties arising beyond
restricted kinematics.
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It is well known that soft and multicollinear limits
provide a system of boundary conditions on the remainder
function, see [4,32], and in particular equation (2.10)
of [33], which gives the boundary condition

Rn → Rn−m þ Rmþ4; ð46Þ
see also [7] for a recent summary at weak coupling.
Coupled with the differential equations we have found
here, this will lead to a unique determination of the
remainder function starting with the smallest nontrivial
boundary conditions provided by the octagon, which is
treated in full detail in [4]: this clearly shows that the full
solution is highly nontrivial with a nontrivial infinite series
beyond the trivial quadratic solution R ¼ ϵrsxrþxs−.
Finally, our results suggest avenues beyond the strong

coupling limit. The work of [8,9] identifies lines in the full
kinematic space where quadratic log solutions are valid at
strong coupling, and explains how formulas for all values
of the coupling may be obtained from the solutions to the Y
system there may be found. Thus these structures are likely
to be important for extensions to these conjectures. Our
differential equations at strong coupling, and associated
structures might therefore be deformable to some that hold
beyond strong coupling. In this direction, there are several
other connections to explore. Our integrable system can be
recovered from a twistor sigma model action [34,35];
quantizing analogous models might allow computations
beyond the strong coupling limit. Related structures arise
for the anomalous dimension spectrum at finite coupling
in the form of the Y system of the quantum spectral
curve [36], with the coupling constant incorporated via the
“Joukowski correspondence,” [37–39].
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scendents and the Joukowski correspondence, J. Integrab.
Syst. 4, xyz001 (2019).

PHYSICAL REVIEW LETTERS 132, 151603 (2024)

151603-7

https://doi.org/10.24033/bsmf.1464
https://doi.org/10.24033/bsmf.1464
https://doi.org/10.24033/bsmf.1464
https://doi.org/10.24033/bsmf.1464
https://doi.org/10.1007/BF01214418
https://doi.org/10.1007/BF01214418
https://doi.org/10.1007/s00220-021-04270-0
https://arXiv.org/abs/1909.04077
https://doi.org/10.1007/JHEP07(2020)219
https://doi.org/10.1007/s00220-010-1071-2
https://doi.org/10.1007/s00220-010-1071-2
https://doi.org/10.1016/0370-2693(91)91737-G
https://doi.org/10.1016/0370-2693(91)91737-G
https://doi.org/10.1007/JHEP11(2010)104
https://doi.org/10.1007/JHEP10(2012)041
https://arXiv.org/abs/2103.16984
https://arXiv.org/abs/2103.16984
https://doi.org/10.1007/s11005-023-01735-2
https://doi.org/10.1007/JHEP09(2015)187
https://doi.org/10.1088/0951-7715/1/1/004
https://doi.org/10.1093/integr/xyz001
https://doi.org/10.1093/integr/xyz001

