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Quantum entanglement has long served as a foundational pillar in understanding quantum mechanics,
with a predominant focus on two-particle systems. We extend the study of entanglement into the realm of
three-body decays, offering a more intricate understanding of quantum correlations. We introduce a novel
approach for three-particle systems by utilizing the principles of entanglement monotone concurrence and
the monogamy property. Our findings highlight the potential of studying deviations from the standard
model and emphasize its significance in particle phenomenology. This work paves the way for new insights
into particle physics through multiparticle quantum entanglement, particularly in decays of heavy fermions
and hadrons.
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Introduction.—The study of quantum entanglement has
been a cornerstone of quantum mechanics, providing
profound insights into the non-local correlations between
quantum systems [1,2]. Historically, much of the focus has
been on two-particle entanglement, particularly in the
context of the Bell inequalities [3,4]. However, as the field
of quantum mechanics evolves, it becomes imperative to
explore more complex systems, specifically, the realm of
multiparticle entanglement.
Recent research has delved into the intricacies of two-

particle entanglement in the context of particle physics. Bi-
partite systems have been explored for top–antitop quarks
[5–10], the Higgs boson [11–13], gauge bosons [14–17] and
leptons [18], revealing that the quantum information proper-
ties of their spin states at proton colliders are accessible in
current data. Furthermore, some studies emphasized the
importance of quantum observables in probing the under-
lying dynamics of quantum systems [19–21].
Given the advancements in studying two-particle entan-

glement, reflected by the large number of entanglement
measures for bipartite systems [22–26], extending this
research to three-particle systems is a natural yet surpris-
ingly underexplored advancement. The study of three-
particle entanglement presents a richer tapestry of quantum
correlations and offers the potential to uncover new
insights into the fundamental nature of quantummechanics.
Moreover, extending the Bell inequality tests to three
particles can provide a more robust framework for testing
the foundational principles of quantum mechanics and
exploring potential deviations from the predictions of the
standard model.

By building on the entanglement monotone concurrence
and the monogamy property, we propose an approach to
extend entanglement to three particles, charting a course for
future explorations in the realm of multiparticle quantum
entanglement in particle phenomenology. Extending the
concept of entanglement to three particles will bolster its
applicability to uncharted territories in particle pheno-
menology, e.g., the decay of heavy fermions and hadrons.
(In many high-energy processes, three-body decays are
favored phenomenologically over two-body decays, either
because of kinematic reasons or improved observability
over backgrounds. Among others, those include top decays,
t → bff̄0, and the Higgs boson decay, H → Zμþμ−.) This
exploration into hadron decays offers a fresh perspective
and a deeper understanding of the intricate quantum
interactions within these systems.
Additionally, the introduction of the three-particle entan-

glement measure presents a new observable. This novel
measure holds significant promise in aiding the search for
unknown heavy resonances and potentially discovering new
physics. The entanglement property is based on the funda-
mental interaction of the process. Thus, for a comprehensive
assessment of the expected three-particle entanglement in
three-body decays, we calculate its value for the effective
Lorentz structures generated by (pseudo)scalars, (pseudo)
vectors, and (pseudo)tensors exchanges, respectively.
In the following discussion, we assume these spin states

do not decohere by hadronization or interactions with the
environment before the measurement. For this assumption
to be warranted, the spin-decoherence timescale needs to
be significantly longer than the lifetime of the decaying
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resonance. This is usually the case for electroweak scale
and many hadronic resonances. For example, the spin-
decoherence timescale in top quark decays isOðmt=Λ2

QCDÞ,
while its lifetime is many orders of magnitude shorter, i.e.,
1=Γt with Γt ≃ 1.4 GeV.
Definition of entanglement.—Entanglement can be quan-

tified by a class of non-negative functions called entangle-
ment monotones [26,27], whose values do not increase
under local operations and classical communication
(LOCC). A particularly convenient entanglement mono-
tone is concurrence [25,28]. For a mixed state ρ of two
qubits the concurrence is defined as

C½ρ� ¼ maxð0; η1 − η2 − η3 − η4Þ∈ ½0; 1�; ð1Þ
where ηi (ηi > ηj for i < j) are the eigenvalues of the
matrix R≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ
p

ρ̃
ffiffiffi
ρ

pp
with ρ̃≡ ðσy ⊗ σyÞρ�ðσy ⊗ σyÞ.

For separable states C ¼ 0, while C ¼ 1 for maximally
entangled states. For a pure state of two qubits,
jψi∈HA ⊗ HB, the concurrence can be computed more
straightforwardly as

C½jψi� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − Trρ2BÞ

q
; ð2Þ

where ρB is the reduced density operator of subsystem B
obtained by tracing over subsystem A: ρB ≡ TrAðjψihψ jÞ.
For a three-qubit state, jΨi∈Hi ⊗ Hj ⊗ Hk, one can

consider two types of entanglement. One is an entangle-
ment between two individual particles, say between i and j.
This entanglement can be computed by first tracing out
subsystem k and use formula (1):

Cij ¼ C½ρij�; ρij ¼ TrkðjΨihΨjÞ: ð3Þ
Another type is an entanglement between one particle
and the rest of the system, known as one-to-other bipartite
entanglement. The concurrence between i and the compo-
site subsystem (kj) can be computed using Eq. (2):

CiðkjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − Trρ2kjÞ

q
; ρkj ¼ TriðjΨihΨjÞ: ð4Þ

Here we used “qubit power” of the Schmidt theorem [29]
(see also, e.g., [30]) and applied the two-qubit formula
Eq. (2) to a three-qubit state jΨi.
The entanglement between i and subsystem ðkjÞ cannot

be freely shared between i-j and i-k. Namely, there is a
trade-off between i’s entanglements with j and k. This
property, called monogamy, is one of the most fundamental
traits of entanglement and formulated by the Coffman-
Kundu-Wootters (CKW) monogamy inequality [31,32]:

C2iðkjÞ ≥ C2ij þ C2ik: ð5Þ

For multipartite systems, one can define a so-called
genuine multipartite entanglement (GME) [30,33,34].

A good GME measure should (i) vanish for all product
and biseparable states, (ii) be positive for all non-bisepar-
able states, and (iii) not increase under LOCC. Recently, a
GME measure satisfying all these criteria has been found
for three-qubit states [35]. It corresponds to the area of the
concurrence triangle, whose three sides are given by the
three one-to-other bipartite entanglements:

F3 ¼
�
16

3
QðQ − C1ð23ÞÞðQ − C2ð13ÞÞðQ − C3ð12ÞÞ

�1
2

; ð6Þ

with Q ¼ 1
2
½C1ð23Þ þ C2ð13Þ þ C3ð12Þ�. With this definition,

F3 takes values between 0 and 1.
Entanglement in three-body decays.—We consider a

three-body decay 0 → 123 and assume all particles are
distinguishable and have spin-1=2. We analyze the entan-
glement of the spin degrees of freedom (d.o.f.) of the final
state particles 1, 2, and 3 at a given phase-space point (p1,
p2, p3). (As a related topic, the entanglement in a
orthopositronium decay into three photons has been studied
in Ref. [36].) To parametrize the phase space of the final
state we boost into the rest frame of the initial particle 0 and
take the z axis in the direction of p1. The x and y axes are
chosen such that the y axis is perpendicular to the decay
plane and the p2 has a positive x component. The opening
angles 1 → 2 and 1 → 3 are denoted by θ2 and θ3 (0 ≤ θ2,
θ3 ≤ π), respectively. We represent the spin polarization n
of the initial particle 0 by the polar and azimuthal angles, θ
and ϕ, respectively (see Fig. 1).
We choose the spin quantization axis of each final state

particle in the momentum direction of that particle. In this
case, the eigenvalues of the spin (multiplied by 2) are called
helicity and denoted by λi ¼ �1 (i ¼ 1, 2, 3).
For a given set of interactions, the quantum field theory

framework lets us calculate the transition matrix element
(helicity amplitude)

Mn
λ1;λ2;λ3

¼ hλ1; λ2; λ3jni; ð7Þ

FIG. 1. The momentum and spin configuration in the coor-
dinate system.
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where the momentum labels are suppressed. The initial
state jni is expanded by the final states as

jni ¼
X

λ1;λ2;λ3

Mn
λ1;λ2;λ3

jλ1; λ2; λ3i þ � � � : ð8Þ

The ellipsis represents final states of other phase-space
points and other decay modes. Focusing on the spin d.o.f.
one can describe the final spin state as

jΨi ¼ 1

N

X

λ1;λ2;λ3

Mn
λ1;λ2;λ3

jλ1; λ2; λ3i; ð9Þ

where N ¼ ðPλ1;λ2;λ3 jMn
λ1;λ2;λ3

j2Þ1=2 is the normalization
constant. In general, this is an entangled pure state of three
qubits.
The two-particle entanglement and one-to-other entan-

glement defined in Eqs. (3) and (4) can be readily
calculated, respectively.
In the following, we assume, for simplicity, that the final

state particles are massless while the extension to the
massive case is straightforward. In general, there are 16
nonredundant Lorentz structures formed from bilinear
combinations of Dirac spinors ψ̄Γψ with

Γ ¼ fI; γ5; γμ; γμγ5; σμνg; ð10Þ

where γμ is the Dirac γ matrices, γ5 ≡ iγ0γ1γ2γ3

and σμν ≡ ði=2Þ½γμ; γν�.
As a three-body decay 0 → 123 of one fermion into three

fermions requires two bilinears, 256 Lorentz structures
form a complete basis. Instead, we will focus on the matrix
elements and Lorentz structures induced by the exchange of
(pseudo)scalars, (pseudo)vectors, and (pseudo)tensors.
Scalar and pseudoscalar interaction: We consider the

effective interaction operator

½ψ̄1ðcS þ icAγ5Þψ0�½ψ̄3ðdS þ idAγ5Þψ2�; ð11Þ

where cS; cA; dS; dA ∈R are coupling constants. We also
define c ¼ cS þ icA and d ¼ dS þ idA and take jcj ¼ jdj ¼
1 as we are not interested in the overall scale of the
amplitude. For given phase-space point ðθ2; θ3Þ and the
initial spin ðθ;ϕÞ, the matrix element of 0 → 123 can be
calculated as

Mn
λ1;λ2;λ3

∝ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp1p2p3

p
· s

θ2 þ θ3
2�

−cd · δ−λ1δ
−
λ2
δ−λ3 · e

iϕs
θ

2
þ cd� · δ−λ1δ

þ
λ2
δþλ3 · e

iϕs
θ

2

− c�d · δþλ1δ
−
λ2
δ−λ3 · c

θ

2
þ c�d� · δþλ1δ

þ
λ2
δþλ3 · c

θ

2

�
;

ð12Þ

where shorthand notations cα ¼ cos α and sα ¼ sin α are
used. This corresponds to the spin state

jΨi ¼ MLLj − −−i þMLRj −þþi
þMRLj þ −−i þMRRj þ þþi; ð13Þ

with MLL ¼ −ðcd= ffiffiffi
2

p Þ · eiϕsðθ=2Þ, MLR¼ðcd�= ffiffiffi
2

p Þ·
eiϕsðθ=2Þ, MRL ¼ −ðc�d= ffiffiffi

2
p Þ · cðθ=2Þ, and MRR ¼

ðc�d�= ffiffiffi
2

p Þ · cðθ=2Þ. We see that this is a biseparable state

jΨi ¼
�
ceiϕs

θ

2
j−i1 þ c�c

θ

2
jþi1

�

⊗
1ffiffiffi
2

p ½d�j þ þi23 − dj − −i23�: ð14Þ

Therefore, 1 is entangled neither with 2, 3 nor (23):

C12 ¼ C13 ¼ C1ð23Þ ¼ 0; ð15Þ

while 2 and 3 are maximally entangled:

C23 ¼ 1: ð16Þ

The monogamy inequality (5) implies 2 and 3 must also be
maximally entangled with the rest of the system:

C2ð13Þ ¼ C3ð12Þ ¼ 1; ð17Þ

which can be explicitly checked from the formula (4).
Because the state is biseparable, the GMEmeasure vanishes

F3 ¼ 0: ð18Þ

Vector and axial-vector interaction: We next consider
the vector interaction

½ψ̄1γμðcLPL þ cRPRÞψ0�½ψ̄3γ
μðdLPL þ dRPRÞψ2�; ð19Þ

with PR=L ≡ ð1� γ5Þ=2 and cL; cR; dL; dR ∈R. The matrix
element is found as

Mn
λ1;λ2;λ3

∝ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp1p2p3

p

�
δ−λ1δ

þ
λ2
δ−λ3 · cLdLs

θ3
2

�
c
θ

2
c
θ2
2
þ eiϕs

θ

2
s
θ2
2

�

− δ−λ1δ
−
λ2
δþλ3 · cLdRs

θ2
2

�
c
θ

2
c
θ3
2
− eiϕs

θ

2
s
θ3
2

�

þ δþλ1δ
þ
λ2
δ−λ3 · cRdLs

θ2
2

�
c
θ

2
s
θ3
2
þ eiϕs

θ

2
c
θ3
2

�

þ δþλ1δ
−
λ2
δþλ3 · cRdRs

θ3
2

�
c
θ

2
s
θ2
2
− eiϕs

θ

2
c
θ2
2

��
;

ð20Þ
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corresponding to the state

jΨi ¼ MLLj −þ−i þMLRj − −þi
þMRLj þ þ−i þMRRj þ −þi; ð21Þ

with MLL ¼ Mn
−þ−=N , MLR ¼ Mn

−−þ=N , MRL ¼
Mnþþ−=N and MRR ¼ Mnþ−þ=N . From explicit calcula-
tions, we find

C12 ¼ C13 ¼ 0; C23 ¼ 2jMLLM�
LR þMRLM�

RRj: ð22Þ

For one-to-other entanglements, we obtain

C2ð13Þ ¼ C3ð12Þ

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjMLLj2 þ jMRLj2ÞðjMLRj2 þ jMRRj2Þ

q
;

C1ð23Þ ¼ 2jMRRMLL −MLRMRLj: ð23Þ

Since all three CiðjkÞ are nonvanishing in general, the GME
measure F3 is also nonvanishing in that case. MXY ∝ cXdY
(X; Y ¼ L, R) and we see that both C23, C1ð23Þ and F3 are
proportional to jcLcRdLdRj. One the other hand, C2ð13Þ and
C3ð12Þ vanish only if jcLcRj ¼ jdLdRj ¼ 0.
To discuss the monogamy relation, we define the

monogamy measure as

Mi ¼ C2iðjkÞ − ½C2ij þ C2ik�; ð24Þ

for i ≠ j ≠ k ≠ i. The CKW monogamy inequalities
are expressed by Mi ≥ 0 for i ¼ 1, 2, 3. From Eqs. (22)
and (23), one can show C223 ¼ C2

2ð13Þ − C2
1ð23Þ. In the vector

interaction, we therefore have

M1 ¼ M2 ¼ M3 ¼ C2
1ð23Þ ≥ 0: ð25Þ

Tensor and pseudotensor interaction: We consider the
tensor interaction

½ψ̄1ðcM þ icEγ5Þσμνψ0�½ψ̄3ðdM þ idEγ5Þσμνψ2�; ð26Þ

with cM; cE; dM; dE ∈R. As in the scalar case, we define
c ¼ cM þ icE and d ¼ dM þ idE and take jcj ¼ jdj ¼ 1.
This operator is equivalent to α½ψ̄1σ

μνψ0�½ψ̄3σμνψ2� −
ðβ=2Þϵμνρσ½ψ̄1σμνψ0�½ψ̄3σρσψ2� with α ¼ cMdM − cEdE
and β ¼ cMdE þ cEdM. The 0 → 123 matrix element is
given by

Mn
λ1;λ2;λ3

∝−8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mp1p2p3

p

�
c�d� ·δþλ1δ

þ
λ2
δþλ3 ·

�
2eiϕs

θ

2
s
θ2
2
s
θ3
2
−c

θ

2
s
θ2−θ3

2

�

þcd ·δ−λ1δ
−
λ2
δ−λ3 ·

�
eiϕs

θ

2
s
θ2−θ3

2
þ2c

θ

2
s
θ2
2
s
θ3
2

��
;

ð27Þ

implying the spin quantum state

jΨi ¼ MRj þ þþi þMLj − −−i; ð28Þ

with MR ¼ Mnþþþ=N and ML ¼ Mn
−−−=N . This state

interpolates between the separable states, j þ þþi and
j − −−i, and the maximally entangled Greenberger Horne
Zeilinger state, jGHZi ¼ ðj þ þþi þ j − −−iÞ= ffiffiffi

2
p

[37].
For the tensor interaction, there are no entanglements
between two individual particles

C12 ¼ C13 ¼ C23 ¼ 0; ð29Þ

while one-to-other entanglements are universal

C1ð23Þ ¼ C2ð13Þ ¼ C3ð12Þ ¼ 2jMRMLj: ð30Þ

The GME measure in this case is

F3 ¼ 4jMRMLj2: ð31Þ

The monogamy inequalities are trivially satisfied because
no entanglement of one-to-other is shared by the individual
pairs [cf. Eq. (29)].
As in the scalar case, all entanglement measures are

independent of the phases of c and d.
Numerical results: In Fig. 2, we show the GME

measure F3 as a function of θ2 and θ3 for vector (upper
panel) and tensor (lower panel) interactions. The lower left
plane is empty because this region is unphysical,
θ2 þ θ3 < π. All couplings, cX, dX (X ¼ L, R, M, E),
are fixed to 1=

ffiffiffi
2

p
. In the left panel, the spin direction n of

the initial particle is set to the y direction (perpendicular to
the decay plane), while in the right panel, it is tilted with
θ ¼ ϕ ¼ ðπ=4Þ (see Fig. 1). We see that when n is
perpendicular to the decay plane, F3 for the vector
interaction depends only on the combination θ2 þ θ3 and
symmetric under 2 ↔ 3 exchange. For the tensor inter-
action, in this case, the system is maximally entangled,
F3 ¼ 1, regardless of the decay angles. This results in
jMLj ¼ jMRj ¼ 1=

ffiffiffi
2

p
, as inferred from Eq. (27). When the

initial spin is tilted, F3 behaves asymmetrically under
2 ↔ 3 both for vector and tensor interactions, as shown
in the two right plots of Fig. 2.
Figure 3 shows various entanglement measures as a

function of the initial spin direction n. For vector
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interaction, we show F3 (red-solid), C1ð23Þ (blue-dashed),
C2ð13Þ ¼ C3ð12Þ (green-dashed), C23 (purple-dotted), and
Mi ¼ C2

1ð23Þ (orange-dotted) lines, while only F3 is shown

for the tensor interaction. All couplings are set to 1=
ffiffiffi
2

p
. In

the right and left panels, the decay angles are fixed to
ðθ2; θ3Þ ¼ ½ð4π=6Þ; ð5π=6Þ� and ½ð2π=6Þ; ð5π=6Þ�, recep-
tively. The horizontal axes of the plots represent the angle
between the z axis and n. In the upper and lower panels, n
rotates about the y and x axes in the right-handed way,
respectively. We observe that F3 responds differently to the

rotations of n between the vector and tensor cases. The only
nonvanishing two-particle entanglement C23 in the vector
case is constant with respect to n.
Conclusion.—The exploration of quantum entanglement

has been a cornerstone in understanding the nonlocal
correlations inherent in quantum systems. While much
of the historical focus has been on two-particle entangle-
ment, we expanded its realm to three-particle systems,
revealing a richer tapestry of quantum correlations. This
advancement offers profound insights into the fundamental
nature of quantum mechanics, extending beyond the tradi-
tionally studied bipartite systems.
Building upon the foundational concepts of entanglement

monotone concurrence and the monogamy property, we
propose a novel approach to understanding entanglement in
three-body decays. This exploration paves theway for future
studies in multiparticle quantum entanglement and empha-
sizes its significance in particle phenomenology, particularly
in the decay dynamics of heavy fermions and hadrons.
Having explicitly calculated the expected entanglement for
the three-body decay via (pseudo)scalar, (pseudo)vector,
and (pseudo)tensor mediators, this approach can potentially
uncover deviations from the predictions of the standard
model, shedding light on uncharted territories within the
quantum realm.
Thus, we emphasize the pivotal role of three-particle

entanglement in particle physics, suggesting new avenues
for exploring new observables and novel search strategies
in high-energy physics.
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