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The classic Abraham-Lorentz-Dirac self-force of pointlike particles is generalized within an effective
field theory setup to include linear spin and susceptibility effects described perturbatively, in that setup, by
effective couplings in the action. Electromagnetic self-interactions of the pointlike particle are integrated
out using the in-in supersymmetric worldline quantum field theory formalism. Divergences are regularized
with dimensional regularization, and the resulting equations of motion are in terms only of an external
electromagnetic field and the particle degrees of freedom.
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Self-force describes the fascinating phenomenon of an
object being accelerated by a force generated by itself. The
well-known Abraham-Lorentz-Dirac (ALD) equation [1–5]
describes this effect for the most basic pointlike charged
particles, and the resulting backreaction balances radiation
of energy described by the Larmor formula. The physical
objects of interest generally have finite extent and proper-
ties such as angular momentum (spin) and dipole suscep-
tibilities. For spin, adequate generalizations of the Lorentz
force and corresponding ALD self-force have been con-
sidered by many authors [6–14]. One motivation for this
line of work is the classical description of the electron [15]
which may, e.g., be modeled as a charged sphere for which
several self-force results are known [16,17].
Recently, an analogous problem in gravity of describing

the early inspiral of two pointlike compact bodies and their
radiation have gained importance for the data analysis of
gravitational wave signals observed on Earth [18,19]. Here,
one sets up an effective field theory (EFT) capturing the
body degrees of freedom by worldline fields with the most
basic field given by the worldline parametrization zμðτÞ
[20,21]. Spin and finite size effects are then described by
effective couplings whose value may in each case be
determined from a matching to the physical object of
interest. Such a worldline EFT has had great success in
describing compact bodies in gravity [22–24], but may also
be applied to electromagnetic interactions [17,25–28].
In the same context of gravitational wave physics,

quantum field theoretic methods have been used advanta-
geously to describe classical physics [29–32]. In this spirit,

classical dynamics as described by worldline EFT may be
considered as the tree-level contributions of a worldline
quantum field theory (WQFT) [33–42]. This gives rise to
an efficient diagrammatic approach to solving the classical
equations of motion (EOMs). In this action-based frame-
work, causal boundary conditions are imposed with the
Schwinger-Keldysh in-in prescription [38,43–51]. Several
state-of-the-art results in the perturbative expansion of
gravitational scattering have been computed with the
WQFT [35,37,39,40,42] (see also [28,52–57] for additional
work with WQFT).
In worldline EFT, the relativistic angular momentum of

the pointlike particle is described by an antisymmetric
worldline tensor field SμνðτÞ. Half of its degrees of freedom
are constrained by requiring symmetry of the action under
small shifts of the worldline trajectory [58] so that the
dynamics involves only a spatial spin vector. At the level of
the action, one must usually introduce a comoving frame in
order to describe the spin kinematics [57,59,60]. This,
however, is avoided by expressing the spin tensor in terms
of anticommuting Grassmann vectors ψμðτÞ which,
inspired by previous work [12,61–70], was first proposed
in this context in the framework of WQFT [35,36]. Here,
the worldline shift symmetry becomes a supersym-
metry (SUSY).
Self-interaction of pointlike particles generally leads to

divergent expressions which, however, from the perspective
of EFT is not surprising as the small scale physics has been
integrated out. Instead, the EFT must be regularized, and in
the present case we will use dimensional regularization.
Thus, also in the classical setting, eventual divergences
must be absorbed into counterterms of the action
[20,71–74].
In this Letter, we compute novel spin and susceptibility

corrections to the electromagnetic self-force of pointlike
particles described by a worldline EFT. The computational
method innovates on earlier work and presents a very
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streamlined approach for deriving self-force corrections in
worldline EFT. In particular, computations are carried out
diagrammatically using the in-in SUSY WQFT formalism
and reduce to the evaluation of a number of tree-level
Feynman diagrams. A major motivation for this innovation
is its future generalization and application to the gravita-
tional setting and, in particular, the perturbative self-force
expansion of extreme mass ratio binaries [45,75–77].
EFT of pointlike particles.—Our system will be

described by the following action S:

S ¼ Skin þ Sint þ SEM þ Sext: ð1Þ

The first two terms will describe kinematics and electro-
magnetic (EM) interactions of the pointlike particle. The
third term is the kinetic action of the EM potential in
Lorenz gauge,

SEM ¼ −
Z

ddx
�
1

4
FμνðxÞFμνðxÞ þ

1

2
½∂μAμðxÞ�2

�
; ð2Þ

with arbitrary dimension d for the use of dimensional
regularization and field strength tensorFμν ¼ 2∂½μAν�, where
square brackets denote averaged antisymmetrization. We
use units such that the speed of light and vacuumpermittivity
and permeability are all unity, c ¼ ϵ0 ¼ μ0 ¼ 1. Finally, the
last term of Eq. (1), Sext, describes external sources of the
EM potential. We do not make any assumptions on Sext
which could, for example, be given by a second copy of the
worldline action in which case we would describe the
relativistic EM two-body problem.
Let us first consider the interaction terms of the pointlike

particle which we model as follows:

Sint ¼ −
Z

dτ

�
qż · AðzÞ − q

m
żμSμνEνðzÞ þ jżjU

�
;

U ¼ gq
2m

S · BðzÞ þ cB
2
B2ðzÞ þ cE

2
E2ðzÞ: ð3Þ

Here, zμ ¼ zμðτÞ is the worldline of the pointlike particle
with total charge q and mass m, and we use dots to denote
differentiation with respect to τ and the shorthand jżj ¼ffiffiffiffiffi
ż2

p
with factors of jżj ensuring explicit time reparamet-

rization invariance. The particle has (intrinsic) relativistic
angular momentum SμνðτÞ with Pauli-Lubanski vector
Sμ ¼ 1

2
ϵμνρσSνρżσ=jżj. The electric and magnetic fields

EμðzÞ and BμðzÞ are defined implicitly by a decomposition
of the field strength tensor FμνðzÞ,

FμνðzÞ ¼ 1

jżj
�
2E½μðzÞżν� þ ϵμνρσBρðzÞżσ�; ð4Þ

where the vectors are assumed to be orthogonal to the body
frame (B · ż ¼ E · ż ¼ 0). Here, and in the following, we
often leave time dependence of worldline fields implicit.

In Eq. (3), the spin-induced magnetic field is measured
by the g factor g and susceptibility effects by cB and cE
describing magnetization and electric polarization, respec-
tively. The interactions Eq. (3) are invariant (at leading
order in spin and susceptibility) under small shifts of the
trajectory δzμ where the spin tensor transforms as δSμν ¼
2mδz½μżν�=jżj and the Pauli-Lubanski vector is invariant.
Here, and after, for the use of dimensional regularization,
all Levi-Civita symbols may be avoided by working with
Sμν and Fμν as discussed explicitly in the Supplemental
Material [78].
If one assumes L ∼ q2=m to be the only scale of the

pointlike particle, one finds Sμ ∼ Lm and cE=B ∼ L3

although, generally, additional intrinsic scales may be
relevant. The EFT framework assumes this scale to be
small compared with a relevant external scale, and effective
couplings are further suppressed by it. The inclusion of
higher order spin or susceptibility corrections or other finite
size effects in the EFT is an interesting problem with much
work done in the gravitational context [60,79–82].
Let us turn to the kinetic action Skin which, as discussed

in the Introduction, is conveniently written in terms of
anticommuting (Hermitian) Grassmann vectors ψμðτÞ
related to the spin tensor as Sμν ¼ −imψμψν. Using also
the Polyakov form of the point mass action, we get
[36,39,41]

Skin ¼ −
m
2

Z
dτðż2 þ iψ · ψ̇Þ: ð5Þ

At this point, the shift symmetry becomes a SUSY with
δzμ ¼ iηψμ and δψμ ¼ −ηżμ and global Grassmann param-
eter η. We will gauge fix the SUSY with the covariant spin
supplementary condition Sμνżν ¼ 0 and time reparametri-
zation invariance with proper time ż2 ¼ 1 and assume these
constraints in the following.
Worldline equations of motion.—The EOMs are derived

from the principle of stationary action, and for the trajec-
tory we find the force fσ ¼ m̈zσ to be

fμ ¼ qEμðzÞþðημν⊥ ∂ν− z̈μÞU

−ημν⊥
d
dτ

��ðg−2Þq
2m

SþðcEþcBÞBðzÞ
�
×EðzÞ

�
ν

: ð6Þ

Here, we use a projector ημν⊥ ¼ ημν − żμżν and note that
proper time implies ż · f ¼ 0. We define the body frame
cross product of any two vectors uμ1 and uμ2 by

ðu1 × u2Þμ ¼ ϵμνρσuν1u
ρ
2ż

σ; ð7Þ

which implies ϵ1230 ¼ 1.
We will focus on the (SUSY invariant) Pauli-Lubanski

vector SμðτÞ as the physical spin variable which is given in
terms of the Grassmann vectors by Sμ ¼ −iðm=2Þðψ × ψÞμ.
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Using the chain rule and principle of stationary action for
the Grassmann vectors, one arrives at the following spin
precession for Sμ (the BMT equation [8,28]):

ημ⊥νṠ
ν ¼ T μ ¼ gq

2m
ðS × BðzÞÞμ: ð8Þ

Here, we introduced the torque T μ and focused only on the
spatial components as the time component of Ṡμ in the
direction of żμ is straightforwardly determined from differ-
entiation of the constraint S · ż ¼ 0.
Worldline quantum field theory.—The WQFT formalism

offers a streamlined diagrammatic approach to solving the
classical EOMs (6) and (8) [33–42]. The central idea is that
the classical dynamics described by the worldline EFT may
be considered as the tree-level contributions (ℏ → 0) of a
quantum field theory defined from the (worldline) action S
where both the EM potential and the worldline fields are
promoted to quantum fluctuating fields.
For the EM potential, we define the fluctuating field

ΔAμ ¼ Aμ − Aμ
ext in a background expansion around the

external potential Aμ
extðxÞ sourced by the current of Sext such

that

∂
2Aμ

extðxÞ ¼ −
δSext
δAμðxÞ

: ð9Þ

We collect the worldline fields in a single superfield Zμ ¼
fzμ;ψμg and expand it around an arbitrary time τ̄,

ZσðτÞ ¼ fzσðτ̄Þ þ ðτ − τ̄Þżσðτ̄Þ;ψσðτ̄Þg þ ΔZσðτÞ; ð10Þ

with fluctuation ΔZσ ¼ fΔzσ;Δψσg and boundary con-
ditions Δzðτ̄Þ ¼ Δżðτ̄Þ ¼ Δψðτ̄Þ ¼ 0. This expansion will
be used at times near to τ̄ and implies no assumptions on the
global character of the trajectory.
The key observation of the WQFT formalism is that its

one-point functions in the ℏ → 0 limit are identical to the
solutions of the classical EOMs:

ð11Þ

Here, the blobs represent the WQFT one-point functions
with wiggly and solid lines identifying photons ΔAμ and
superfields, respectively. Conveniently, we work in
momentum and frequency space indicated by kμ and ω
and defined by d-dimensional and one-dimensional Fourier
transforms, respectively. In order to consider arbitrary times
τ, the corresponding frequency must be kept off shell (the
on-shell limit ω → 0 is related to the global change in
momentum or spin [33,41]).
The WQFT Feynman rules are straightforwardly deter-

mined from the action [33,36,41] and have the following

three important properties. First, the background expansion
introduces one-point vertices which lead to an infinite
series of tree diagrams. Second, the interaction of one-
dimensional superfields with d-dimensional photons con-
serves only one component of the photon momenta, and the
unconstrained integration on the remaining (spatial) com-
ponents leads to looplike integrations within the tree
diagrams. Third, in order to arrive at causal dynamics,
retarded propagators are used exclusively and all point
toward the single outgoing line which, formally, is imposed
by the in-in formalism [38].
A simple example of a vertex rule is given by the

interaction of a photon with a worldline trajectory fluc-
tuation,

ð12Þ

with the ellipsis indicating spin and susceptibility correc-
tions. Generally, the vertex rules have up to two photon legs
and any number of superfield legs. They conserve energy
and depend on the worldline background variables zσðτ̄Þ,
żσðτ̄Þ, and ψσðτ̄Þ, on the external EM potential Aμ

ext, and on
the momenta and frequencies of the incoming and outgoing
fields. Because of the background expansion around Aμ

ext,
the photons ΔAμðxÞ interact only with the pointlike particle
(and not the external current).
The classical EOMs now take the form of off-shell,

recursive Berends-Giele-like relations [40,41,83]:

ð13Þ

The first line corresponds to the worldline EOMs, where
the first term represents the force (or torque) evaluated on
the external EM fields and the next two terms have one or
two insertions of the fluctuation ΔAμðxÞ. This force is
expanded in the worldline fluctuations around the back-
ground time τ̄, which explains the presence of any number
n of fluctuations. When evaluated at the background time
itself in time domain, only finitely many terms in the sum
on n are nonzero. Such an evaluation at τ̄ will be our goal
after integrating out ΔAμðxÞ below. The second line of
Eq. (13) describes the coupling of ΔAμ to the current of the
pointlike particle.
Integrating out self-interactions.—Self-interactions are

now straightforwardly integrated out by eliminating
ΔAμðxÞ from the system of equations (13) leading to the
following regulated EOM:
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ð14Þ

Here, the sum extends over all numbers n, m, and l of
superfields. The goal will be to evaluate the right-hand side
in time domain at the background time τ̄. Its general
structure is a sum of (jþ 1)-point WQFT diagrams con-
nected with j superfields where only photons ΔAμðxÞ
propagate within the diagrams. The first term corresponds
to the force (or torque) evaluated on the external EM fields
and the three next terms are self-force corrections.
A generic multipoint WQFT diagram with (jþ 1)

superfield legs takes the schematic form,

ð15Þ

with amplitudeM, which depends only on the frequencies
and worldline background parameters. Here, the big solid
blob signifies any of the multipoint WQFT diagrams of
Eq. (14) where we have amputated all (incoming) super-
fields and external propagators. In order to keep the dis-
cussion simple, we ignore the case of the external EM
potential Aμ

ext in the schematic form, though its inclusion is
straightforward.
Let us consider the contribution of the multipoint WQFT

diagram Eq. (15) to the regulated EOM Eq. (14) in time
domain evaluated at τ̄. We thus integrate the multipoint
diagram against j superfield fluctuations and integrate on
ω0 with a Fourier factor expð−iω0τ̄Þ at which point all
frequencies become derivatives of the time domain super-
fields:

M
σ1…σj
σ0

�
i
d
dτ1

;…; i
d
dτj

�Yj
i¼1

ΔZσiðτiÞ
				
τi→τ̄

: ð16Þ

The amplitudesM may easily be computed and turn out to
be polynomial in their arguments and finite in d ¼ 4. In this
case the contribution (16) simply becomes a sum of j
superfields ΔZσðτ̄Þ multiplied together and each differ-
entiated a number (possibly zero) of times. Crucially, since
Δzσðτ̄Þ ¼ Δżσðτ̄Þ ¼ Δψσðτ̄Þ ¼ 0, the contribution is non-
zero only if each field is differentiated a minimum number
of times. Higher derivatives of ΔZσ are simply identical to
derivatives of Zσ itself.

We will not carry out power counting of the vertex rules
explicitly, but one finds that for a sufficient number j of
superfield legs, there are not enough differentiations to
make the contribution (16) nonzero. In particular, one
needs at most one incoming fluctuation in the first term of
Eq. (14) (i.e., n ≤ 1), at most three fluctuations in the
second (nþm ≤ 3), and at most five fluctuations in the
third and fourth (nþmþ l ≤ 5).
At this point we must show only that the amplitudes M

are polynomial in the frequencies and finite in d ¼ 4.
Nontrivial dependence on the frequencies and eventual
divergencies can arise only from the looplike integrations
on the photon momenta. The relevant integrals factorize
into one-loop massive tadpoles:

Iμ1…μn
DimRegðωÞ ¼

Z
ddk

kμ1…kμn

ðk · żþ iϵÞ2 þ kμkνη
μν
⊥
δðk · ż − ωÞ:

ð17Þ

Here, kμ is the exchanged photon momentum and ω is the
total energy flowing in or out of the self-interaction. As
dictated by the in-in formalism, the photon propagator is
retarded with positive infinitesimal ϵ.
The massive tadpole Eq. (17) is easily computed within di-

mensional regularization. Importantly, any trace ημ1μ2I
μ1μ2…μn

is zero because the contraction cancels the denominator and
removes any scales of the integral. With this regularization,
the integral is finite and assuming all divergences to appear
from self-interactions, they have thus been removed. We can
then let d → 4 and work in four spacetime dimensions. The
dependence on ω of the tadpole can be determined from
dimensional analysis with Iμ1…μn ∼ ωnþ1.
An illustrative example is given by the leading order self-

force contribution where, neglecting spin and susceptibility
corrections, one gets

ð18Þ

When inserted in Eq. (16), the corresponding amplitude
gives rise to the ALD self-force.
Self-force equations of motion.—The computation of the

regulated EOM Eq. (14) evaluated at τ̄ may now be carried
out, and though there are many diagrams, an automatized
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evaluation is easily carried out with computer algebra. The
regulated EOM results in a regulated force for the worldline
trajectory and a regulated torque for the Pauli-Lubanski
vector. Because of the arbitrariness of τ̄, we simply replace
it by τ.
For the trajectory zμðτÞ, we find the schematic form,

maμ ¼ fμext þ
q
6π

ημ⊥ν

�
qȧν þ fνM þ cEfνE þ

cEq
6π

fνEq

�
þ � � � ;

ð19Þ

with aμ ¼ ̈zμ and the ellipsis indicating terms of quadratic
order in spin and susceptibility effects. Here, the first term
fμext is the original force (6) evaluated on the external EM
fields and the square brackets give self-force corrections
with the ALD force in the first term, spin and magnetization
effects in the second, and electric polarization effects in the
final two terms. For the self-force corrections we find

fμM ¼ ðȧ × ṀÞμ þ d
dτ

�
ȧ ×

�
M −

q
m
S

��
μ

; ð20aÞ

fμE ¼ ⃛Eμ
extðzÞ þ ⃛aν∂μEν

extðzÞ þ a2Ėμ
extðzÞ − ȧμa · EextðzÞ

þ d
dτ

�
3aμa · EextðzÞ þ ðȧ × BextðzÞÞμ

�
; ð20bÞ

fμEq ¼ a
⃜μ þ 2äμa2 þ 8ȧμȧ · aþ aμ

a4 þ 18a · äþ 19ȧ2

2
;

ð20cÞ

with the magnetic moment Mμ ¼ ðgq=2mÞSμ þ cBB
μ
extðzÞ.

The forces fμM and fμE are due to one exchange of ΔAμ

[second term of Eq. (14)] and fμEq due to two exchanges
(third and fourth terms). Thus double radiation magneti-
zation effects are zero at this order. We note that the time
derivatives of the cross product in the first and third lines
also act on the frame [see Eq. (7)].
For the torque on Sμ we find that the self-force

corrections vanish at this order such that ημ⊥νṠ
ν is given

simply by the original torque Eq. (8) evaluated on the
external (magnetic) field.
Assuming causal boundary conditions, the regulated

EOMs are, to leading order in spin and susceptibility,
exact and consistent predictions of the worldline EFT
framework and their validity is thus limited only by that
of the EFT framework. See also Refs. [84,85] for a
discussion of the validity of the ALD equation.
The self-force results Eqs. (20) are to the best of our

knowledge new results. In the reviews [11,14], the case of
spin is described with worldline EOMs similar to Eqs. (6)
and (8) [see, e.g., Eqs. (337) and (338) in [14] ], and a
radiative propagator prescription is suggested as regulari-
zation but not carried out explicitly. In fact, dimensional
regularization used here is identical to this prescription as

we show (and define) in the Supplemental Material [78].
This identification provides some intuition of our results:
The leading order radiative magnetic field vanishes,
Bμ
rad ¼ OðS; cE=BÞ, which explains the vanishing of double

radiation magnetization effects and leading order self-force
torque effects.
Let us briefly mention the following nontrivial checks

of our results with a more detailed discussion in the
Supplemental Material [78]. First, our results are in
complete agreement with expressions for the radiative
EM fields for a generic dipole moment given in
Ref. [9]. Second, we have applied our methodology to
the finite size coupling a · EðzÞ considered in Ref. [17] and
reproduce the results therein except for a relative sign.
Finally, our results are consistent with the instantaneous
radiative loss of four-momentum for spin given in Ref. [10].
Outlook.—We have shown how one may systematically

eliminate electromagnetic self-interactions in the worldline
EFTof pointlike particles deriving, in particular, novel spin
and susceptibility corrections to the ALD self-force.
Straightforward generalizations and perspectives include
the addition of higher order spin and finite size effects, self-
force in arbitrary spacetime dimensions [86–91], and
classical non-Abelian self-interaction [14,52,92–95].
Furthermore, it would be of great interest to apply this

framework to the gravitational setting where a weak-field
expansion would lead to diagrams similar to the electro-
magnetic ones considered here except for self-interactions
in the bulk giving rise to tail effects [71,96]. A generali-
zation to curved space would be equally exciting and allow
for applications to the self-force expansion of extreme mass
ratio binaries [45,97–100].
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