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Ground state preparation is classically intractable for general Hamiltonians. On quantum devices,
shallow parametrized circuits can be effectively trained to obtain short-range entangled states under the
paradigm of variational quantum eigensolver, while deep circuits are generally untrainable due to the barren
plateau phenomenon. In this Letter, we give a general lower bound on the variance of circuit gradients for
arbitrary quantum circuits composed of local 2-designs. Based on our unified framework, we prove the
absence of barren plateaus in training finite local-depth circuits (FLDC) for the ground states of local
Hamiltonians. FLDCs are allowed to be deep in the conventional circuit depth to generate long-range
entangled ground states, such as topologically ordered states, but their local depths are finite, i.e., there is
only a finite number of gates acting on individual qubits. This characteristic sets FLDC apart from shallow
circuits: FLDC in general cannot be classically simulated to estimate local observables efficiently by
existing tensor network methods in two and higher dimensions. We validate our analytical results with
extensive numerical simulations and demonstrate the effectiveness of variational training using the

generalized toric code model.
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Introduction.—Predicting the ground state properties of a
quantum many-body system, as a central task in modern
quantum physics, generally requires exponential resources
for classical computers due to the curse of dimensionality:
the number of parameters needed to describe a quantum
system scales exponentially with the system size. Although
some successful classical algorithms have been developed in
past decades [1-5] such as tensor networks [3-5], their
respective limitations restrict the performance on general
systems [5—8]. Quantum computers bring new hope for this
problem of quantum nature [9]. Despite the limitation posed
by noisy intermediate-scale quantum (NISQ) devices [10],
there are many tentative quantum algorithms proposed. One
of the representatives is the variational quantum eigensolver
(VQE) [11-17], which trains a parametrized quantum circuit
(PQC) using a classical optimizer to minimize the energy.
This hybrid quantum-classical paradigm is expected as one
of the most promising routes toward practical quantum
advantage [18,19] in the NISQ era.

However, these variational quantum algorithms includ-
ing VQE still face great challenges for large-scale appli-
cations. One of the most notorious issues is the so-called
barren plateau phenomenon [20], which states that the
circuit gradient vanishes exponentially with the system size
under certain conditions, akin to the vanishing gradient
issue in classical neural networks. The exponentially
vanishing gradient will preclude the optimization progress
and lead to the exponential measurement complexity.
Extensive studies have been conducted to investigate barren
plateau problems and possible remedies [21-49]. It is
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known that shallow circuits of finite or logarithmic depth
are free from barren plateaus and can be trained efficiently
for local Hamiltonians to obtain short-range entangled
(SRE) states, while deep circuits of linear depth and beyond
are in general untrainable [29,30]. By contrast, many
quantum states of physical interest exhibit long-range
entanglement [50-54], such as topologically ordered states,
which cannot be prepared by circuits of less than linear
depth [55-58]. Nevertheless, some evidence suggests that
circuits corresponding to these long-range entangled (LRE)
states possess characteristic architectures, such as sequen-
tial structures [57-64], for the sake of the entanglement
area law. This observation motivates us to rigorously
explore the general relationship between barren plateaus,
area law, and long-range entanglement.

In this Letter, we identify the critical role of the local
depth as a key circuit feature that determines the trainability
of PQCs. The local depth refers to the number of non-
commuting gates acting on individual qubits, as illustrated
in Fig. 1(a), in contrast to the conventional global depth
defined by the minimum number of layers. This finding is
based on our rigorously proved theorems, which establish a
general lower bound on the gradient variance for arbitrary
circuits composed of local 2-designs. The lower bound
decays exponentially with the length and width of a certain
set of paths on the circuit. For finite (or logarithmic) local-
depth circuits and local Hamiltonians, the length and width
can be upper bounded and hence give rise to the absence of
barren plateaus. These finite local-depth circuits (FLDC)
have strong expressibility to generate LRE states lacking in
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FIG. 1. (a)and (b) Typical examples of finite local-depth circuits
on 1D and 2D lattices, respectively. Darker colors in (b) indicate
later action orders. (c) Compares the class of finite depth circuit
(FDC), FLDC, and general linear depth circuit (GLDC) in terms of
whether they are in general free from barren plateaus (BP),
preserve entanglement area law, generate long-range entangle-
ment (LRE), and can be simulated efficiently to compute local
observable expectations by known classical methods (classical-
ity). The inclusion relation is FDC ¢ FLDC c GLDC.

shallow circuits and are hard to simulate classically in two
dimensions and above. This suggests that FLDC holds
promise to serve as an appropriate class of ansatzes in
VQE, as listed in Fig. 1(c). The absence of barren plateaus
in FLDC is verified by numerical evaluations. Using the
generalized 2D toric code model, we demonstrate that
FLDC indeed has prominently better performance than
both finite depth circuits and general linear depth circuits.

Basic setup.—We start from the basic setup of VQE.
The PQC can be written as U(0) = [])., U,(6,), where
U,(0,) = e % is a rotation gate, Q, is a Pauli-string
generator and 6, is a trainable parameter. The index p
follows the decreasing order from left to right in the product
(the same below). For a given Hamiltonian H, the energy
expectation C(0) = (H) = tr(p,U"HU) is taken as the cost
function, where py = [0)(0| and |0) = |0)®". N is the
number of qubits. We denote the Pauli decomposition of
the Hamiltonian as H = ) j4;h; and assume the support of
H is within that of U. The workflow of VQE involves
running the PQC, measuring the cost function, and updat-
ing the trainable parameters iteratively using classical
optimizers to minimize the cost function. In particular,
the parameters are usually initialized randomly to thor-
oughly explore the parameter space in a probabilistic sense,
rendering the PQC a random quantum circuit (RQC). A
common assumption on RQCs is that the circuit is
composed of blocks forming independent local 2-designs.
Here a block refers to a grouped continuous series of gates,
which can be seen as the elementary unit when we
construct a PQC. Grouping the M gates into M’ blocks,
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FIG. 2. (a) A possible choice of path set P; = {p;,p,} on a
general linear depth circuit. (b) Depicts a path set on a finite local-
depth circuit correspondingly. The length of the path set in
(a) grows linearly with the system size while that in (b) is
bounded by the constant local depth.
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the PQC can be rewritten as U = [[¥, B;. The assumption
of local 2-designs will induce an ensemble of the entire
circuit U, which we denote as U. Many statistical properties
of RQCs can be analytically estimated based on U,
including the average and variance of the cost derivative
9,C = (0C/06,). We provide preliminaries on unitary
designs and the Weingarten calculus and a detailed intro-
duction to our basic setup in Supplemental Material [65].

General lower bound.—We give an informal version of
our general lower bound in Theorem 1 and leave the rigorous
statement and proof to Supplemental Material [65]. The
bound is closely related to a geometric concept of “‘path,”
i.e., a time-ordered sequence of connected blocks on the
circuit diagram as depicted in Fig. 2. For each Hamiltonian
subterm /; in the causal cone of the differential block By,
(the block containing the differential parameter 6,,), one can
draw a collection of paths from #; to py, like {p;, p,} in
Fig. 2, with the right end covering 4; and at least one of the
paths passing through By,,). We call ita chosen “path set” of
h;. We define two measures of the path set: length and head
width. For common circuits composed of 2-qubit blocks, the
length is just the number of edges in the path set diagram and
the head width is the number of blocks in the path set that are
directly connected to p,. Using these two measures, we can
derive the following lower bound on the gradient variance.

Theorem 1 (informal version)—The gradient variance
Vary[0,C] can be lower bounded by a summation of
contributions from each £; in the causal cone of U,,, where
each contribution decays exponentially only with the length
and head width of the chosen path set of A;.

The lower bound in Theorem 1 holds for any possible
choice of path sets. The path set with the minimum length and
head width gives rise to the tightest bound. We remark that
Theorem 1 holds for any RQCs composed of local 2-designs
regardless of circuit shapes, spatial dimensions, and gate
locality. Further discussions on Theorem 1 including its
consistency with previous literature, alternative initial states,
gate generators, the location of the differential gate U, in
By, and its extension to a path-integral-like tighter form
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and application to other space-time correlators, are elabo-
rated in Supplemental Material [65].

We provide an intuitive physical picture behind
Theorem 1. It is known that local quantum information
will be scrambled [101-103] when passing through the
random gates in an RQC. The more gates it passes through,
the more severe the scrambling becomes. If we consider a
local term /; as a piece of information, finding a short path
through the RQC will allow effective information transfer,
so that adjusting parameters can make an effective differ-
ence in the expectation value, resulting in nonvanishing
gradients. Conversely, if such a short path does not exist,
local information will be scrambled globally, leaving no
useful information for optimization.

Finite local-depth circuits.—Before presenting Theorem 2,
we first clarify some relevant quantities. The maximum
interaction range of a Hamiltonian is the maximum value of
the support sizes of all ;. An r-local Hamiltonian means
that the maximum interaction range is fixed as r that does
not scale with N. The maximum block size S is the
maximum value of the support sizes of all blocks in the
circuit. The local depth of a qubit is the number of blocks
(or gates) acting on the qubit. We use y to denote the
maximum value of the local depths over all qubits,
distinguished from the global depth D which refers to
the minimum number of layers where blocks within each
layer commute with each other. An FLDC is defined as a
circuit whose y does not scale with N, without any other
constraints such as circuit shapes, spatial dimensions, and
gate locality. Based on Theorem 1, we have the following
theorem.

Theorem 2.—Suppose the maximum local depth of U is
x and the maximum block size is f. Then for any r-local
Hamiltonian, the gradient variance is lower bounded by

Vary[0,C] > 474 "222, (1)
J

where j runs over /; that is nontrivial on the support of the
differential block By,

Proof—The detailed proof is left in Supplemental
Material [65]. The main idea is choosing the path sets in
Theorem 1 to be the straight wires on the support of /;, and
hence the length and head width can be upper bounded in
terms of r, y and f. The contribution from £; that is trivial
on the support of By, is just neglected. [

Theorem 2 elegantly integrates the factors related to
barren plateaus in a concise manner, i.e., the block locality
P [20], the Hamiltonian locality r [29,30] and the circuit
deepness y. It is vitally important to note that the relevant
quantity characterizing the circuit deepness is the local depth
¥, instead of the global depth D. These two depths may
coincide [29,30], but they are distinct in general and can
differ significantly as in Fig. 1. This implies that the circuit
class free from barren plateaus can be enlarged to logarithmic

local-depth circuits (Log-LDC), which is a superclass of
circuit architectures proven previously, such as finite or
logarithmic depth brickwall circuits [29,30], quantum con-
volutional neural networks (QCNN) [31,41], multiscale
entanglement renormalization ansatzes (MERA) [41-44],
tree tensor networks [41-44], matrix product states
(MPS) [40-44], and high-dimensional isometric tensor net-
work states [47]. We focus on FLDC in this Letter. Log-LDC
class involves states beyond the area law, e.g., gapless
topologically ordered states, which is also interesting to
study in the future.

A significant feature of FLDCs composed of spatially local
gates is that the generated quantum states satisfy the entan-
glement area law (or say boundary law) because the number
of gates acting across any simple partition boundary entan-
gling the two sides can be upper bounded by the local depth
times the size of the boundary [65]. This feature makes them
form a subclass of the projected entangled paired states
(PEPS) [3,5] of the corresponding spatial dimension, where
the local depth y plays the role of bond dimension. Note that
PEPS can represent LRE states because the nonunitary pro-
jectors in PEPS enable quantum teleportation, while FLDC
relies on large global depth. Previously proposed circuits of
tensor network states [41-44,57,61,62,64,104—107] includ-
ing sequential quantum circuits [57], isometric tensor net-
work states [47,61,64,108-110], and plaquette PEPS [62],
can all be seen as subclasses of FLDC. This implies that
FLDC covers a wide range of physical ground states such as
string-net states with anyons [64,111] and fracton-ordered
states [57].

Nonclassicality of FLDC.—A matter of recent concern is
the classical simulability of the tasks with the provable
absence of barren plateaus [112]. Previous results that are
proven free from barren plateaus mainly focus on finite or
logarithmic depth circuits [29-31,41-44], which can be
efficiently simulated to compute local observable expect-
ations due to the existence of small causal cones and small
tree widths of the corresponding tensor networks [113].
Nevertheless, the causal cone in FLDC can be extensive
due to the large global depth, and the loop structures in
FLDC of two dimensions and above can lead to poly-
nomially large tree width, rendering FLDC in general hard
to simulate classically for local observable expectations
(the 1D case has constant tree width and can be efficiently
simulated via MPS methods). In fact, even for the
subclasses of 2D FLDC such as isometric tensor network
states [61,64,108] and plaquette PEPS [62], there is no
known efficient method to compute the expectation values
of arbitrary local observables with controllable error, not to
mention nonlocal observables of interest such as few-body
long-distance correlators, nonlocal order parameters,
dynamical correlations and so forth. In particular, a recent
work [114] rigorously proves that computing local expect-
ation values in isometric tensor networks is BQP complete,
i.e., is hard to simulate classically unless BQP = BPP.
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FIG. 3. (a) The variance of the derivative vs the system size N in
a 1D FLDC instance. The observable is chosen as Zy. Ak is the
distance between the differential block and the last block,
proportional to the path length. (b) The variance vs Ak by fixing
N =16. R,,, R, and R, represent the different choices of the
differential gate [65].

The same naturally holds true for FLDC because the states
generated by FLDC form a superclass of isometric tensor
network states.

Therefore, FLDC (or Log-LDC) is a circuit class that is
proven to be barren-plateau-free and at the same time
generally cannot be efficiently simulated to estimate local
observables by existing classical methods. On the contrary,
it can be accomplished within polynomial time by running
FLDCs on quantum devices and measuring corresponding
observables. This suggests that FLDC is potentially rel-
evant to quantum advantage in the ground state prepara-
tion task. A detailed discussion and a numerical demon-
stration of the computational overhead for contracting
tensor networks of FDLC are provided in Supplemental
Material [65].

Numerical experiments.—FLDC has stronger expressi-
bility than its subclass finite depth circuits (FDC), e.g.,
brickwall circuits of constant depth [29,30], because FDC
can only generate SRE states such as symmetry-protected
topological states [115]. FLDCs have less expressibility
than its superclass general linear depth circuits (GLDC),
e.g., brickwall circuits of linear depth, as typical GLDCs
lead to entanglement volume law [28]. But FLDC has better
trainability than GLDC. We will compare the variational
performance of the three circuit classes to see the advan-
tages and the good trade off between trainability and
expressibility brought by FLDC.

To demonstrate the absence of barren plateaus in FLDC,
we estimate the cost gradient in a 1D FLDC ansatz with a
ladder layout as in Fig. 1(a). The two-qubit block template
is chosen as the Cartan decomposition [65]. The
Hamiltonian is chosen as a single Pauli Z operator on
the last qubit. All the numerical experiments are imple-
mented using TensorCircuit [116]. As depicted in Fig. 3,
the gradient variance is almost constant with the system
size, while it decays exponentially with the path length Ak.
This resembles the phenomenon found in isometric tensor
networks recently [40,43,44,47]. However, we clarify that
the exponential decay with Ak does not indicate poor
trainability in practice, because as long as the gradients of
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FIG. 4. VQE performance comparison of the FDC, FLDC, and
GLDC ansatzes using the generalized toric code model under the
external field hA* = h* = h with N = 12. The data are averaged
over the best half of the 100 training trajectories starting from
different initializations. (a) The converged energy E/N vs h. The
inset depicts the energy training dynamics at 7 = 0.1. The dashed
lines represent the exact values obtained from ED. The (shaded)
error bar represents the standard deviation. (b) The topological
entanglement entropy Sy, correspondingly.

some circuit parameters do not vanish, the optimization
could still proceed successfully.

As an example of training FLDCs for LRE ground states,
we use the generalized 2D toric code model under the
external field h = (h*, h?, h*) with open boundary condi-
tions. The ground state near the zero-field limit is topologi-
cally ordered and then experiences a quantum phase
transition to an SRE state with increasing k& [117,118].
The ground state ath = 0 can be constructed by applying the
Hadamard and cNoOT gates sequentially [56,57], which
belongs to the FLDC class. Possible generalization to
h* # 0 has also been proposed [58]. However, unlike in
Ref. [58], we will not utilize any prior information about the
exact ground state except the entanglement area law.
Namely, we choose our ansatz to be an FLDC similar to
Fig. 1(b), with each two-qubit block being the general
Cartan decomposition. We also conducted the same simu-
lation using typical ansatzes in FDC and GLDC for
comparison. As shown in Fig. 4(a), the energies of FLDC
almost coincide with the exact values from the exact
diagonalization (ED). By contrast, the energies of GLDC
severely deviate due to poor trainability. On the other hand,
although FDC does not suffer from barren plateaus, it lacks
the expressibility to represent LRE states faithfully, so FDC
works well in the large field limit but deviates near the zero-
field limit. We also show the results of the topological
entanglement entropy Sy, Of these variational states in
Fig. 4(b) correspondingly. The technical details and addi-
tional numerical results can be found in Supplemental
Material [65].

Discussion.—In this Letter, we prove a general lower
bound on the gradient variance for arbitrary quantum
circuits composed of local 2-designs, which unifies the
known gradient scaling behaviors of various architectures.
An intuitive physical picture emerges that relates the
nonvanishing gradients with the information scrambling
in RQCs along certain path sets. We further prove the
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absence of barren plateaus for local Hamiltonians in a new
circuit class—finite local-depth circuits, which can generate
LRE states thanks to large global depths. FLDCs composed
of spatially local gates preserve the entanglement area law,
which makes it form a powerful and accessible subclass of
PEPS that covers a wide range of physical ground states.
Importantly, FLDC cannot be classically simulated effi-
ciently in two and higher dimensions by the known tensor
network methods. We remark that the indication of local
depth is also instructive in developing quantum architecture
search schemes [119-122]. Finally, we point out that
the absence of barren plateaus is a necessary but not
sufficient condition for the effectiveness of training.
There are other challenging issues such as the local mini-
mum problem [123—125]. Enhancing the VQE performance
of FLDCs in more general systems requires further explo-
ration in future studies.
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