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Quantum many-body scars are nonthermal excited eigenstates of nonintegrable Hamiltonians, which
could support coherent revival dynamics from special initial states when scars form an equally spaced tower
in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a
controlled coupling to the environment remains largely unexplored. Here, we provide a general framework
to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master
equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial
states, and can be practically utilized to prepare scar states with potential quantum metrology applications.
We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers,
and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We
demonstrate our protocol through several typical models hosting many-body scar towers and propose an
experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and
resetting ancilla qubits.
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Isolated quantum many-body systems typically thermal-
ize under Hamiltonian evolution, during which any local
information preserved in the initial states scrambles into the
entire system. These features of quantum thermalization
have been illustrated by the eigenstate thermalization
hypothesis (ETH) in the past decades [1,2]. In recent years,
studies of weak ergodicity breaking, namely, a small
fraction of ETH-violating eigenstates immersed in a sea
of thermal eigenstates, dubbed quantum many-body scars,
have attracted considerable attention [3–5]. One of the
hallmarks of quantum many-body scars, originally discov-
ered in experiments with Rydberg atoms [6,7], is their
ability to support long-lived coherent oscillations from
initial states that have large overlap with a tower of equally
spaced scars in the energy spectrum [8–16]. Despite the fact
that such anomalous eigenstates, typically with sub-
volume-law entanglement entropy, have been found and
carefully analyzed in various Hamiltonians [17–33], the
extensions of many-body scars and related coherent reviv-
als into the regime of open quantum systems remain largely
unexplored. Here, we add this crucial yet missing block by
introducing a general framework to exactly embed quantum
many-body scars into the decoherence-free subspaces of
Lindblad master equations. See Fig. 1 for a pictorial
illustration.
The dynamics of open quantum systems coupled to a

Markovian environment are described by the following
Lindblad master equation [34],

dρ
dt

¼−i½H;ρ�þγ
X

j

ð2LjρL
†
j −fL†

jLj;ρgÞ≡LðρÞ; ð1Þ

where ρ is the density matrix, H is the Hamiltonian
part governing the unitary dynamics, fLjg are jump
operators describing the dissipative quantum channels with
strength γ, and L is the Liouvillian superoperator. In
particular, if the evolution dynamics governed by L are
purely unitary within a subspace W and do not suffer from
dissipation, W is said to be a decoherence-free subspace of
this Lindblad master equation [35,36]. One special case is
that all the basis elements fjSnig of the subspace W are
annihilated by all the dissipators, andW is closed under the
action of the Hamiltonian part, i.e., LjjSni ¼ 0, ∀ j; n
(fjSnig are therefore “dark states” of the jump operators),
and HW ⊆ W. The decoherence-free subspaces were origi-
nally proposed to reduce noises in quantum computation
and realize the “passive” quantum error correction codes
[35,37,38]. Later works apply similar techniques to realize
the dissipative quantum state preparation [39–44].
In this Letter, by designing the dissipators and the

Hamiltonian part, we introduce a general protocol to
construct local Liouvillians that host scar-state-only
decoherence-free subspaces. One important consequence
reflecting on the Liouvillian spectrum is that all the
nondecaying eigenmodes are equally spaced on the imagi-
nary axis, as depicted in Fig. 1(a). Hence, unlike their
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closed-system counterparts, which are highly sensitive to
the initial states and vulnerable to instantaneous perturba-
tions, the open-system scarred dynamics manifest persis-
tent periodic oscillations for generic initial states (even
mixed states) and exhibit intrinsic tolerance to such
disturbances. We demonstrate our protocol through four
typical models hosting many-body scars, with the con-
structed Liouvillians summarized in Table I. We show that
our dissipative protocol can be further utilized to prepare
each scar state that possesses extensive multipartite entan-
glement with potential applications in quantum enhanced
metrology. In addition, we propose an experimental scheme

to observe such dissipative scarred dynamics on current
quantum simulators through digital quantum simulations
and resetting ancilla qubits.
Non-Hermitian Shiraishi-Mori embedding.—We moti-

vate our protocol from the non-Hermitian generalization of
the Shiraishi-Mori embedding method [17], then extend to
the Liouvillian formalism. In Ref. [17] Shiraishi and Mori
proposed an approach to embed nonthermal eigenstates
into the spectrum of nonintegrable Hamiltonians. The
general Shiraishi-Mori Hamiltonians have the form of
H ¼ P

j PjhjPj þH0, where fPjg is a set of local pro-
jectors (P2

j ¼ Pj), ½H0; Pj� ¼ 0, ∀ j, and fhjg are arbitrary
local Hamiltonians. We hereafter refer j ¼ 1; 2;…; L to the
label of sites in a one-dimensional spin chain with periodic
boundary condition. We denote the common null space
annihilated by these local projectors fPjg by W0. Since
PjHjΨi ¼ PjH0jΨi ¼ H0PjjΨi ¼ 0 for ∀ jΨi∈W0, W0

is closed under the action of H (HW0 ⊆ W0), and therefore
hosts dimðW0Þ eigenstates of H. For properly chosen fPjg
and H0, these eigenstates could become many-body scars
embedded into the middle of the spectrum of H. Note that
in the present case, the scar subspace W [the red circle in
Fig. 1(b)] coincides with the common null space W0 of the
local projectors [the blue circle in Fig. 1(b)].
Now we consider adding some non-Hermitian terms into

the Shiraishi-Mori Hamiltonian,

HNH¼H− i
X

j

PjDjPj¼
X

j

Pjðhj− iDjÞPjþH0; ð2Þ

where the local Hermitian operators fDjg are positive
definite, such that the imaginary parts of the spectrum of
HNH are upper bounded by zero. Since the non-Hermitian
terms still annihilate the embedded scars, their eigenener-
gies are kept to be purely real. Other thermal eigenstates
now acquire negative imaginary parts for their eigenener-
gies, therefore they will decay away once we start the
dissipative evolution driven by HNH. Through this simple
modification, we build up a relationship between thermal-
ization in the closed systems and decoherence in the open
systems for quantum many-body scarred models. We note
that the addition of non-Hermitian terms into many-body
scarred Hamiltonians has been carried out in previous
works [45–47] in different frameworks.
However, we emphasize that the description of open

quantum dynamics in terms of non-Hermitian Hamiltonians
is accurate only for short-time dynamics without quantum
jumps, or under postselection. We thus turn to the Lindblad
master equation Eq. (1) to describe the full-fledged open
quantum scarred dynamics. We take the Hamiltonian part of
the Liouvillian as the sameH, and choose the jump operators
as Lj ¼ VjPj, where fVjg are generic local operators. Now

the Liouvillian could be written as LðρÞ ¼ −iHeffρþ
iρH†

eff þ 2γ
P

j LjρL
†
j with the effective Hamiltonian

TABLE I. Summary of the local Hamiltonians and jump
operators of the constructed Liouvillians for four typical models.
The generic local operators fVjg are specified in the text.

Model Hj Lj

Toy model in
[13]

PjhjPj þ Ωσxj=2 Vj;jþ1ð1 − σ⃗j · σ⃗jþ1Þ

Spin-1 XY [12] ðSxjSxjþ1 þ SyjS
y
jþ1Þ

þhSzj þDðSzjÞ2
Vj;jþ1ðSxjSxjþ1 þ SyjS

y
jþ1Þ

AKLT [10] TS¼2
j;jþ1

Vj;jþ1T
S¼2;m¼−2;−1;0
j;jþ1 ,

V 0
j−1;j;jþ1T

0
j−1;j;jþ1

Domain-wall
preserving
[14]

ðσxj − σzj−1σ
x
jσ

z
jþ1Þ

þΔσzj þ Jσzjσ
z
jþ1

Vj;jþ1ðj↑↑ih↑↑jÞj;jþ1

FIG. 1. Schematic illustration of the protocol for embedding
quantum many-body scars into decoherence-free subspaces of
Lindblad master equations. (a) The equally spaced many-body
scar tower fjSnig (red lines) is embedded onto the imaginary axis
of the Liouvillian spectrum as nondecaying eigenmodes in the
form of fjSnihSmjg (red crosses). (b) The dissipators drive the
system into their common null space (sometimes equals the scar
subspace) and the Hamiltonian part of the Liouvillian rotates the
undesired states out of the null space to make them decay away.
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Heff ¼ H − iγ
P

j L
†
jLj having the same form as the non-

Hermitian Shiraishi-Mori embedding Eq. (2). Given that
LjjSni ¼ 0, ∀ j; n, Heff jSni ¼ EnjSni, one can verify that
all the dimðWÞ scarred eigenstates fjSnig are embedded
into the decoherence-free subspace of the Liouvillian in the
form of fjSnihSmjg [totally dimðWÞ2 basis elements]:
LðjSnihSmjÞ ¼ −iðEn − EmÞjSnihSmj. We particularly
stress that the nonconstant operators Vj in the dissipators
Lj ¼ VjPj are indispensable. Otherwise, all common eigen-
states of fPjg (not necessarily with zero eigenvalues) andH0

would enter the decoherence-free subspace, which may
include undesired states [40–42].
When the Hamiltonian H (not necessarily following

the Shiraishi-Mori formalism) exhibits certain restricted
spectrum generating algebra in the scarred subspace W
[4,5,13,48], i.e., ð½H;Q†� − ωQ†ÞW ¼ 0 for some ladder
operator Q† generating the tower of scar states jSni ¼
ðQ†ÞnjS0i, energy levels of scars are evenly spaced by ω in
the spectrum of H. In our dissipative protocol, inherited
from the Hamiltonian, all the nondecaying eigenmodes
located on the imaginary axis are uniformly spaced by
the same ω. We emphasize that the aforementioned con-
dition imposes less stringent constraints on the Liouvillians
than the dynamical symmetry studied in previous literature
[62–66], where the entanglement structure of states in the
decoherence-free subspace is not the primary focus either
(see [67]).
Within the framework of Shiraishi-Mori embedding,

we demonstrate two examples as follows. The first toy
model [13] is a one-dimensional spin-1=2 chain with
Htoy ¼ H0 þP

j PjhjPj, where H0 ¼ ΩðPj σ
x
jÞ=2, Pj ¼

ð1 − σ⃗j · σ⃗jþ1Þ=4, and hj ¼
P

μ;ν Jμνσ
μ
j−1σ

ν
jþ2 is a generic

two-spin operator. σμj (μ ¼ x, y, z) are standard Pauli
matrices. Since fPjg project two adjacent spins onto the
singlet states, Htoy hosts the x direction Dicke states

jS ¼ L=2; Sx ¼ mi as scarred eigenstates with energy
spacing ω ¼ Ω, where S is the total spin and Sx ¼P

j σ
x
j=2 is the total spin-x polarization, m ¼ −L=2;

−L=2þ 1;…; L=2. As for the corresponding Liouvillian,
we use the same Hamiltonian Htoy, together with
Lj ¼ σxjPj. By exact diagonalization, we obtain the desired
Liouvillian spectrum [Fig. 2(a)] and persistent coherent
oscillations from generic initial states [Fig. 2(b)].
Moreover, when the Liouvillian superoperator respects the
strong symmetry Sx [68], i.e., ½Htoy; Sx� ¼ ½Lj; Sx� ¼ 0, ∀ j
[the generic forms of local Hamiltonians and dissipators take
hj ¼ J1ðσyj−1σyjþ2þ σzj−1σ

z
jþ2Þþ J2ðσyj−1σzjþ2− σzj−1σ

y
jþ2Þ þ

J3σxj−1σ
x
jþ2, and Lj ¼ σxjPj], the value of Sx is preserved

during the open scarred dynamics. In these scenarios, we can
effectively prepare any desired x-direction Dicke state by
starting the Liouvillian evolution from an x-direction spin
product state in the same symmetry sector [48].
The second example is the spin-1 XY model [12]

HXY ¼
P

j½SxjSxjþ1þSyjS
y
jþ1þhSzjþDðSzjÞ2�, where there

are three degrees of freedom on each site (j − 1i; j0i; j1i)
and Sμj (μ ¼ x, y, z) are spin-1 operators. The Lþ 1 scarred
eigenstates are generated from the ferromagnetic state
jS0i ¼ j−1;…;−1i by the ladder operator Q† ¼P

jð−1ÞjðSþj Þ2 with the energy spacing ω ¼ 2h. HXY

has been shown to be consistent with the Shiraishi-Mori
embedding formalism [12,69]. The scar-tower states are
annihilated by a set of six orthogonal two-local projectors,
which commute with the

P
j S

z
j and

P
jðSzjÞ2 terms

(see [69] and [48]). Fortunately, the null space of these
local projectors coincides with that of the XY interaction
term SxjS

x
jþ1 þ SyjS

y
jþ1, so we design the jump operators in a

simple form as Lj ¼ SxjðSxjSxjþ1 þ SyjS
y
jþ1Þ.

We remark that the success of our dissipative protocol
hinges on finding local projectors annihilating the whole

FIG. 2. Numerical results for the Liouvillian spectrum and dissipative scarred dynamics. (a) Liouvillian spectrum of the toy
model hosting Dicke states as scars. Scarred eigenmodes are equidistantly embedded on the imaginary axis (the red dotted line)
in the form of fjSnihSmjg. L ¼ 6, Ω ¼ 2π, γ ¼ 1, Vj;jþ1 ¼ σxj . (b) Total spin-z dynamics for the toy model, starting from three
different initial states. θj ∈ ½0; π� are some random rotation angles. ρR is a random physical density matrix. (c) Spectrum of the
non-Hermitian AKLT Hamiltonian with or without the three-local projectors. L ¼ 8, γ ¼ 2. Liouvillian dynamics of the
quantum jump rate (d) and the scar subspace overlap (e) for the domain-wall preserving model, starting from two initial states.
L ¼ 8, Δ ¼ 0.5, J ¼ 1, γ ¼ 1, Vj;jþ1 ¼ σxjσ

x
jþ1.
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scar towers, which could be achieved by compressing the
scar tower into a single matrix product state (MPS)
jSðβÞi ¼ expðβQ†ÞjS0i ¼

P
n β

njSni=n! and applying
standard linear algebra techniques to construct local
projectors annihilating the local tensors of jSðβÞi for
any β [15,16,48,69].
Models beyond Shiraishi-Mori embedding.—Our strat-

egy of creating scar-state-only decoherence-free subspace
can further apply to many-body scarred models beyond the
Shiraishi-Mori embedding formalism. One typical example
is the spin-1 Affleck-Kennedy-Lieb-Tasaki (AKLT) model
HAKLT ¼ P

j T
S¼2
j;jþ1, where TS¼2

j;jþ1 projects two adjacent
spin-1’s onto a total spin-2 [70]. A tower of scarred
eigenstates with energy spacing ω ¼ 2 is generated from
the ground state jS0i ¼ jGi by the ladder operator Q† ¼P

jð−1ÞjðSþj Þ2 [10,11]. Two-local projectors annihilating

the scar tower are known as Pj ¼ TS¼2;m¼−2
j;jþ1 þ

TS¼2;m¼−1
j;jþ1 þ TS¼2;m¼0

j;jþ1 [69], where TS¼2;m
j;jþ1 projects two

spin-1’s onto a total spin-2 with spin-z polarization equal
to m. The AKLT Hamiltonian can then be decomposed
as HAKLT ¼ H0 þP

j Pj, where H0 ¼ P
j T

S¼2;m¼1;2
j;jþ1 .

However, since ½H0; Pj� ≠ 0, HAKLT goes beyond the
Shiraishi-Mori framework in the sense that the null space
W0 is larger than the desired scar subspace W [10,69].
We demonstrate the resulting effect by calculating the
spectrum of the non-Hermitian Hamiltonian HNH ¼
HAKLT − iγ

P
j Pj [71]. Eigenstates of HNH with purely

real eigenvalues are annihilated by fPjg and are eigenstates
of the Hermitian part HAKLT, such that they will be
embedded in the decoherence-free subspace of the
constructed Liouvillian. Apart from the scar states with
integer eigenvalues, we observe several undesired irrational
eigenvalues on the real axis [orange crosses in Fig. 2(c);
see [48] for detailed discussions], which will contaminate the
decoherence-free subspace and ruin the periodic oscillations.
To solve the problem, we introduce the three-local

projector T 0
j−1;j;jþ1 ¼ ðjT 0ihT 0jÞj−1;j;jþ1, obtained by the

compressed MPS technique,

jT 0i ¼ 1ffiffiffi
2

p ðj0; 1; 1i þ j1; 1; 0iÞ; ð3Þ

to enter the Liouvillian as dissipators. The three-local
projectors also annihilate the whole scar tower and they
can effectively kill unwanted states in the decoherence-free
subspace. As shown by the blue dots in Fig. 2(c), after
adding the three-local projectors, irrational eigenvalues
disappear from the real axis, and therefore harmonic
scarred oscillations are restored. (There still exist a few
remaining eigenstates with eigenvalues L − 1 or L − 2.
See [48] for detailed discussions.) We remark that the
common null space W0 of two-local and three-local
projectors is still larger than the scar subspace W, but the

Hamiltonian part HAKLT of the Liouvillian drives unwanted
states out of W0 to make them decay away [Fig. 1(b)].
To better illustrate the interplay between the dissipators

and the Hamiltonian part, we consider the domain-wall
preserving model [14] HDW ¼ H0 þHΔ þHJ, where
H0 ¼

P
jðσxj − σzj−1σ

x
jσ

z
jþ1Þ, HΔ ¼ Δ

P
j σ

z
j, and HJ ¼

J
P

j σ
z
jσ

z
jþ1. The ladder operator Q† ¼ P

jð−1ÞjP0
j−1×

σþj P
0
jþ1 [P0

j ¼ ð1 − σzjÞ=2] generates the scar tower from
the reference state jS0i ¼ j↓↓ � � �↓i with energy spacing
ω ¼ 2Δ − 4J. The scar-tower states are subject to the
emergent Rydberg-blockade constraints that are absent in
HDW: Two neighboring spins cannot both be in the up
states. For the constructed Liouvillian, we therefore take
Pj ¼ ðj↑↑ih↑↑jÞj;jþ1, Vj;jþ1 ¼ σxjσ

x
jþ1, such that Lj ¼

Vj;jþ1Pj ¼ σ−j σ
−
jþ1 (in [48] we show that fPjg are the

only two-local projectors annihilating the scar tower). We
emphasize that ½H0; Pj� ≠ 0, and the null spaceW0 of fPjg
is exponentially large with respect to L [8,9], while the
dimension of the scar subspace W is only L=2þ 2 [48].
The Hamiltonian part of the Liouvillian, HDW, thus plays
an indispensable role in creating a scar-state-only
decoherence-free subspace, which we demonstrate through
the following Liouvillian dynamics. We use the quantum
jump rate Tr½Pj PjρðtÞ�=L to characterize whether a state
has reached the null space (zero value implies the state is
within W0). As shown in Fig. 2(d), for an initial state in W0
but out of W (blue solid line), the quantum jump rate
increases up from zero, then decays back to zero, indicating
that the state is driven out of W0 by the Hamiltonian part
and converges to the scar subspace due to dissipation of
other eigenmodes. As a comparison, an initial state out
of the null space is driven into the scar subspace directly
(red dashed line). Meanwhile, we compute the dynamics of
the scar subspace overlap for these two initial states, which
approaches one monotonically [Fig. 2(e)]. More numerical
results are displayed in [48].
Experimental realization.—The dissipative scarred

dynamics can be readily implemented [72,73] using cur-
rently available quantum simulation technologies, as we
demonstrate with the domain-wall preserving model below.
Consider a one-dimensional qubit chain coupled to another
array of ancilla qubits [Fig. 3(a)]. We digitally simulate
the Liouvillian evolution through three steps, similar to
the formalism of quantum collision models [66,74–76].
Suppose at time t the entire system has a quantum state in
the decoupled form, jψðtÞi ⊗ j↓ � � �↓i, with all the ancilla
qubits set to j↓i. (1) We apply the unitary operator
expð−iHDWδtÞ (could be Trotterized to local gates) on
jψðtÞi, which plays the role of Hermitian Hamiltonian
evolution. (2) We then apply the local unitary gatesQ

j expð−iHj
coup

ffiffiffiffi
δt

p Þ with

Hj
coup ¼

ffiffiffiffiffi
2γ

p
ðLjτ

þ
j þ L†

jτ
−
j Þ; ð4Þ
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which couple the system and ancilla (τ�j ) qubits to create
probabilistic quantum jumps induced by fLjg. (3) Finally,
we reset all the ancilla qubits back to j↓i via measurements
or optical pumping [77–84]. We rigorously prove that the
above protocol faithfully reproduces the many-body
Liouvillian dynamics up to error of order Oðδt2Þ [48].
Moreover, we numerically simulate the three-step dynami-
cal process by the quantum trajectory method [85]. As
shown in Fig. 3(b), with a moderate δt, the observable
dynamics of Q† þQ ¼ P

jð−1ÞjP0
j−1σ

x
jP

0
jþ1 (requiring

only two measurement settings) computed by the ensemble
average of trajectories agree well with the exact Liouvillian
evolution. We particularly choose two initial states that are
easy to prepare on experimental platforms—the first one
mimics an imperfectly prepared bond-dimension-twoMPS,
and the second one is a product state.
Conclusions.—In summary, our protocol utilizes the

synergy between the dissipators and the Hamiltonian part
of the Liouvillian to create a scar-state-only decoherence-
free subspace. We systematically obtain local projectors
annihilating the whole scar towers by the compressed MPS
technique. Meanwhile, maximizing the power of the
Hamiltonian part is crucial to keep the designed dissipators
as local as possible. On the one hand, our framework
introduces many-body scarred dynamics into the open
quantum system regime. An intriguing advantage com-
pared to the closed-system counterpart is that the dissipa-
tive scarred dynamics is independent of the initial states and
naturally tolerate instantaneous perturbations. The con-
structed decoherence-free subspaces can be utilized to
prepare scar states with extensive multipartite entanglement
[86–88] by engineered short-range dissipation, which
makes them promising candidates for quantum enhanced
metrology [89]. On the other hand, our work introduces as
well new principles and techniques to construct local
Liouvillians hosting decoherence-free subspaces with spe-
cial entanglement structures and equally spaced nondecay-
ing eigenmodes. These scar-state-only decoherence-free

subspaces support nonstationary coherent many-body
dynamics under dissipation, which have profound con-
nections with certain dissipative kinetically constrained
models [90,91] and open up an avenue toward the reali-
zation of dissipative time crystals [62,63,92–94]. In the
current work the nondecaying scarred eigenmodes of
Liouvillians are inherited from the original Hamiltonians.
It is also interesting to consider the intrinsic scarred
eigenmodes in open quantum systems, which could
possibly be distinguished by relatively small operator
entanglement [95–99].
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information and multiparticle entanglement, Phys. Rev. A
85, 022321 (2012).

[59] G. Tóth, Multipartite entanglement and high-precision
metrology, Phys. Rev. A 85, 022322 (2012).

[60] T. Iadecola, M. Schecter, and S. Xu, Quantum many-body
scars from magnon condensation, Phys. Rev. B 100, 184312
(2019).

[61] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev.
A 47, 5138 (1993).

[62] B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent
quantum many-body dynamics through dissipation, Nat.
Commun. 10, 1730 (2019).

[63] C. Booker, B. Buča, and D. Jaksch, Non-stationarity and
dissipative time crystals: Spectral properties and finite-size
effects, New J. Phys. 22, 085007 (2020).

[64] B. Buča, C. Booker, M. Medenjak, and D. Jaksch, Bethe
ansatz approach for dissipation: Exact solutions of quantum
many-body dynamics under loss, New J. Phys. 22, 123040
(2020).

[65] K. Chinzei and T. N. Ikeda, Time crystals protected by
Floquet dynamical symmetry in Hubbard models, Phys.
Rev. Lett. 125, 060601 (2020).

[66] G. Guarnieri, M. T. Mitchison, A. Purkayastha, D. Jaksch,
B. Buča, and J. Goold, Time periodicity from randomness in
quantum systems, Phys. Rev. A 106, 022209 (2022).

[67] Despite the fact that both conditions lead to equally spaced
nondecaying eigenmodes and nonstationary periodic dy-
namics, the dynamical symmetry necessitates ½H;Q†� ¼
ωQ† to be valid in the entire Hilbert space, and ½Lj;Q†� ¼
½L†

j ; Q
†� ¼ 0 for all the dissipators. In contrast, our protocol

requires only the first condition to hold in the scar subspace
W and does not need the second one. Furthermore,
½H;Q†� ¼ ωQ† poses too strong symmetry in the
Hamiltonian to qualify the tower of states fjSnig as genuine
scar states [4,5,23,24].

[68] B. Buča and T. Prosen, A note on symmetry reductions of
the Lindblad equation: Transport in constrained open spin
chains, New J. Phys. 14, 073007 (2012).

[69] D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified struc-
ture for exact towers of scar states in the Affleck-Kennedy-
Lieb-Tasaki and other models, Phys. Rev. B 101, 195131
(2020).

[70] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Rigorous
results on valence-bond ground states in antiferromagnets,
Phys. Rev. Lett. 59, 799 (1987).

[71] We compute the spectrum of the non-Hermitian AKLT
Hamiltonian instead of the whole Liouvillian, in order to
access to larger system sizes (L ≥ 8) to observe the irra-
tional real eigenvalues (see [48] for details).

[72] S. Lloyd and L. Viola, Engineering quantum dynamics,
Phys. Rev. A 65, 010101(R) (2001).

[73] D. Bacon, A. M. Childs, I. L. Chuang, J. Kempe, D. W.
Leung, and X. Zhou, Universal simulation of Markovian
quantum dynamics, Phys. Rev. A 64, 062302 (2001).

[74] F. Ciccarello, S. Lorenzo, V. Giovannetti, and G. M. Palma,
Quantum collision models: Open system dynamics from
repeated interactions, Phys. Rep. 954, 1 (2022).

[75] M. Cattaneo, G. L. Giorgi, R. Zambrini, and S. Maniscalco,
A brief journey through collision models for multipartite
open quantum dynamics, Open Syst. Inf. Dyn. 29, 2250015
(2022).

[76] E. Gillman, F. Carollo, and I. Lesanovsky, Using ð1þ 1Þd
quantum cellular automata for exploring collective effects in
large-scale quantum neural networks, Phys. Rev. E 107,
L022102 (2023).

[77] S. Shankar, M. Hatridge, Z. Leghtas, K. Sliwa, A. Narla, U.
Vool, S. M. Girvin, L. Frunzio, M. Mirrahimi, and M. H.
Devoret, Autonomously stabilized entanglement between

PHYSICAL REVIEW LETTERS 132, 150401 (2024)

150401-7

https://doi.org/10.21468/SciPostPhys.15.2.052
https://doi.org/10.21468/SciPostPhys.15.2.052
https://doi.org/10.1103/PhysRevA.107.023318
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.150401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.150401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.150401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.150401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.150401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.150401
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.150401
https://doi.org/10.26421/QIC7.5-6-1
https://doi.org/10.26421/QIC7.5-6-1
https://doi.org/10.1103/PhysRevLett.130.220401
https://doi.org/10.1038/s41586-023-05954-4
https://doi.org/10.1103/PhysRevLett.102.170502
https://doi.org/10.1103/PhysRevLett.102.170502
https://doi.org/10.1038/s41586-023-06481-y
https://doi.org/10.1038/s41586-023-06481-y
https://doi.org/10.1038/s41467-021-21982-y
https://doi.org/10.1038/s41467-021-21982-y
https://arXiv.org/abs/2211.04728
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevLett.102.100401
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022321
https://doi.org/10.1103/PhysRevA.85.022322
https://doi.org/10.1103/PhysRevB.100.184312
https://doi.org/10.1103/PhysRevB.100.184312
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1103/PhysRevA.47.5138
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1038/s41467-019-09757-y
https://doi.org/10.1088/1367-2630/ababc4
https://doi.org/10.1088/1367-2630/abd124
https://doi.org/10.1088/1367-2630/abd124
https://doi.org/10.1103/PhysRevLett.125.060601
https://doi.org/10.1103/PhysRevLett.125.060601
https://doi.org/10.1103/PhysRevA.106.022209
https://doi.org/10.1088/1367-2630/14/7/073007
https://doi.org/10.1103/PhysRevB.101.195131
https://doi.org/10.1103/PhysRevB.101.195131
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevA.65.010101
https://doi.org/10.1103/PhysRevA.64.062302
https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/10.1142/S1230161222500159
https://doi.org/10.1142/S1230161222500159
https://doi.org/10.1103/PhysRevE.107.L022102
https://doi.org/10.1103/PhysRevE.107.L022102


two superconducting quantum bits, Nature (London) 504,
419 (2013).

[78] J. Han, W. Cai, L. Hu, X. Mu, Y. Ma, Y. Xu, W. Wang, H.
Wang, Y. P. Song, C.-L. Zou, and L. Sun, Experimental
simulation of open quantum system dynamics via Trotte-
rization, Phys. Rev. Lett. 127, 020504 (2021).

[79] W. Cai, J. Han, L. Hu, Y. Ma, X. Mu, W. Wang, Y. Xu, Z.
Hua, H. Wang, Y. P. Song, J.-N. Zhang, C.-L. Zou, and L.
Sun, High-efficiency arbitrary quantum operation on a high-
dimensional quantum system, Phys. Rev. Lett. 127, 090504
(2021).

[80] X. Mi, A. Michailidis, S. Shabani, K. Miao, P. Klimov, J.
Lloyd, E. Rosenberg, R. Acharya, I. Aleiner, T. Andersen
et al., Stable quantum-correlated many body states via
engineered dissipation, Science 383, 1332 (2024).

[81] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M.
Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt,
An open-system quantum simulator with trapped ions,
Nature (London) 470, 486 (2011).

[82] Y. Lin, J. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A.
Sørensen, D. Leibfried, and D. J. Wineland, Dissipative
production of a maximally entangled steady state of two
quantum bits, Nature (London) 504, 415 (2013).

[83] P. Schindler, M. Müller, D. Nigg, J. T. Barreiro, E. A.
Martinez, M. Hennrich, T. Monz, S. Diehl, P. Zoller, and
R. Blatt, Quantum simulation of dynamical maps with
trapped ions, Nat. Phys. 9, 361 (2013).

[84] H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P.
Büchler, A Rydberg quantum simulator, Nat. Phys. 6, 382
(2010).

[85] A. J. Daley, Quantum trajectories and open many-body
quantum systems, Adv. Phys. 63, 77 (2014).

[86] S. Dooley, Robust quantum sensing in strongly interacting
systems with many-body scars, PRX Quantum 2, 020330
(2021).

[87] J.-Y. Desaules, F. Pietracaprina, Z. Papić, J. Goold, and
S. Pappalardi, Extensive multipartite entanglement from

SU(2) quantum many-body scars, Phys. Rev. Lett. 129,
020601 (2022).

[88] S. Dooley, S. Pappalardi, and J. Goold, Entanglement
enhanced metrology with quantum many-body scars, Phys.
Rev. B 107, 035123 (2023).
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