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Identifying what quantum-mechanical properties are useful to untap a superior performance in quantum
technologies is a pivotal question. Quantum resource theories provide a unified framework to analyze and
understand such properties, as successfully demonstrated for entanglement and coherence. While these are
examples of convex resources, for which quantum advantages can always be identified, many physical
resources are described by a nonconvex set of free states and their interpretation has so far remained elusive.
Here we address the fundamental question of the usefulness of quantum resources without convexity
assumption, by providing two operational interpretations of the generalized robustness measure in general
resource theories. First, we characterize the generalized robustness in terms of a nonlinear resource witness
and reveal that any state is more advantageous than a free one in some multicopy channel discrimination
task. Next, we consider a scenario where a theory is characterized by multiple constraints and show that the
generalized robustness coincides with the worst-case advantage in a single-copy channel discrimination
setting. Based on these characterizations, we conclude that every quantum resource state shows a
qualitative and quantitative advantage in discrimination problems in a general resource theory even without
any specification on the structure of the free states.
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Introduction.—The drive to interpret and characterize
signature properties of quantum mechanics spurred the rise
of quantum information theory and shed new light on
foundational questions of modern science [1]. The further
realization that such properties can be exploited as resour-
ces to enhance computational power, sensing precision,
communication security, and many more tasks unlocked a
technological overhaul whose impact is unfolding at an
astounding pace [2]. Under the hood of such impressive
advances, key questions remain: What fundamental ingre-
dients are needed for the optimal performance of quantum
technologies? Does every quantum feature lead to an
advantage in practical applications?
Addressing these and related questions can be facilitated

by the study of quantum resource theories (QRTs) [3–5],
which classify quantum states and operations into free (not
useful, akin to “classical”) versus nonfree (potentially useful
as “resources”), and provide a mathematically rigorous
formalism to validate various measures of quantum proper-
ties and investigate their operational significance. The
generalized robustness [6–8] is one such prominent quanti-
fier in the framework of QRTs. It is calculable with semi-
definite programming for several representative cases,
including k-entanglement [9], coherence [10], multilevel

coherence [11], asymmetry [12],magic [13,14], and steering
[15]. It also has an operational characterization, which was
initially shown for steering [15], coherence [10], and
asymmetry [12]. Notably, Ref. [16] generalized these results
showing that, in any convex QRT on finite-dimensional
state spaces, the generalized robustness can be interpreted
operationally as the advantage of a quantum resource state in
some channel discrimination task [17–20]. This result was
recently extended to dynamical resource theories [21,22],
general probabilistic theories [21], and infinite-dimensional
convex QRTs [23,24]. However, these analyses heavily rely
on the convex geometry of the set of resource-free states,
which guarantees the connection between the generalized
robustness and resource witness [25,26]. A straightforward
generalization of these operational approaches is no longer
applicable when the convexity assumption is dropped.
Nevertheless, physically well-motivated quantum resour-

ces do not necessarily have a convex structure. For example,
non-Gaussianity is widely regarded as an advantageous
or even essential resource for quantum optical technologies
[27], yet the set of Gaussian states in continuous variable
systems [28,29] is nonconvex. The set of quantum
Markov chains [30], as well as the sets of states with no
quantum discord [31,32], e.g., classical-classical and
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classical-quantum states [33,34], are also not convex.
Furthermore, tailored resource theories in which physical
limitations are identified from experimental constraints are
not a priori expected to be built upon a convex set of free
states. In fact, classical randomness can be regarded as a
resource [35,36], meaning that convexity itself may well be
expensive in general. Hence, the current lack of techniques
towards resources beyond convexity significantly impedes a
unified understanding of fundamental advantages and lim-
itations of quantum mechanical properties, which general
QRTs [4,5,13,16,21–24,36–54] aim to achieve.
In this Letter, we bridge this gap by providing universal

operational characterizations for general QRTs without
convexity restriction, based on the generalized robustness
(see Fig. 1).
On the one hand, we consider a concept of multi-copy

resource witness, extending ideas previously investigated
in entanglement theory [55,56]. Resource witnesses are
instrumental in detecting the usefulness of entanglement
[57] and any convex resource [16]. We provide a charac-
terization of the generalized robustness in arbitrary dimen-
sions and exploit it to give general constructions of
multi-copy witnesses. This allows us to prove that all
resource states in general QRTs (regardless of the topology
of free set) produce an operational advantage in some
multi-input channel discrimination task.
On the other hand, we investigate a scenario motivated

by QRTs with possibly multiple constraints, that is, a case
where the set of free states is composed in general of several
different convex subsets. We find that the generalized
robustness quantifies the worst-case advantage for channel
discrimination with respect to each subset and thus captures
the versatility of resource states in the presence of com-
peting constraints.
Our results show that, without assuming convexity,

every quantum state identified as not free in a general
QRT has the potential to lead to an advantage in discrimi-
nation problems, and the generalized robustness is estab-
lished as a universal indicator of such operational

advantage. This answers the final question raised in the
opening paragraph of this Letter.
In the following, we focus on exposing the main

ideas and results concerning QRTs defined for quantum
states. A companion paper [58] contains detailed proofs
of the main results of this Letter, more examples, and
extensions to dynamical QRTs including quantum chan-
nels and instruments [21,48,49,51,59–73], as well as
other tasks based on channel exclusion and weight-based
resource measures [74–80].
Generalized robustness in general QRTs.—We consider

general QRTs on a d-dimensional Hilbert space H (for
finite d). The set F ðHÞ of free states is defined as some
closed subset of the set DðHÞ of all states of the systemH.
The generalized robustness resource quantifier is defined
as follows.
Definition 1.—Let ρ∈DðHÞ be a quantum state. The

generalized robustness RF ðHÞðρÞ of ρ with respect to the set
F ðHÞ of free states is defined by (see Fig. 1)

RF ðHÞðρÞ ≔ min
τ∈DðHÞ

n
s ≥ 0∶

ρþ sτ
1þ s

≕ σ ∈F ðHÞ
o
: ð1Þ

This captures how much the quantum state ρ can tolerate
mixing with some other state τ until all of its resource
content is washed out. Note that we do not assume
convexity of F ðHÞ while, conventionally, the notion of
the generalized robustness has been studied for convex
resource theories [7,8,10,16].
A key feature underlying the operational interpretation of

generalized robustness in convex QRTs [10,16,57] is the
fact that such a measure can be recast as the expectation
value of an optimal linear resource witness, represented by
a (red dashed) straight line in Fig. 1(a). Our first main result
is to show that such a connection can still be established in
nonconvex QRTs, but it requires the use of a multicopy
witness, that is, a nonlinear operator separating resource
states from the generally nonconvex set of free states,
illustrated by the (red dashed) curved line in Fig. 1(b).
Multicopy resource witness based on generalized

robustness.—Here we construct a family of m-copy
operators for each m ¼ 2; 3;…; d and then show that,
for an arbitrary free state σ, there is at least onem such that
the corresponding m-copy witness can discern a given
resource state ρ from σ. Our construction relies on the
generalized Bloch representation of d-dimensional quan-
tum states [81,82]. Given a quantum state η∈DðHÞ, we
let x⃗ ≔ ðx1; x2;…; xd2−1Þ denote a generalized Bloch
vector given by

η ¼ ð1=dÞ
�
I þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðd − 1Þ=2

p Xd2−1
j¼1

xjλj

�
;

where I is the d×d identity matrix, and fλjgj denote the
d×d generalized Gell-Mann matrices with normalization

(a) (b) (c)

FIG. 1. Generalized robustness RF of a state ρ in (a) convex and
(b)–(c) nonconvex QRTs [Def. 1]. The first two panels illustrate
the link between RF and witness operators, respectively for (a) the
convex case [16] and (b) the nonconvex case [Thm. 2]. Panel
(c) depicts the evaluation of RF as minimization over convex
subsetsF k forming a nonconvex setF of free states [Eq. (7)]. Our
constructions in (b) and (c) reveal qualitative [Thm. 3] and
quantitative advantages [Thm. 4] of all non-free states of general
QRTs in channel discrimination tasks.

PHYSICAL REVIEW LETTERS 132, 150201 (2024)

150201-2



Tr½λ†i λj� ¼ 2δij [81,82]. Take a resource state ρ∈DðHÞn
F ðHÞwith generalized Bloch vector r⃗ ≔ ðrjÞ. According to
the characterization given in Ref. [83], for a fixed s > 0, any
state ηwith generalized Bloch vector x⃗ that can be written as

η ¼ ðρþ s0τÞ=ð1þ s0Þ
using some 0 < s0 ≤ s and τ∈DðHÞ must satisfy

Sm;ρ;sðηÞ ≔ Sm

�
1þ s
s

η −
1

s
ρ

�
≥ 0

for all m ¼ 1; 2;…; d, where Sm is defined recursively as

SmðAÞ ≔ ð1=mÞ
Xm
l¼1

ðð−1Þl−1Tr½Al�Sm−lðAÞÞ

for an operator A, with m ≥ 1 and S0ðAÞ ≔ 1. Note that
S1ðAÞ ¼ Tr½A�, hence S1;ρ;sðηÞ ¼ 1 ≥ 0 is trivially satisfied
for any state η∈DðHÞ.
By definition, Sm;ρ;s is a degree-m real-valued polyno-

mial with respect to x⃗ for all m ¼ 1; 2;…; d and for any
s > 0. Hence, for an arbitrary choice of m and s, there
exists a Hermitian operator Wmðρ; sÞ on H⊗m such that
Tr½Wmðρ; sÞη⊗m� ¼ Sm;ρ;sðηÞ for all η∈DðHÞ; see
Ref. [58] for an explicit construction. With this characteri-
zation, we show the following: (1) Sm;ρ;sðρÞ ¼ SmðρÞ ≥ 0

for all m ¼ 2; 3;…; d. (2) If s < RF ðHÞðρÞ, then for any
free state σ ∈F ðHÞ, there exists 2 ≤ m ≤ d such that
Sm;ρ;sðσÞ < 0. (3) If s ≥ RF ðHÞðρÞ, there exists a free state
σ ∈F ðHÞ such that Sm;ρ;sðσÞ ≥ 0 for all m ¼ 2; 3;…; d.
Thus, the family Wρ;s ≔ ðWmðρ; sÞ∶ m ¼ 2; 3;…; dÞ

of Hermitian operators satisfies the two conditions:
minm¼2;3;…;dTr½Wmðρ; sÞρ⊗m� ≥ 0, and minm¼2;3;…;d

Tr½Wmðρ;sÞσ⊗m�< 0, ∀σ∈F ðHÞ. By defining eWmðρ;sÞ≔
−CðWðρ;sÞþΔmðρ;sÞI⊗mÞ with appropriate scalar
Δmðρ; sÞ > 0 and any normalization constant C > 0, we
have that the family eWρ;s ≔ ð eWmðρ; sÞ∶ m ¼ 2; 3;…; dÞ
defines a (multicopy) resource witness for s < RF ðHÞðρÞ.
Theorem 2.—Let H be a d-dimensional Hilbert space.

Let ρ∈DðHÞnF ðHÞ be a resource state. Then, we can
construct a family eWρ;s ≔ ð eWmðρ; sÞ∶m ¼ 2; 3;…; dÞ of
Hermitian operators such that

max
m¼2;3;…;d

Tr
h eWmðρ; sÞρ⊗m

i
< 0;

max
m¼2;3;…;d

Tr
h eWmðρ; sÞσ⊗m

i
≥ 0; ∀ σ ∈F ðHÞ; ð2Þ

if and only if s < RF ðHÞðρÞ. In particular,

sup fs > 0∶ eWρ;s is a witnessg ¼ RF ðHÞðρÞ:

This result establishes a fundamental connection
between generalized robustness and multicopy witnesses
in general QRTs.

Moreover, when s grows closer to RF ðHÞ, the familyeWρ;s serves as a better witness, in the sense that it can
detect more resource states. Indeed, if s0 < s, then we see
that [58]

fη∈DðHÞ∶ Tr½ eWmðρ;s0Þη⊗m�< 0; ∀ m¼ 2;3;…;dg
⊊ fη∈DðHÞ∶Tr½ eWmðρ;sÞη⊗d�< 0; ∀ m¼ 2;3;…;dg:

Example: Single-qubit QRTs.—To illustrate our result,
let us consider the instance of single-qubit QRTs (d ¼ 2).
In the single-qubit case, we can only focus on S2. By

definition, we have S2ðAÞ ¼ ðTr½A�2 − Tr½A2�Þ=2. Note
that for a Hermitian operator η with Bloch vector x⃗ ≔
ðx1; x2; x3Þ, the condition S2ðηÞ ≥ 0 can be written as
x21 þ x22 þ x23 ≤ 1, whose region is equivalent to the
Bloch ball.
Fix a single-qubit state ρwith Bloch vector r⃗≔ðr1;r2;r3Þ.

For any quantum state η with Bloch vector x⃗, we have

S2;ρ;sðηÞ ¼
1

4
−
kr⃗k2
4s2

þ ð1þ sÞðr⃗ · x⃗Þ
2s2

−
ð1þ sÞ2kx⃗k2

4s2
: ð3Þ

Now, we construct a 2-copy witness Wðρ; sÞ such
that Tr½Wðρ; sÞη⊗2� ¼ S2;ρ;sðηÞ. One such witness is given
as [58]

Wðρ; sÞ ≔ ½ðkr⃗k2=s2Þ − 1�I ⊗ I þ ½ð1þ sÞ=s2�

×
X3
j¼1

½ð1þ sÞðσj ⊗ σjÞ − rjðI ⊗ σj þ σj ⊗ IÞ�;

where ðσ1; σ2; σ3Þ are the Pauli matrices. The operator
Wðρ; sÞ defines a spherical boundary around the state ρ
within the Bloch sphere, with radius proportional to s. It
amounts to a witness when s is smaller than the generalized
robustness of ρ. The larger s is, the more effective Wðρ; sÞ
is as a witness. In the limit of s → RF ðHÞðρÞ, the boundary
is tangent to the free setF ðHÞ, denoting an optimal witness
[see Fig. 1(b)].
Operational advantage in multi-input channel

discrimination.—The multicopy witness constructed in
the previous section leads to an operational advantage of
all resource states in general QRTs without convexity
restriction for a variant of channel discrimination, which
we callm-input channel discrimination. Inm-input channel
discrimination, one aims to distinguish channels that act on
m independently and identically distributed (i.i.d.) copies

ρ⊗m of a given state ρ in a black box setting. Let fpi;Λ
ðmÞ
i gi

be an ensemble of channels, where channels ΛðmÞ
i on

DðH⊗mÞ are randomly picked with prior probability pi.

Once a channel ΛðmÞ
i is sampled, it acts on the m-copy

register of the given probe state ρ; that is, at the output, we

have ΛðmÞ
i ðρ⊗mÞ. Our goal is to figure out which specific
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channel from the channel ensemble acted on the input state.
To identify the label i, we perform a quantum measurement
fMigi to the output state. The success probability for this
m-input channel discrimination task is given by

psucc

��
pi;Λ

ðmÞ
i

�
i; fMigi; ρ⊗m

�
≔

X
i

piTr
	
MiΛ

ðmÞ
i ðρ⊗mÞ
: ð4Þ

In this task, given a quantum state and a channel ensemble,
we aim to maximize the success probability by choosing
the best measurement strategy. This task generalizes a
single-copy channel discrimination task in Ref. [16] to the
multicopy scenario. To characterize the advantage of a
resource state ρ in this scenario, we consider the ratio

between the best success probability when using the given
state ρ versus a free state.
Theorem 2 shows that for any given d-dimensional

resource state ρ, we may construct a family eWρ;s ¼
ð eWmðρ; sÞ∶ m ¼ 2; 3;…; dÞ such that for any free state
σ ∈F ðHÞ, at least one eWmðρ; sÞ separates ρ⊗m from σ⊗m.
This separation implies that all resource states in a general
QRT without convexity restriction enable an operational
advantage, formalized as follows.
Theorem 3.—Let H be a d-dimensional Hilbert

space. For any resource state ρ∈DðHÞnF ðHÞ, there

exists a family of channel ensembles
�fpi;Λ

ðmÞ
i gi

�d
m¼2

such that

min
σ∈F ðHÞ

max
m¼2;3;…;d

maxfMðmÞ
i gipsuccðfpi;Λ

ðmÞ
i gi;fMðmÞ

i gi;ρ⊗mÞ
maxfMðmÞ

i gipsuccðfpi;Λ
ðmÞ
i gi;fMðmÞ

i gi;σ⊗mÞ
> 1:

This can be proven by considering an m-input channel
discrimination with two channels for each m ¼ 2; 3;…; d,
based on the witness eWρ;s. The proof strategy is inspired
by those in Refs. [57] and [16], and a detailed proof is
reported in [58].
Remark.—While our construction requires m ≤ d inputs

to reveal a discrimination advantage based on the gener-
alized robustness, experimentally friendlier witnesses can
be crafted just for detecting resource states in nonconvex
QRTs. Consider the operator W0

2ðρ; εÞ ≔ V þ ðTr½ρ2� −
εÞI ⊗ I − 2ρ ⊗ I that can be implemented on 2 copies
of ρ, where ε > 0 and V is the SWAP operator, Vjψi ⊗
jϕi ¼ jϕi ⊗ jψi [84]. We have Tr½W0

2ðρ; εÞη⊗2� ¼ Tr½ðρ −
ηÞ2� − ε for any state η. This defines an ε-ball around ρ,
yielding a universal resource witness that satisfies Eqs. (2)
with m ¼ 2 for any d, if ε is small enough so that
Tr½ðρ − σÞ2� ≥ ε for all free states σ ∈F ðHÞ.
Operational advantage quantified by generalized

robustness.—In the previous section, based on the multi-
copy witness constructed from generalized robustness, we
showed a qualitative advantage of all resource states for
channel discrimination in the framework of nonconvex
QRTs. The next question is whether we can provide a
quantitative assessment of the operational advantage in
general. Here we address this question by considering a
slight variation of the problem.
Suppose that the set F ðHÞ of free states of an arbitrary

QRT can be expressed without loss of generality as a union

F ðHÞ ¼ ⋃
k
F kðHÞ; ð5Þ

where the subsets F kðHÞ are closed and convex for all k
[Fig. 1(c)], and k is either a discrete or continuous label.

Such a decomposition is always possible (and generally not
unique) and describes a QRT characterized by multiple
constraints.
For example, in the theory of quantum discord [31,32],

the set of free “classical-quantum” states is given by the
union of the convex subsets of incoherent-quantum states
with a fixed local basis [33]. From a practical perspective,
for applications such as 3D magnetic field sensing [85], one
needs states with coherence in a specific set of bases, e.g.,
x, y, and z bases for a qubit. In this case, the set of free
states is the union of the set of incoherent states with respect
to the given bases, covering the three main axes of the
Bloch sphere, while any other state is a resource. In another
context, thermodynamical machines such as engines or
refrigerators operating between different thermal baths are
specified by a set of free states given by the union of the
convex subsets corresponding to each equilibrium temper-
ature [86,87]. Also in the context of multipartite entangle-
ment, states in the union of the sets of partition-separable
states with respect to different bipartitions cannot have
genuine multipartite entanglement [88,89]. For any state
out of this nonconvex set, genuine multipartite entangle-
ment can be activated from many copies of the state,
characterizing this nonconvex set from a resource perspec-
tive [88,89].
Now, given a general QRT described by multiple

constraints (i.e., multiple free subsets), how do we
characterize the usefulness of resource states? It is natural
to introduce a worst-case scenario in which we consider
the possible advantage that a given state can provide in a
task when compared to each subset of free states, and then
minimize such advantage over all such subsets. This
approach will result in a figure of merit assessing how
useful that particular state is a priori guaranteed to be,
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regardless of which particular constraints are coming into
play in each run of the task. An instance of such analysis
had been explored in metrological contexts—that is,
looking for the worst-case precision that a probe state
enables in phase estimation with limited prior knowledge
of the phase shift generator—and led to seminal opera-
tional interpretations for discordlike quantifiers [90–92],
which can now be regarded as special cases of our more
general construction.
Here, we consider a channel discrimination task speci-

fied by a channel ensemble fpi;Λigi acting on a single
copy of an input state, corresponding to m ¼ 1 in the m-
input protocol described earlier. We focus on the achievable
advantage of a resource state ρwith respect to states in each
convex free subset F kðHÞ, maximized over the measure-
ment fMigi. In formula,

max
fpi;Λigi;fMigi

psuccðρ; fpi;Λigi; fMigiÞ
maxσk ∈F kðHÞpsuccðσk; fpi;Λigi; fMigiÞ

; ð6Þ

where psucc denotes the success probability, which is given
in Eq. (4). We then consider the worst-case advantage of ρ
defined as the infimum of Eq. (6) over all free subsets
F kðHÞ.
Remarkably, we find that such a worst-case advantage is

exactly quantified by the generalized robustness of
ρ, Eq. (1).
Theorem 4.—Let H be a d-dimensional Hilbert space.

Then, for any resource state ρ∈F ðHÞnDðHÞ,

inf
k

max
fpi;Λigi;fMigi

psuccðρ; fpi;Λigi; fMigiÞ
maxσk ∈F kðHÞpsuccðσk; fpi;Λigi; fMigiÞ

¼ 1þ RF ðHÞðρÞ:

This result illustrates that the generalized robustness in a
general QRT precisely quantifies the usefulness of resource
states in worst-case channel discrimination tasks. Crucially,
this result does not depend on the specifics of the decom-
position of the set of free states into convex subsets, but it
holds for any representation of the form (5), therefore
standing as a universal staple of QRTs. We remark that
when the set F ðHÞ of free states is convex, the infimum
over k can be omitted, and Theorem 4 recovers the known
result for convex QRTs [16].
We now outline the proof, which consists of two main

ingredients: (i) the results of [16] for convex QRTs, and
(ii) the generalized robustness in the worst-case scenario.
Let us fix an index k, and consider the corresponding
convex free subset F kðHÞ. We can apply the result for
convex QRTs [16] to F kðHÞ; for any state ρ∈DðHÞ, we
have the characterization

max
fpi;Λigi;fMigi

psuccðρ; fpi;Λigi; fMigiÞ
maxσk ∈F kðHÞpsuccðσk; fpi;Λigi; fMigiÞ

¼ 1þ RF kðHÞðρÞ:

Now, we consider the worst-case advantage; mathemati-
cally, we take the infimum over the index k on both sides. It
only remains to evaluate infkRF ðρÞ. Observing that an
optimal free state σ ∈F ðHÞ should belong to one of the
convex subsets F kðHÞ, we have the following identity,
concluding the proof,

inf
k
RF kðHÞðρÞ ¼ RF ðHÞðρÞ: ð7Þ

Conclusion.—In this Letter, we tackled two outstanding
problems: (i) Can every quantum state provide an advan-
tage in informational tasks without the need to introduce
additional constraints? and (ii) if yes, can such an advan-
tage be quantified in general terms? We answered both
questions in the affirmative by providing two different yet
related characterizations of the generalized robustness in
generally nonconvex QRTs. First, we introduced a multi-
copy resource witness in d-dimensional QRTs without
convexity assumption, which guarantees that there exists
a family of multi-input channel discrimination tasks in
which all resource states show an operational advantage.
Second, we showed that the generalized robustness exactly
quantifies the operational advantage of a resource state in a
single-copy channel discrimination task when a worst-case
scenario is considered. In this setting, the nonconvex set of
free states can be expressed as the union of multiple convex
subsets, and the generalized robustness amounts to the
minimum of all possible advantages that a resource state
can achieve with respect to each free subset. Taken
together, our results enhance the domain of applications
of QRTs and establish a fundamental stepping stone in the
ongoing translation of quantum science into quantum
technologies, by establishing that meaningful quantumness
can be identified without any need for convexity require-
ments, and that such quantumness can be directly exploited
for practical applications.
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