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In a sheared steady state, glasses reach a nonequilibrium criticality called yielding criticality. We report
that the qualitative nature of this nonequilibrium critical phenomenon depends on the details of the system
and that responses and fluctuations are governed by different critical correlation lengths in specific
situations. This scale separation of critical lengths arises when the screening of elastic propagation of
mechanical signals is not negligible. We also discuss the determinant of the impact of screening effects
from the viewpoint of the microscopic dissipation mechanism.
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Introduction.—In athermal (zero-temperature) sheared
glasses, fluidization proceeds through many local plastic
events [1–18]. In a steady state, in particular, the elemen-
tary processes of these plastic events, so-called shear
transformations (STs), tend to form avalanches [2,3,17].
Such avalanches can sometimes span the whole system and
result in one class of nonequilibrium criticality [19] called
yielding criticality [15,17,20]. The criticality is typically
reflected by stress response: the average stress hσi obeys a
critical phenomenonlike functional form called the
Herschel-Bulkley (HB) law hσi − σY ∼ γ̇n [21] and exhibits
a finite size effect [5,6,9,17]. Here, σY is the yield stress, γ̇
is the applied strain rate, and n is the HB exponent. This
yielding criticality is also characterized by scaling Ansätze
[17,20] ξ ∼ jhσi − σYj−ν and γ̇ ∼ jhσi − σYjβ, where ξ is the
critical correlation length of avalanches and ν and β are
critical exponents. From the statistical tilt symmetry of the
governing equation, we can show that the exponent ν has a
hyperscaling relation ν ¼ 1=ðd − dfÞ with the fractal
dimension df of the geometric structure of avalanches
[20]. The fractal dimension df and the yield stress σY [22]
can be determined by simulations under quasistatic shear
[16,17,20]. From the above scaling relation, we can further
determine ν.
Although there was no way to measure the remaining

important parameter β systematically in particulate sys-
tems, we recently found that we can obtain β from the
average number of STs occurring simultaneously hNSTi.
We can describe hNSTi as

hNSTi ∼ Nava × NST=ava ∼ N × γ̇1=β; ð1Þ
where Nava and NST=ava represent the number of avalanches
in the system and the number of STs in each avalanche,

respectively. By definition, they can be expressed as Nava ∼
ðL=ξÞd and NST=ava ∼ ξdf [17] [see Supplemental Material
(SM) [23] for a detailed explanation]. Using Eq. (1), we can
determine β from the γ̇ dependence of the average number
density of STs hnSTi≡ hNSTi=N. Furthermore, we found
that instantaneous normal modes with imaginary frequen-
cies (we call them Im-INMs) correspond to activated STs
that are causing plastic deformations [17], and thusNST can
be estimated from the number of Im-INMs. Instantaneous
normal modes are obtained as the eigenmodes of the
Hessian matrix of the total potential energy of an instanta-
neous configuration [25–29], which is available in particu-
late systems. Therefore, the important parameters to
characterize yielding criticality, σY, ν, and β, can all be
determined systematically. In Ref. [17], we demonstrated
that the estimated parameters describe well the criticality of
the numerically observed stress and established the validity
of the concept of yielding criticality.
Moreover, in sheared glasses, the dynamics of constitu-

ent particles become diffusive even under athermal con-
ditions [4,5,8,9,12]. If we quantify diffusive motions by the
strain-based diffusion constant D̂, they also exhibit criti-
cality as D̂ ∼ γ̇−nD̂ . Here, we introduced a critical exponent
nD̂ and defined the diffusion constant as D̂≡ Δ̂2ðγt → ∞Þ
using the strain-based mean-squared displacements in
the y direction, Δ̂2ðγtÞ≡ hð1=NÞPi½yið0Þ − yiðtÞ�2i=γt.
We assume that the system is two dimensional (2D)
[4,5,8,9] and that the shear is applied in the x direction.
γt ≡ γ̇t is the strain applied during a time interval t. The
precise measurements of the exponent nD̂, including the
confirmation by finite size scaling (FSS), were performed
in Refs. [5,9]. In particular, in Ref. [5], based on a general
phenomenological discussion, a theoretical prediction for
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the exponent was given as nD̂ ¼ 1=2, which is in line with
the numerical result. This prediction was considered not to
depend on the system details according to the general
nature of the theoretical treatment. However, Ref. [9]
reported a largely different value of nD̂ ¼ 1=3 under a
different numerical setup. We lack an understanding of the
cause of this unexpected diversity of nD̂.
In this Letter, we study the cause of the diversity in nD̂ by

means of molecular dynamics simulations of 2D sheared
glasses and the scaling argument based on the recently
established yielding criticality. Our main finding is that
there are not only quantitative differences in the values of
exponents but also qualitative differences in the property of
the criticality itself. We first found that nD̂ is inversely
proportional to β. Since the diversity of β is already known
[30,31], this inverse proportionality explains the diversity
in nD̂ reported thus far [5,9]. By comparing the results for
two systems with qualitatively different microscopic dis-
sipation mechanisms, however, we found that nD̂ can also
be largely different even when β is nearly the same. This
unexpected diversity in nD̂ arises because the diverging
correlation length governing the criticality of diffusion
differs from that governing stress in one system while, in
the other system, such a scale separation is absent. We
further clarified the physical meaning of the second critical
correlation length governing the diffusion and the reason
why such scale separation could be observed only under
certain conditions.
Numerical setups.—We conduct molecular dynamics

simulations of 2D (d ¼ 2) glasses under external shear.
The interparticle interaction follows from the Lennard-
Jones potential with smoothing terms [16,17] which ensure
that the potential and force smoothly tend to zero at the
cutoff distance rcij ¼ 1.3dij, where dij determines the
interaction range between particles i and j. To avoid
crystallization, we consider a 50∶50 mixture of two types
of particles with different sizes but with the same mass
m ¼ 1.0. The interaction ranges for different pairs of
particle types are dSS ¼ 5=6, dSL ¼ 1.0, and dLL ¼ 7=6,
where subscripts S and L distinguish particle types. The
energy scale ϵij ¼ ϵ ¼ 1.0 is constant for all particle pairs.
The physical variables reported in this Letter are all
nondimensionalized by dSL, m, and ϵ. The number density
ρ is set to be ρ ¼ N=L2 ∼ 1.09, where N is the number of
particles and L is the corresponding linear dimension of the
system.
We applied the shear at different rates in the range of

2 × 10−5 ≤ γ̇ ≤ 2 × 10−2. At every simulation step, we first
impose affine simple shear of strain Δγ in the x direction
and then calculate the nonaffine dynamics for a time
interval of Δt by integrating the equations of motion under
the Lees-Edwards boundary conditions [32]. The shear rate
is expressed as γ̇ ¼ Δγ=Δt. To make the strain resolution
constant, we fix Δγ to be 1.0 × 10−7 and control γ̇ by
changing the time step Δt. Since the speed of sound in our

system is approximately unity, our simulations with these
setups resolve the elastic wave propagation process with a
sufficiently fine resolution [33].
We considered two types of systems, systems A and B,

that have different microscopic dissipation mechanisms.
(i) System A: “Contact” damping. In system A, dissi-
pative interparticle forces are introduced as f visci ¼
ðm=τÞPj ϕðrijÞðδvj − δviÞ [5]. Here, ϕðrijÞ ∝
1–2ðrij=rCijÞ4 þ ðrij=rCijÞ8 is a smoothing function, δvi is
the nonaffine velocity, and τ ¼ 0.2 is the dissipation
timescale. This type of dissipation selectively damps
high-wave-number local relative motions [34].
(ii) System B: Stokes drag. In system B, the dissipation
is modeled through the Stokes drag force as f dragi ¼ −Γδvi
[35,36], where the damping coefficient Γ is set to unity.
Averages are denoted by angular brackets h·i and they

are calculated over steady-state data (1 ≤ γ ≤ 20) and 8
independent samples. Initial configurations are all gener-
ated by the minimization of the potential energy of totally
random structures. We ignore the thermal fluctuations
(athermal situation).
Scaling argument for diffusion constant.—We plot the

strain-based diffusion constant D̂ for different system sizes
N as functions of the shear rate γ̇ in Figs. 1(a) and 1(b). In
the low γ̇ regime below a system-size dependent threshold
γ̇CD̂

, D̂ plateaus at D̂0. The plateau value D̂0 also linearly

depends on the system linear dimension L as D̂0 ∼ L [37].
In the high-rate limit, on the other hand, D̂ seems to obey
characteristic power laws. All these behaviors are common
to both systems A and B and consistent with reports in
Refs. [5,9].
To describe the critical behavior of D̂ in the framework

of the yielding criticality, we introduce another scaling
Ansatz with a new exponent α as D̂ ∼ Δσ−α ∼ γ̇−α=β.
Introducing a scaling function fD̂ðxÞ, we obtain

D̂ × γ̇α=βCD̂
¼ ðγ̇=γ̇CD̂

Þ−α=βfD̂ðγ̇=γ̇CD̂
Þ. On the other hand,

we can also describe D̂ using the critical correlation length
ξ as D̂ ∼ ξα=ν. Because D̂ becomes D̂0 at γ̇ ¼ γ̇CD̂

, we

obtain a relationLα=ν ∼ D̂0 ∼ L and γ̇CD̂
∼ L−β=ν (see SM for

details [23]). From all these relations, we obtain α ¼ ν and

FIG. 1. Strain-based diffusion constant D̂ as a function of γ̇.
Results for (a) system A and (b) system B.
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D̂=L ¼ ðL × γ̇ν=βÞ−1fD̂ðγ̇=γ̇CD̂
Þ: ð2Þ

Therefore, with correct values of ν and β, we expect the FSS
according to this equation to collapse curves of D̂ for
different system sizes. Additionally, by comparing the
exponents, we obtain a relation nD̂ ¼ ν=β. These results
mean that the criticality of D̂ can be described only by β and
ν, the exponents introduced to describe the criticality of the
stress response.
Measurement of exponents and yield stress.—As

explained above, we can extract the precise values of β
from hnSTi, the average number density of STs. In
Figs. 2(a) and 2(b), we plot hnSTi estimated by the number
of Im-INMs [17] as a function of γ̇ for systems A and B. As
expected from Eq. (1), hnSTi does not show any system-size
dependence, and the results for all system sizes obey a
master power-law curve for both systems. From the slopes,
we can determine the values of β as βA ≈ 1.39 and
βB ≈ 1.32, where subscripts A and B distinguish the system
of interest (we summarize all values of critical exponents in

Table I). We note that although βA and βB happened to be
close, the value of the HB exponent n ¼ 1=β generally
depends on the details of the system, with values as varied
as 0.2 ≤ n ≤ 0.8 being reported [30,31].
Moreover, we can determine σY and df from the data in

the quasistatic limit obeying the procedure introduced in
Ref. [20]. We note that, while the value of df is shared by
the two systems and is consistent with that obtained from
the athermal quasistatic simulation [16] [df ≈ 1.03 and,
thus, ν ¼ 1=ðd − dfÞ ≈ 1.04], interestingly, we found that
the values of the yield stress were slightly different between
the two systems: σAY ≈ 3.66 and σBY ≈ 3.75 [17] (see SM for
details [23]). We demonstrate the success of FSS of Δσ ≡
hσi − σY with these parameters in Figs. 2(c) and 2(d) for
systems A and B, respectively. These results guarantee the
correctness of exponents βA=B and ν.
We now try an FSS of D̂ using the obtained exponents

and Eq. (2): the results are shown in Fig. 3. As shown in
Fig. 3(a), for system A, the results for different N collapse.
This indicates that D̂ is governed by ξ, and thus nD̂;A is
estimated as nD̂;A ¼ ν=βA ≈ 0.72. We note that, in systems
of both Refs. [5,9], the criticalities of D̂were described by ξ
as well, as explained in detail in SM [23]. This means that
the variation in nD̂ among these systems simply derives
from that in n ¼ 1=β (n ¼ 1=2 [5] and 1=3 [9]).
On the other hand, as shown in Fig. 3(b), the FSS is not

successful for system B: the data in the high-shear-rate
scaling regime vary significantly among different N. The
failure of this attempt is due to the inadequacy of the
implicit assumption in Eq. (2) that the criticality of D̂ and
hσi are governed by the same correlation length ξ. Below,
we explain that there exists another critical correlation
length and that the second length governs the criticality of
D̂ in system B.
Existence of another length scale.—In the phenomeno-

logical discussion in Refs. [5,12], D̂ was described by a
superposition of Eshelby fields [38] induced by all STs in
the system (see SM for a brief summary of the theoretical
background [23]). Importantly, to reproduce the critical
finite size effect, the correlation between STs over the
length scale ξ was crucial. In this phenomenological
consideration, the effect of each Eshelby field was assumed
to propagate throughout the whole system via an elas-
tic field.

FIG. 2. (a),(b) AveragenumberdensityofSTs hnSTiasa function
of the shear rate γ̇. The dashed lines are the fitting results using all
datapoints andhaveslopesof1=βA ≈ 0.72and1=βB ≈ 0.76. (c),(d)
Δσ ≡ hσi − σY as a function of shear rate with finite size scaling.
The dashed lines show the HB law: Δσ ∼ γ̇1=βA=B . Left: results for
system A. Right: results for system B.

TABLE I. Summary of exponents and scaling Ansätze.

Exponent Corresponding variable Definition Measurement System A System B

β Shear rate γ̇ ∼ Δσβ INMs analysis [17] 1.39 1.32
df Avalanche size S ∼ ξdf Quasistatic simulations [16] 1.03
ν Avalanche correlation length ξ ∼ Δσ−ν ν ¼ 1=ðd − dfÞ [20] 1.04
ν̃ ST correlation length ζ ∼ Δσ−ν̃ ν̃ ¼ 1=d 0.50
nD̂ Diffusion constant D̂ ∼ γ̇−nD̂ nD̂;A ¼ ν=βA, nD̂;B ¼ ν̃=βB 0.74 0.38
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When there are multiple excited STs in the system,
however, this assumption may not always hold. If we
consider the displacement of a particle induced by Eshelby
fields, the local plastic motion of nearby STs can screen the
elastic propagation of Eshelby fields emitted by distant STs
[39]. Therefore, when such screening effects cannot be
ignored, the length scale over which elastic waves can
travel without interference from other STs plays a major
role in determining the diffusivity. We name such a length
scale ζ and assume another scaling Ansatz for it as
ζ ∼ Δσ−ν̃, introducing another exponent ν̃. If the criticality
of D̂ is governed by ζ, we obtain α ¼ ν̃ and D̂=L ¼
ðL × γ̇ν̃=βÞ−1gD̂ðγ̇=γ̇CD̂

Þ from the same derivation of Eq. (2)
(see also SM) [23].
To consider the finite size scaling of D̂ by ζ, we need to

estimate ν̃. For this, hNSTi can be utilized again. The length
scale ζ corresponds to the linear dimension of the average
volume occupied by a single ST [see a schematic picture in
Fig. 4(a); we call ζ the ST correlation length hereafter].
Thus, the exponent ν̃ can be determined by considering a
situation where hNSTi ∼ ζdγ̇1=β ∼ 1 [from Eq. (1) with

L ¼ ζ]. We obtain ν̃ ¼ 1=d from this relation (see SM
for details [23]). Since the two exponents, ν ≈ 1.0 and
ν̃ ¼ 1=d ¼ 1=2, are largely different, the corresponding
lengths ξ and ζ are different in nature in view of the critical
phenomena. As a reference, we show the sketch for the
avalanche correlation length ξ in Fig. 4(b). As shown here,
ξ corresponds to, by definition, the overall spanning length
of avalanches formed by STs (see SM for a precise
definition).
In Fig. 5(a), we plot the results of the FSS of D̂ using the

critical exponent ν̃ for system A: the scaling is obviously
not successful. This failure allows us to reconfirm that the
criticality of D̂ is governed solely by ξ, not by ζ. In
Fig. 5(b), we tried the same FSS for system B. In this case,
we see a perfect collapse of results for different N and can
conclude that D̂ is governed by ζ. In other words, in this
system, separation of the critical correlation lengths is
observed between criticalities of hσi (a measure of
response) and D̂ (a measure of fluctuations): Since fluc-
tuations are locally determined, they are affected by
screening effects, whereas the response is globally deter-
mined by the total spanning length of avalanches and is
therefore independent of screening effects. Because this
scale separation is present only in system B, even though
βA ≈ 1.39 and βB ≈ 1.32 are close, nD̂;A ≈ 0.72 and nD̂;B ≈
0.38 are largely different.
An important question remains: Why is the screening

effect negligible in system A? This is likely because high-
wave-number local relative motions are overdamped in this
system [34]. Because of this feature, local motions resulting
from the excitation of STs are suppressed and the screening
effect of elastic wave propagation becomes very weak. We
note that, as we explain in detail in SM [23], reinterpre-
tation of reported values of exponents in Refs. [5,9]
indicates that the scale separation is also negligible in
the systems in these studies. The high-wave-number
motions are overdamped in those systems in Refs. [5,9]
as well, which is consistent with the discussion in this
paragraph.

FIG. 3. Finite size scaling of strain-based diffusion constant D̂
using exponent ν ≈ 1.04 associated with the avalanche correla-
tion length ξ. Dashed lines represent the slope of −1 expected
from the scaling argument. Results for (a) system A and
(b) system B.

FIG. 4. Schematic picture of (a) ST correlation length ζ and
(b) avalanche correlation length ξ. Mobile particles (see SM for
precise definition [23]) of all Im-INMs that correspond to active
STs are highlighted in red. The results from a system with
N ¼ 2048 under shear of the rate γ̇ ¼ 2 × 10−3 are shown. The
copied images due to the periodic boundary conditions are also
visualized around the original computational domain with lighter
colors. Black arrows depict the eigenvectors.

FIG. 5. Finite size scaling of the strain-based diffusion constant
D̂ using the exponent ν̃ ¼ 1=d associated with the ST correlation
length ζ. Dashed lines represent the slope of −1 expected from
the scaling argument. (a) Results for system A. (b) Results for
system B.
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Summary and overview.—In this Letter, by means of
molecular dynamics simulations of sheared 2D glasses, we
studied the origin of the diversity of exponent nD̂ character-
izing the criticality of the diffusion coefficient, which had
remained previously unclear. We found that the diversity in
nD̂wascausednotonlybyquantitativebut alsobyqualitative
differences: whether the scale separation of the critical
correlation lengths of response and fluctuation is present
or not. We also revealed that the screening effect of elastic
waves, which arises when microscopic dissipation does not
completely damp high-wave-number local dynamics, is
responsible for the emergence of such scale separation.
We mention that the presence of multiple critical

correlation lengths is also reported for other critical
phenomena such as jamming [40] and quantum phase
transitions [41], although the origins of the scale separation
are distinct among the examples. In the future, other critical
phenomena with scale separation may be discovered, and it
may become possible to classify the separation mecha-
nisms into several classes.
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