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We show that a lattice mode of arbitrary symmetry induces a well-defined macroscopic polarization at
first order in the momentum and second order in the amplitude. We identify a symmetric flexoelectric-like
contribution, which is sensitive to both the electrical and mechanical boundary conditions, and an
antisymmetric Dzialoshinskii-Moriya-like term, which is unaffected by either. We develop the first-
principles methodology to compute the relevant coupling tensors in an arbitrary crystal, which we illustrate
with the example of the antiferrodistortive order parameter in SrTiO3.
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The interaction between structural, polar, and magnetic
degrees of freedom in multiferroics has long been identified
as a promising source of advanced material functionalities.
The recent focus on inhomogeneous structures such as
skyrmions [1], domain walls [2], and vortices [3,4] has
renewed the interest in the so-called Lifshitz invariants
(LIs), i.e., coupling terms that depend on the first gradient
of one order parameter component. LIs play a key role in
the stabilization of spatially modulated phases [5–7] and
often determine their emerging physical properties. A
paradigmatic example is the macroscopic Dzyaloshinskii-
Moryia (DM) [8,9] interaction,

EDM ¼ ζP · ½ϕð∇ · ϕÞ − ðϕ · ∇Þϕ�; ð1Þ

where P is the macroscopic polarization, and ϕ may
correspond to the magnetic [10] or antiferromagnetic [11]
degrees of freedom. [Realizations of Eq. (1) in other
contexts, e.g., in liquid crystals [12] also exist.] The
importance of Eq. (1) lies in its topological character [13],
and the rich phenomenology it can lead to, ranging from the
switchable P in ferroelectric multiferroics [10] to the
stabilization of incommensurate spin orders in broken-
symmetry environments.
Another category of LIs involves couplings between P

and the gradients of a dyadic product ϕγϕλ,

Eflexo ¼
Kαβγλ

2

�
∂Pα

∂rβ
ϕγϕλ − Pα

∂ðϕγϕλÞ
∂rβ

�
: ð2Þ

Equation (2) bears obvious similarities to flexoelectricity
[14,15], where the symmetric strain tensor εγλ replaces the
dyadic ϕγϕλ. Furthermore, as in the flexoelectric case the
coupling tensor Kαβγλ is a universal property of all crystals,
hence its fundamental and practical interest. At difference
with flexoelectricity, however, Eq. (2) describes a much

broader class of nonlinear couplings, involving an arbitrary
(pseudo)vector ϕ [e.g., the ferroelectric polarization [16]
or the antiferrodistortive (AFD) tilts [5] in perovskite-
structure oxides] as main order parameter.
Research efforts are currently directed at exploring

practical realizations of these ideas in a variety of materials
and order parameter types [17]. It would be highly desirable,
for instance, to find nonmagnetic analogues of Eq. (1), in
contexts where the strength of the coupling constant ζ is not
limited by weak relativistic effects [18]. The so-called
ferroelectric DM interaction [18–20], which involves the
polarization itself as the primary order parameter, appears as
an especially promising candidate. An antiferrodistortive
realization of Eq. (1)was also hinted at inRef. [21], although
the relationship between the “rotopolar” coupling described
therein and Eq. (1) is not immediately obvious. Meanwhile,
additional indirect contributions toP have also been pointed
out, either involving the strain (“flexoroto” [22] effect in
the case of tilts) or other nonpolar degrees of freedom (e.g.,
the antiferroelectric R mode of Refs. [21] and [23]). The
coexistence of several effects, whose mutual relationship is
sometimes paradoxical [5], complicates the understanding
of flexo- and DM-type couplings, calling for a fundamental
treatment.
The main priority for microscopic theory lies in clarify-

ing the physical mechanisms that generate a polarization in
inhomogeneous ferroic structures, either directly via
Eqs. (1) and (2), or via the aforementioned indirect routes.
In particular, it is of central importance to know whether
these effects are well-defined bulk properties of the crystal,
or whether they are plagued by ambiguities (e.g., due to
boundary issues) as in the case of flexoelectricity [24,25].
At the same time, it would be desirable to establish an
efficient and accurate methodological framework to predict
the value of the relevant coupling coefficients in real
materials, e.g., via first-principles techniques. Selected
components of the rotopolar tensor in SrTiO3 have been
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calculated already [21]; however, conceptual and technical
difficulties with the treatment of spatial dispersion effects at
nonlinear order have so far thwarted the development of a
full-fledged theory.
Here, we provide a unified first-principles theory of both

flexo- and DM-type couplings by expressing them as,
respectively, the symmetric and antisymmetric parts of
the same fourth-rank tensor. Based on this result, we argue
that an arbitrary inhomogeneous field ϕ always couples to
polar degrees of freedom via both mechanisms, with the
special case where P and ϕ are the same mode as an
interesting exception. We further show that the DM-like
coefficient ζ is a well-defined physical property of the
crystal, while the flexo-type tensor,Kαβγλ, is not. The reason
lies in the macroscopic elastic and electrostatic interactions,
which contribute to the latter but not to the former. Similarly
to the flexoelectric case, these long-ranged (“nonanalytic,”
in the language of perturbation theory) terms lead to
ambiguities in the definition of the reference electrostatic
potential and the center of mass of the cell [24,25], which
must be adequately treated to guarantee the internal con-
sistency of the theory [26]. From a practical point of viewwe
recast the nonlinear interaction between modulated order
parameters as well-defined third derivatives of the total
energy. The long-wavelength expansion [25,27] of the latter,
which we treat in the framework of density-functional
perturbation theory [28,29] (DFPT), readily yields the
coupling constants of Eqs. (2) and (1) at first order in the
momentum. Calculations are performed with minimal effort
via the recently developed [25,27] long-wave module of
ABINIT [30,31], in combination with a postprocessing
tool that we have implemented and tested as part of this
work [32]. As a numerical demonstration, we focus on the
leading terms involving the AFD order parameter in SrTiO3.
Following Ref. [21], we base our derivations on unsym-

metrized inhomogeneous couplings of the type

Euns ¼ −Wαβγλpα
∂ϕγ

∂rβ
ϕλ; ð3Þ

where Euns is an energy per unit cell, ϕðrÞ is the main order
parameter, and the field pðrÞ corresponds to some polar
lattice mode of the crystal. Equation (3) is the most general
trilinear coupling between ϕðrÞ and pðrÞ occurring at first
order in the gradient expansion; any other expression can be
written as a linear combination thereof. To verify this point
explicitly in the case of Eqs. (2) and (1), it suffices to separate
the symmetric and antisymmetric contributions with respect
to the last two indices, Wαβγλ ¼ WαβðγλÞ þWαβ½γλ�. Within
the assumed cubic symmetry, elementary calculus leads
then to

Wαβγλ ¼ 2Kαβγλ|fflfflffl{zfflfflffl}
WαβðγλÞ

þ ζðδαγδβλ − δαλδβγÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Wαβ½γλ�

; ð4Þ

which establishes the formal link between Eq. (3) and
Eqs. (2) and (1). In a cubic crystal,K has three independent
entries (K11 ¼ K1111, K12 ¼ K1122, and K44 ¼ K1212),
similarly to the flexoelectric tensor. These, in combination
with the DM-type scalar ζ, account for the four components
of the tensor W; the latter coincides with the rotopolar
coupling of Ref. [21] in the AFD case.
The special case where ϕ ¼ p, of relevance to the

recently proposed “electric DM interaction” [18,20],
deserves a separate discussion. Equation (3) reduces then
to Eq. (2) via a permutation of indices and integration by
parts. This means that the DM-type coupling of Eq. (1) is
redundant in this case: the flexo-type expression of Eq. (2)
describes the trilinear self-interaction of a polar vector field
in full generality. Assuming cubic symmetry of the undis-
torted crystal, Eq. (2) adopts the following compact form,

Ep ¼ Kp2∇ · p; ð5Þ

where K ¼ K12 − K44 is a single material coefficient, and
p2 ¼ p · p. The remaining independent components of the
K tensor (K11 and K12 þ K44) are irrelevant at the bulk
level as they do not contribute to the forces nor to the
energy. Crucially, Eq. (5) depends directly on the longi-
tudinal components of p, which are typically suppressed by
depolarizing effects; for this reason, henceforth we shall
restrict to our attention to cases where the primary order
parameter ϕ is nonpolar.
To work our way toward a first-principles expression, we

need to specify the microscopic nature of the field variables
entering Eq. (3). Following Ref. [26], we use a perturbative
approach in terms of monochromatic lattice distortions of
the type

ulκα ¼ uqκαeiq·R
ð0Þ
lκ : ð6Þ

Here, κ and l are sublattice and cell indices, respectively;
ulκα indicates the atomic displacement along the Cartesian

direction α; Rð0Þ
lκ stands for the unperturbed atomic loca-

tions in the high-symmetry reference structure; q is the
momentum. The microscopic representation of the con-
tinuum fields is then defined as

uqκα ¼ hκαjpβipq
β þ hκαjϕβiϕq

β ; ð7Þ

where the symbol hκαjvi corresponds [33] to the eigendis-
placements of a given phonon mode jvi, and vq refers to the
Fourier representation of the field vðrÞ. (Bra and kets refer
to real vectors in the 3N-dimensional space of the atomic
displacements, where N is the number of basis atoms in the
cell [33]).
Based on the above, we can express Eq. (3) in reciprocal

space as a three-phonon vertex,
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Euns ¼ −iqβWαβγλp
−q−q0
α ϕq

γ ϕ
q0
λ : ð8Þ

In the q;q0 → 0 limit, we can then write the tensor W in
terms of the third derivatives of the total energy E,

∂
3E

∂p−q
α ∂ϕq

γ ∂ϕ0
λ

¼
�
pα

���� ∂Φ
q

∂ϕ0
λ

����ϕγ

�
; ð9Þ

or equivalently as the first derivative of the force-constant
matrix Φq with respect to the homogeneous perturbation
ϕ0
λ . By recalling [24,25] the long-wave expansion of Φq,

Φq ≃Φð0Þ − iqβΦð1;βÞ, we arrive then at a closed expression
for the W-tensor components as projection on the polar
mode hpαj of the force-response tensor jwβγλi,

Wαβγλ ¼ hpαjwβγλi; jwβγλi ¼
∂Φð1;βÞ

∂ϕ0
λ

jϕγi; ð10Þ

describing the forces (fκ) on individual sublattices via
fκα ¼ hκαjwβγλið∂ϕγ=∂rβÞϕλ. Thanks to cubic symmetry,
Eq. (10) allows one to capture all the independent compo-
nents of W at once as part of a single linear-response
calculation; the flexo-like and DM-like contributions are
then extracted via Eq. (4). Whenever appropriate, the
mode index will be indicated with a superscript, either

in the form WðiÞ
αβγλ or W½i�

αβγλ for the normal-mode or
symmetry-adapted [34] sublattice representation [33] of
the tensors, respectively.
Our next goal is to understand whether W (or its

decomposition into K and ζ) is a well-defined physical
property of the crystal. A first concern lies in the definition
of the force-response tensor jwβγδi, via a long-wave
expansion of Φq. To perform the latter operation, short-
circuit electrical boundary conditions need to be imposed
[24], which implies setting to zero the macroscopic electro-
static potential Vmac in the calculations. Vmac is, however, ill
defined in a periodic crystal [35], which leads to a
“reference potential ambiguity” in the definition of the
flexo-type coefficients [24,25,36]. Note that this issue only
affects the longitudinal components of the polarization.
These are expected to be small in all but a few materials
(e.g., hyperferroelectrics [37]) where depolarizing effects
are unusually weak, so we will not delve into it further here.
In any case, the DM-type constant ζ is manifestly unaf-
fected by electrostatics, due to the transverse nature
of Eq. (1).
A second issue concerns the translational freedom of the

polar mode eigendisplacement vector, which is only
defined modulo a rigid shift of the cell [26]. Based on
the criteria of Ref. [26], a necessary condition for a material
property to be “well defined” is its invariance with respect
to the following transformation,

jp0
αi ¼ jpαi þ λ; ð11Þ

where λ is an arbitrary constant. To understand the impact
of Eq. (11) onW, recall that the acoustic eigendisplacement
vector reduces to a translation [26,36] regardless of the
microscopics hκαjuβi ¼ δαβ. This implies that

W0
αβγδ ¼ Wαβγδ þ λhuαjwβγδi; ð12Þ

where huαjwβγδi is a net elastic force on the cell as a whole
that arises in a locally inhomogeneous order parameter ϕ.
That such a force does not vanish is a direct consequence of
the strain coupling

Esc ¼ −Rαβγδεαβϕγϕδ; ð13Þ

which is always allowed by symmetry. Since the force is
the divergence of the stress, a trivial integration by parts
leads to the following sum rule,

−
1

2

X
κ

hκαjwβγλi ¼ Rαβγλ; ð14Þ

relating the sublattice sum of the force-response tensor
jwβγλi to the strain coupling tensor R. After observing that
Rαβγλ is symmetric both in αβ and γλ, we arrive at the
following transformation law for the coupling coefficients,

K0
αβγδ ¼ Kαβγδ − λRαβγδ; ζ0 ¼ ζ: ð15Þ

Equation (15) is one of the central results of this work,
showing that the DM-like coupling constant, unlike K, is
indeed invariant with respect to Eq. (11), and hence a well-
defined bulk property, as anticipated earlier.
Notwithstanding the aforementioned ambiguity ofK, the

information contained in it is crucial to obtaining a well-
defined value of the local polarization at leading order in ϕ
and q. To see this, we assume in the following that the
fields are modulated along a single direction ŝ and constant
along the normal planes. (This is appropriate, for example,
to modeling a domain wall oriented along ŝ.) Within
these mechanical boundary conditions, we obtain (see
Supplemental Material, Sec. S8 [33]) the relaxed electrical
polarization as (summation over repeated indices is implied)

Pα ¼
1

Ω
Z½i�Φþ

ij

�
K̃½j�

αγλðŝÞSγλ;s þ ζ½j�Aα

	
; ð16Þ

whereΦþ is the pseudoinverse [25,34,38] of the zone-center
force-constants matrix; Sγλ;s ¼ ∂ðϕγϕλÞ=∂s and Aα ¼
ϕs∂ϕα=∂s − ϕα∂ϕs=∂s are the relevant symmetric and anti-
symmetric components of the nonlinear ϕ-gradient tensor;
Z½i� are the mode dynamical charges; and the renormalized
flexo-like coefficients are

K̃½j�
αγλðŝÞ ¼ K½j�

αŝγλ þ C½j�
αŝβŝ½CðŝÞ�−1βσRσŝγλ: ð17Þ
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Here,C½j�
αŝβŝ and CβσðŝÞ ¼ Cβŝσŝ are the projections along ŝ of

the flexoelectric coupling [33] and elastic tensors, respec-
tively. The second term in Eq. (17) originates from the
relaxation of the acoustic modes, which produce a strain
gradient (and hence atomic forces via flexoelectricity) at first
order in q.
By combining the sum rule Eq. (14) with its flexoelectric

counterpart [24,25],
P

j C
½j�
αβγλ ¼ Cαβγλ, it is straightforward

to verify that the sublattice sum of the renormalized force-
response coefficients jK̃γλðŝÞi identically vanishes. This
guarantees [38] that the total polarizationPα is well defined,
proving our point. Conversely, the individual contributions
to Pα associated with the two terms in Eq. (17) depend on
how the pseudoinverse is constructed [26], and are therefore
ill defined as stand-alone properties. Such intimate relation-
ship between the direct flexo-like contribution to the atomic
forces [first term in Eq. (17)] and the “nonanalytic elastic
contribution” of the second term provide a nice illustration
of the covariance principle of Ref. [26], whichwe generalize
here to the nonlinear regime. These conclusions have direct
implications for the continuummodeling of inhomogeneous
ferroelectric [20,39,40] and ferroelastic [5,21,22,41,42]
structures, where the aforementioned two mechanisms play
a central role. In particular, they clarify the relation between
the “flexoantiferrodistortive” [5] and “flexoroto” [22]
effects [corresponding to the first and second term in
Eq. (17), respectively] described in the recent literature,
and the necessity to account for both in order to obtain
quantitatively accurate physical answers.
As a representative demonstration of the above argu-

ments, we consider the case where the field ϕ corresponds
to the out-of-phase AFD tilts in perovskite-structure oxides,
with SrTiO3 [21] as a test case. Calculations of the
rotopolar [21] force-response tensor jwβγλi (its symmetric
part, jKβγλi ¼ ðjwβγλi þ jwβλγiÞ=4, corresponds to the
“flexo-AFD” effect described in Ref. [5]) are carried out
within the framework of the local-density approximation
(LDA) to density-functional theory as implemented in the
ABINIT [31,43–45] package. We use a nonprimitive cell of
10 atoms in order to accommodate a small uniform tilt ϕ0

α in
the structure, which allows us to treat the third derivatives
of Eq. (10) via finite differences in ϕ0

α. The parametrization
of the AFD mode amplitudes, in length units, follows the
established convention [21,46]; relaxation of the antiferro-
electric R mode of Ti [21,23] is fully accounted for in the

calculated W½i�
αβγλ coefficients. Numerical results, details of

the method and additional supporting data are reported in
Ref. [33]; of particular note, we provide [33] a stringent
numerical proof of the sum rule, Eq. (14), which we base
on an independent calculation of the R (rotostriction
[5,21,22]) tensor.
To illustrate the physical meaning of the calculated

rotopolar coefficients, and as a further numerical validation
thereof, we next consider a frozen-in cycloidal [21] tilt

pattern in the form ϕs ¼ ϕ cosðq · rÞ, ϕr ¼ ϕ sinðq · rÞ,
ϕz ¼ 0, where both the AFD pseudovector ϕ and the
propagation direction q ¼ qŝ ¼ q½cosðθÞ; sinðθÞ; 0�
lie in the pseudocubic xy plane. [Here, r̂ ¼ ẑ × ŝ is the
in-plane direction that is orthogonal to q.] Our long-
wavelength approach predicts, for the symmetry-adapted
sublattice mode [i], a geometric force (both DM- and flexo-
type couplings are linear in P, which implies an improper
[47–50] mechanism for local inversion-symmetry break-
ing) at a given point r in the crystal, whose transverse
component reads as

f½i�r ðrÞ ¼ ϕ2q


ζ½i� þ 2K½i�ðq̂Þ cosð2q · rÞ�: ð18Þ

(K½i�ðq̂Þ ¼ K½i�
rsrs stand for the 1212 components of the

flexo-type tensor in the rotated ŝ; r̂; ẑ system.) In Fig. 1(a)
we compare the prediction of Eq. (18) with the forces that
we obtain via a direct first-principles calculation of the
AFD cycloid. (We use θ ¼ π=4, corresponding to ŝk½110�
in the pseudocubic system, and q ¼ 2π=ð12 ffiffiffi

2
p

a0Þ, which
we accommodate in a 120-atom supercell; the tilt amplitude
is set to jϕj ¼ 0.02a0, i.e., to a tilt angle of 2.3°.) The
agreement is excellent, with a discrepancy of the order of a
few percents at most. Note the qualitative difference

between the uniform DM-like contribution to f½i�r (dashed
lines), and the spatially modulated flexo-like term, which
averages to zero in any periodic tilt pattern.
The uniform DM-like forces sum up to zero, consistent

with the translational symmetry of the crystal and with our

FIG. 1. Comparison between the atomic forces extracted from a
direct calculation of an AFD cycloid (symbols) and the pre-
dictions of the macroscopic model (solid curves). Forces on Sr
(black circles), Ti (red squares), and the “radial” (blue triangles)
and “tangential” (green diamonds) oxygen modes of T1u sym-
metry are shown. Dashed lines show the uniform DM-like forces.
(a) No elastic relaxation; (b) mechanical equilibrium. Lower
insets show the sublattice sum of the forces: first-principles
(triangles) and model (solid curve). Upper insets schematically
illustrate the portion (shaded gray area) of the fixed- or relaxed-
strain cycloidal pattern shown in the main panel.
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formal results. Conversely, the flexo-like forces display
the expected drift, shown in the inset of Fig. 1(a),
that originates from the strain coupling via Eq. (14). To
verify that the net drift disappears at mechanical equi-
librium, we determine the elastic displacement amplitude
via uðsÞ ¼ −ϕ2Rrsrs=ð2qCrsrsÞ cosð2qsÞ. After incorporat-
ing uðsÞ into the simulation cell, we recalculate the
forces from first principles, and compare them in
Fig. 1(b) with the predictions of Eq. (17). [The latter
implies an additional contribution to Eq. (18) of the type

Δf½i�r ¼ −4q2C½i�
rsrsuðsÞ.] Again, the agreement is excellent,

and the elastic forces (inset) now vanish as expected. Note
the drastic change in the amplitude of the forces on the Ti
and radial-oxygen mode following elastic relaxation, while
the Sr and tangential-oxygen modes are largely unaffected.

This behavior stems from the fact that C½i�
rsrs is large and

positive for i ¼ 2, 3 and almost negligible otherwise (see
Table S7 [33]).
The usefulness of the present theory is especially

manifest in materials like SrTiO3, where the lowest-
frequency (“soft”) mode at the zone center carries 99%
of the polar response to a static perturbation. This obser-
vation leads to a compact representation of the physical
effects described insofar as terms of a few materials-
specific parameters; their calculated values are reported
in Table S9 [33]. The information therein allows one to
calculate the local polarization in an arbitrary inhomo-
geneous tilt structure via Eq. (16). For example, in the
cycloid model of Fig. 1, which is representative of
the typical inhomogeneities of the order parameter in the
ferroelastic phase of SrTiO3, we obtain a macroscopic
polarization of P ¼ −0.9 μC=cm2. The effect increases
linearly with the static dielectric constant, ϵ, which should
lead to values of P that are at least an order of magni-
tude larger at low temperature. (ϵ ≃ 900 in our LDA
calculations).
In summary, the trilinear Lifshitz invariants of Eqs. (1)

and (2) emerge here as a rich and barely tapped playground
of potentially useful crystal properties, thus opening many
opportunities for future research. Examples of target
applications range from the study of inhomogeneous
structures in tilt-driven ferroelastics (e.g., LaAlO3 or
CaTiO3) and antiferroelectrics [6], to testing the recent
phenomenological prediction [19] of stable polar sky-
rmions in chiral systems. We shall explore these promising
directions in the context of forthcoming publications.
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